
VisiBroker RT 7.0 C++ Developer's Guide

Table of Contents

22Preface

22What’s new

23Conventions

23Platform conventions

23VisiBroker RT example path conventions

24VisiBroker Library conventions

24Where to find additional information

25Introducing VisiBroker RT for C++

25What is CORBA?

26What is VisiBroker RT for C++?

27VisiBroker RT for C++ Features

27VisiBroker RT for C++ Smart Agent architecture

27Enhanced object discovery with the Location Service

27Implementation and object activation support

28Robust thread and connection management

28IDL compilers

28Dynamic invocation with DII and DSI

29Interface repositories

29Server-side portability

29Customizing the ORB with interceptors and object wrappers

30VisiBroker RT for C++ CORBA compliance

30VisiBroker RT for C++ Development Environment

30Administration tools

30Developer’s tools

31VisiBroker RT for C++ header files

31VisiBroker ORB Libraries

31VisiBroker Sample Applications

Table of Contents

- 2/607 - © 2024 Rocket Software

31Interoperability with VisiBroker for Java

32Interoperability with other ORB products

33Setting up the Development Environment

33Setting the VBROKERDIR Environment Variable

33Setting VBROKERDIR on a Linux platform

34Setting the Path environment variable

34Setting the Path on a Linux platform

34Setting VBROKER_ADM Environment Variable

34Setting VBROKER_ADM on a Linux platform

35Setting OSAGENT_PORT environment variable

35Setting OSAGENT_PORT on a Linux platform

35Logging Output on the Host System

36Developing an Example Application with VisiBrokerRT for C++

36Development Process

38Step 1: Defining object interfaces

39Step 2: Generating client stubs and server servants

39Files produced by the idl compiler

40Step 3: Implementing the client

41corba_init.C

44client.C

48Step 4: Implementing the server

48server.C

52Step 5: Building the example

52Step 6: Integrating VisiBroker RT with VxWorks 7

52The VisiBroker RT Runtime

56Configuring the VxWorks Image Project (VIP) include path

57Integrating VisiBroker RT Libraries with VxWorks 7

59Using the command line to statically link VisiBroker RT for C++ libraries into VxWorks kernel

60Loading VisiBroker RT libraries into the VxWorks Kernel dynamically

62Using VisiBroker RT with VxSim

Table of Contents

- 3/607 - © 2024 Rocket Software

62Step 7: Starting the Smart Agent (osagent) Service

63Configuring the Osagent to work with VxSim

63Configuring the VisiBroker ORB running on VxSim to support osagent communications

67Running the client

68Developing an Example Application using VxWorks Real-Time Processes and Visibroker RT

68What are RTPs

69Development Process

71Step 1: Defining object interfaces

72Step 2: Generating client stubs and server servants

72Files produced by the idl compiler

73Step 3: Implementing the client

73client.C

78Step 4: Implementing the server

79server.C

83Step 5: Building the example

83Step 6: Linking VisiBroker RT

83The VisiBroker RT Run-time

87Configuring the VxWorks RTP Makefile Project include path

88Integrating VisiBroker RT Libraries with VxWorks RTP Makefile Project

88Using VisiBroker RT with VxSim

89Step 7: Starting the Smart Agent (osagent) Service

89Configuring the OSAgent to work with VxSim

89Configuring the VisiBroker ORB to run on VxSim with OSAgent communication support

93Running the client

94Handling Exceptions

94Exceptions in the CORBA model

94System exceptions

96Obtaining completion status

97Getting and setting the minor code

97Determining the type of a SystemException

97Catching system exceptions

Table of Contents

- 4/607 - © 2024 Rocket Software

99Downcasting exceptions to a system exception

102User exceptions

103Defining user exceptions

107Exception Support in VisiBroker RT for C++

107The Exception Macros

109Server basics

109Overview

109Initializing the ORB

110Creating the POA

111Obtaining a reference to the root POA

111Creating the child POA

112Implementing servant methods

115Activating the POA

116Activating objects

116Complete example

124Using POAs

124What is a Portable Object Adapter?

125POA terminology

126Steps for creating and using POAs

126POA policies

127Compact CORBA and POA Policies

127Thread policy

127Lifespan policy

128Object ID Uniqueness policy

128ID Assignment policy

129Servant Retention policy

129Request Processing policy

130Implicit Activation policy

130Bind Support policy

Table of Contents

- 5/607 - © 2024 Rocket Software

131Server Engine policy

131Creating POAs

132POA naming convention

132Obtaining the rootPOA

133Setting the POA properties

133Creating and activating the POA

134Activating objects

135Activating objects explicitly

136Activating objects on demand

137Activating objects implicitly

137Activating with the default servant

140Deactivating objects

141Using servants and servant managers

143ServantActivators

147ServantLocators

151Managing POAs with the POA manager

152Getting the current state

152Holding state

153Active state

153Discarding state

154Inactive state

154Adapter activators

155Processing requests

156Using the Tie Mechanism

156How does the tie mechanism work?

157Example program

157Location of an example program using the tie mechanism

157Looking at the tie template

Table of Contents

- 6/607 - © 2024 Rocket Software

159Changing the server to use the _tie_account class

162Building the tie example

163Client basics

163Initializing the ORB

164Binding to objects

165Action performed during the bind process

166Invoking operations on an object

167Manipulating object references

167Checking for nil references

167Obtaining a nil reference

168Duplicating an object reference

169Releasing an object reference

169Obtaining the reference count

170Converting a reference to a string

171Obtaining object and interface names

171Determining the type of an object reference

172Determining the location and state of bound objects

172Checking for non-existent objects

173Narrowing object references

173Widening object references

174Using Quality of Service

174Understanding Quality of Service

175QoS interfaces

176CORBA::PolicyManager

182Using the VisiBroker RT for C++ Console

182What is the VisiBroker Console?

183Navigating the VisiBroker Console

185Supported ORB Services

187Starting the VisiBroker Console

187VisiBroker Console main menu

Table of Contents

- 7/607 - © 2024 Rocket Software

189Setting the VisiBroker Console preferences

191General tab

191Security tab

192State tab

192Tools tab

194Setting Properties

194Overview

195Setting Properties Through the Property Manager Interface

197Environment variables

197Setting Properties Through the Command Line

198Setting Properties Through a Property Table

199ORB Default Properties

200Using the IDL compiler

200Introduction to IDL

200How the IDL compiler generates code

201Example IDL specification

201Looking at code generated for clients

202Methods (stubs) generated by the IDL compiler

203Pointer type _ptr definition

203Automatic memory management _var class

204Looking at code generated for CORBA server implementations

205The PortableServer_RefCountServantBase class

206The PortableServer_ServantBase class

207Methods (skeletons) generated by the IDL compiler

208Class template generated by the IDL compiler

209Defining interface attributes in the IDL

209Specifying oneway methods with no return value

210Note

210Specifying an interface in IDL that inherits from another interface

212Using the Smart Agent

212What is the Smart Agent?

Table of Contents

- 8/607 - © 2024 Rocket Software

213Locating Smart Agents

213Locating objects through Agent cooperation

213Starting a Smart Agent (osagent)

214Starting the Smart Agent on the Development Host

214Starting the Smart Agent on the Target System

216Starting the Smart Agent Programmatically from a VisiBroker RT Development Host

217Verbose output

217Disabling the agent

219Ensuring Agent availability

219Checking client existence

219Working within ORB domains

220Connecting Smart Agents on different local networks

221
Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development Host systems
only)

222Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target systems only)

223How Smart Agents detect each other

224Working with multihomed hosts

225Specifying interface usage for Smart Agents

226Use of the OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks Targets

227Using point-to-point communications

228Specifying a host as a run-time parameter

230Specifying an IP address with an environment variable

230Specifying hosts with the agentaddr table

230Ensuring object availability

231Invoking methods on stateless objects

231Achieving fault-tolerance for objects that maintain state

231Migrating objects between VisiBroker RT Systems

232Migrating objects that maintain state

Table of Contents

- 9/607 - © 2024 Rocket Software

232Migrating instantiated objects

232Reporting all objects and services

233Using the Location Service

233What is the Location Service?

235Location Service components

235What is the Location Service agent?

238What is a trigger?

240Querying an agent

240Finding all instances of an interface

242Finding everything known to Smart Agents

245Writing and registering a trigger handler

245Implementing and registering a trigger handler

249Using the Naming Service

249Overview

251Understanding the namespace

251Naming contexts

252Names and NameComponent

253Name resolution

254Running the Naming Service

255Integrating the Naming Service into your application

256Compiling and linking programs

256Sample programs

257Starting the Naming Service

261Bootstrapping a Naming Service

261Calling resolve_initial_references

261Using -ORBInitRef

266-ORBDefaultInitRef

266Using -ORBDefaultInitRef with a corbaloc URL

268NamingContext

269NamingContextExt

Table of Contents

- 10/607 - © 2024 Rocket Software

270Default naming contexts

270Obtaining the default context

271Binding a name in C++

274Resolving a name in C++

276Using the Event Service

276Overview

277Proxy consumers and suppliers

278OMG Common Object Services Specification

278Communication models

279Push model

280Pull model

281Using event channels

282Example push supplier and consumer

283Deriving a PushSupplier class

288Deriving a PushConsumer class

289Implementing the PushConsumer

293Starting the Event Service

293Installing the Event Service

293Integrating the Event Service into your application

294Setting the queue length

295Compiling and linking programs

295Interface reference

295EventChannel

296ConsumerAdmin

296SupplierAdmin

297ProxyPullConsumer

297ProxyPushConsumer

298ProxyPullSupplier

298ProxyPushSupplier

299PullConsumer

299PushConsumer

Table of Contents

- 11/607 - © 2024 Rocket Software

300PullSupplier

301PullSupplier methods

301PushSupplier

303Real-Time CORBA Extensions

303Overview

304Using the Real-Time CORBA Extensions

305Real-Time CORBA ORB

308Real-Time Object Adapters

310Real-Time CORBA Priority

311Priority Mappings

311Priority Mapping Types

313Rules for Priority Mappings

314Default Priority Mapping

316Replacing the Default Priority Mapping

317Using Native Priorities in VisiBroker Application Code

318Threadpools

319Threadpool API

319Threadpool Creation and Configuration

320Association of an Object Adapter with a Threadpool

322The General Threadpool

322Threadpool Destruction

323Real-Time CORBA Current

326Real-Time CORBA Priority Models

328Client Model Backwards Compatability with VisiBroker 3.2.2

329Setting Priority at the Object Level

329Real-Time CORBA Mutex API

331Control of Internal ORB Thread Priorities

332Limiting the Internal ORB Thread Priority Range

332Configuring Individual Internal ORB Thread Priorities

333Protocol Configuration Policies

333ServerProtocolPolicy

Table of Contents

- 12/607 - © 2024 Rocket Software

337ClientProtocolPolicy

341Listening and Dispatch Configuration

341Overview

341When to Configure Listening and Dispatching

341Listening and Dispatch Architecture

342Interaction of an SCM and Threadpool during Dispatch

346Server Engines and SCM Configuration

346Required Server Engine and SCM Properties

347Optional Server Engine Properties

348Optional SCM Properties

348Server Engine and SCM Creation

349Associating a POA with Server Engines

350Default Server Engines

351Restriction on POA/Server Engine Relationship

351Code Example

357Connection Management

357VisiBroker Default Connection Behavior of VisiBroker RT

358Overriding the Default Behavior with _clone()

359Limiting the Number of Connections

359Limiting Connections on the Server-Side

359Limiting Connections on the Client-Side

360Bidirectional Communication

360Using bidirectional IIOP

361Bidirectional ORB properties

361vbroker.orb.enableBiDir property

361vbroker.se.\<sename>.scm.\<scmname>.manager.exportBiDir property

362vbroker.se.\<sename>.scm.\<scmname>.manager.importBiDir property

362About the examples

362Enabling bidirectional IIOP for existing applications

Table of Contents

- 13/607 - © 2024 Rocket Software

363Security considerations

364VisiBroker Pluggable Transport Interface

364Pluggable Transport Interface Files

365Transport Layer Requirements

366User-Provided Code Required for a Protocol Plugin

366Unique Profile ID Tag

367Example Code

368Implementing a New Transport

368Connection Class

371Connection Factory Class

371Listener Class

373Listener Factory Class

374Profile Class

375Profile Factory Class

376Classes Provided by the Interface

376Transport Bridge Class

377Transport Registrar Class

378Creating a Loadable Library

379Using Portable Interceptors

379Overview

380Portable Interceptor and Information interfaces

381Request Interceptor

385IOR Interceptor

386Codec

386Codec class

387CodecFactory

387CodecFactory class

388Creating a Portable Interceptor

389Registering Portable Interceptors

391Registering an ORBInitializer

392VisiBroker Edition Extensions to Portable Interceptors

Table of Contents

- 14/607 - © 2024 Rocket Software

393Limitations of VisiBroker Edition Portable Interceptors Implementation

394Examples

394Example Code

394Example: client_server

424Using VisiBroker Interceptors

424Overview

425Interceptor interfaces and managers

425Client interceptors

427Server interceptors

430Registering interceptors with the VisiBrokerRT for C++ ORB

431Creating interceptor objects

432Loading interceptors

432Example interceptors

432Example code

435Code listings

444Passing information between your interceptors

445Using both Portable Interceptors and Interceptors simultaneously

445Order of invocation of interception points

445Server side Interceptors

446Order of ORB events during POA creation

446Order of ORB events during object reference creation

447Using Object Wrappers

447Overview

448Typed and un-typed object wrappers

448Special idl2cpp requirements

448Example applications

448Un-typed object wrappers

449Using multiple, un-typed object wrappers

450Order of pre_method invocation

Table of Contents

- 15/607 - © 2024 Rocket Software

450Order of post_method invocation

451Using un-typed object wrappers

451Implementing an un-typed object wrapper factory

452Implementing an un-typed object wrapper

454Creating and registering un-typed object wrapper factories

457Removing un-typed object wrappers

457Typed object wrappers

458Using multiple, typed object wrappers

459Order of invocation

459Typed object wrappers with co-located client and servers

460Using typed object wrappers

460Implementing typed object wrappers

461Registering typed object wrappers for a client

462Registering typed object wrappers for a server

465Removing typed object wrappers

465Combined use of un-typed and typed object wrappers

466Command-line arguments for typed wrappers

466Initializer for typed wrappers

468Command-line arguments for un-typed wrappers

469Initializers for un-typed wrappers

471Executing the sample applications

471Examples

471Turning on timing and tracing object wrappers

472Turning on caching and security object wrappers

472Turning on typed and un-typed wrappers

473Executing a co-located client and server

474Using Valuetypes

474Understanding valuetypes

474Concrete valuetypes

Table of Contents

- 16/607 - © 2024 Rocket Software

475Abstract valuetypes

476Implementing valuetypes

476Defining your valuetypes

477Compiling your IDL file

477Inheriting the valuetype base class

478Implementing the Factory class

479Registering your Factory with the ORB

479Implementing factories

479Factories and valuetypes

480Registering valuetypes

480Boxed valuetypes

480Abstract interfaces

482Custom valuetypes

482Truncatable valuetypes

484VisiBroker Logging

484Logging Overview

485The Logger Manager

485Configuring ORB Logging

486ORB Log Levels

486ORB Logging Components

487Controlling the Level of ORB Logging

489Library liblog_message_catalog.o and Formatted ORB Log Messages

489Controlling the Priority of ORB Logging

490Enabling Forwarding of ORB Logging

490Controlling the Destination of ORB Logging

491Application Logging

491Creating or Obtaining a Reference to a Logger

492Setting the Forwarder Thread Priority of a Logger

493Enabling Message Forwarding

494Logging a Message to a Logger

496Adding and Removing Logger Forwarders

Table of Contents

- 17/607 - © 2024 Rocket Software

497Implementing a Logger Forwarder

500The Default Logger Forwarder

505Using Interface Repositories

505What is an interface repository?

506What does an interface repository contain?

507How many interface repositories can you have?

507Creating and viewing an interface repository with irep

507Creating an interface repository with irep

509Viewing the contents of the interface repository

510Updating an interface repository with idl2ir

510Understanding the structure of the interface repository

511Identifying objects in the interface repository

512Types of objects that can be stored in the interface repository

513Inherited interfaces

514Accessing an interface repository

515Example programs

522Using the Dynamic Invocation Interface

522What is the Dynamic Invocation Interface?

523Introducing the main DII concepts

524Using request objects

525Encapsulating arguments with the Any type

525Options for sending requests

526Options for receiving replies

526Steps for invoking object operations dynamically

527Location of example programs for using the DII

527Obtaining a generic object reference

528Creating and initializing a request

528Request class

529Ways to create and initialize a DII request

530Using the create_request method

530Using the _request method

Table of Contents

- 18/607 - © 2024 Rocket Software

531Example of creating a Request object

532Setting the context for the request

533Setting arguments for the request

535Passing type safely with the Any class

536Representing argument or attribute types with the TypeCode class

540Sending DII requests and receiving results

540Invoking a request

542Sending a deferred DII request with the send_deferred() method

544Sending an asynchronous DII request with the send_oneway method

544Sending multiple requests

546Receiving multiple requests

547Using the interface repository with the DII

551Using the Dynamic Skeleton Interface

551What is the Dynamic Skeleton Interface?

552Steps for creating object implementations dynamically

552Location of an example program for using the DSI

553Extending the DynamicImplementation class

553Example of designing objects for dynamic requests

557Specifying repository IDs

558Looking at the ServerRequest class

559Implementing the Account object

559Implementing the AccountManager object

560Processing input parameters

561Setting the return value

561Server implementation

565Using the Dynamically Managed Types

565Overview

566DynAny types

566Usage restrictions

567Creating a DynAny

Table of Contents

- 19/607 - © 2024 Rocket Software

567Initializing and accessing the value in a DynAny

568Constructed data types

568Traversing the components in a constructed data type

568DynEnum

569DynStruct

569DynUnion

569DynSequence and DynArray

569Example IDL

570Example client application

574Example server application

582Using the BOA in VisiBroker RT for C++ 7.0

582Compiling your BOA code with VisiBroker RT for C++ 7.0

582Supporting BOA options

582Using object activators

583Naming Objects under the BOA

583Object names

584Migrating VisiBroker Code

584Migrating BOA to POA

584Looking at an example

587Mapping BOA types to POA policies

588Migrating interceptors

588Using VisiBroker 3.x interceptors

591CORBA Exceptions

600Glossary

605Notices

605Copyright

605Trademarks

605Examples

605License agreement

606Corporate information

606Contacting Technical Support

Table of Contents

- 20/607 - © 2024 Rocket Software

606Country and Toll-free telephone number

Table of Contents

- 21/607 - © 2024 Rocket Software

Preface

VisiBroker RT for C++ allows you to develop and deploy distributed object based applications, as defined
in the Common Object Request Broker Architecture (CORBA) specification.

This guide provides you with information on how to get started with the VisiBroker RT for C++
fundamentals and work with the more advanced features. It is written for C++ programmers who are
familiar with object-oriented development.

What’s new
This manual has been updated to reflect the latest VisiBroker RT for C++ release. The new features and
enhancements include:

VxWorks 7 Support: VisiBroker RT for C++ now supports execution on the latest VxWorks 7
Kernels.

VxWorks RTP Support: VisiBroker RT for C++ now supports VxWorks Real Time Processes,
enabling users to build applications that are isolated from the kernel. This allows for non-real-time
or non-performance-critical applications to fail without taking down other mission-critical tasks.

Support for Symmetric Multiprocessing: VisiBroker RT for C++ now supports Symmetric
Multiprocessing allowing VisiBroker applications to to make full use of the system's multiple CPUs,
allowing for greater throughput and performance for VisiBroker applications.

CORBA/e Compact Profile support: VisiBroker RT for C++ is now fully compliant with the CORBA/
e Compact profile. Allowing users to reduce the memory footprint of their applications be using
the VisiBroker Compact libraries to remove unneeded features from their applications.

• •

• •

• •

• •

Preface

- 22/607 - © 2024 Rocket Software

Conventions

Platform conventions
This manual uses the following conventions, where necessary, to indicate that information is platform-
specific:

VisiBroker RT example path conventions
This manual uses the following convention when identifying the installed location of the VisiBroker RT
examples:

Convention Used for

Linux All Linux development host platforms including Red Hat, SuSE

VxWorks VisiBroker RT for C++ for VxWorks 7

C++ VisiBroker RT for C++

Convention Used for

<VBRT_install> Notation to indicate the path to the VisiBroker RT installation. This is
used wherever an example needs to be identified with respect to the
location of the product installation.
To illustrate, the examples are organized in subdirectories where the
kernel mode examples reside under a subdirectory named vbroker_k
ernel , and the RTP examples reside under a subdirectory named vbr
oker_rtp . These are indentified in this Developer's Guide as
<VBRT_install>/examples/vbroker_kernel and
<VBRT_install>/examples/vbroker_rtp respectively.

Note that the default installation path is /opt/RocketSoftware/
VisiBrokerRT , which may have been changed during product

installation.

Conventions

- 23/607 - © 2024 Rocket Software

VisiBroker Library conventions
This manual uses the following convention, where necessary, to indicate that information is VisiBroker
library specific or to indicate that VisiBroker interfaces are not supported in certain versions of the
VisiBroker libraries.

 Not supported by the VisiBroker RT Compact Profile Corba Library

Where to find additional information
For more information about VisiBroker RT for C++, refer to these information sources:

VisiBroker RT for C++ Release Notes

Contains late-breaking information about the current release of VisiBroker RT for C++.

VisiBroker RT for C++ for VxWorks 7

Contains the instructions for installing VisiBroker RT for C++ on Windows and UNIX host systems
as well as information for deploying distributed applications built using VisiBroker RT for C++.

VisiBroker RT for C++ Programmer’s Reference Guide. This manual contains information on the
VisiBroker RT for C++ Application Programming Interfaces (API).

For more information about the CORBA specification, see the The Common Object Request Broker:
Architecture and Specification. This document is available from the Object Management Group (OMG).

Convention Used for

$VBRT_INSTALL Denotes the same information as <VBRT_install> , except this
notation may be used in the context of a shell command, where
$VBRT_INSTALL represents a notional environment variable that

contains the path to the VisiBroker RT installation.

• •

• •

• •

VisiBroker Library conventions

- 24/607 - © 2024 Rocket Software

https://www.omg.org/

Introducing VisiBroker RT for C++

This section introduces VisiBroker RT for C++, a complete implementation of the CORBA 2.5
specification, and describes its features and components.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) allows distributed applications to
interoperate (application to application communication), regardless of what language they are written
in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address the complexity and
high cost of developing distributed object applications. CORBA uses an object-oriented approach for
creating software components that can be reused and shared between applications. Each object
encapsulates the details of its inner workings and presents a well defined interface, which reduces
application complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The Object Request Broker (ORB) in the figure below connects a client application with the objects it
wants to use. The client program does not need to know whether the object implementation it is in
communication with resides on the same computer or is located on a remote computer somewhere on
the network. The client program only needs to know the object’s name and understand how to use the
object’s interface. The ORB takes care of the details of locating the object, routing the request, and
returning the result.

Introducing VisiBroker RT for C++

- 25/607 - © 2024 Rocket Software

The ORB itself is not a separate process/thread. It is a collection of libraries and network resources
that integrates within end-user applications, and allows your client applications to locate and use
objects.

What is VisiBroker RT for C++?
VisiBroker RT for C++ provides a complete CORBA 2.3 ORB run-time and supporting development
environment for building, deploying, and managing distributed C++ applications that are open, flexible,
and inter-operable. Objects built with VisiBroker RT for C++ are easily accessed by Web-based
applications that communicate using OMG’s Internet Inter-ORB Protocol (IIOP) standard for
communication between distributed objects through the Internet or through local intranets. VisiBroker
RT for C++ has a built-in implementation of IIOP that ensures high-performance and interoperability. Its
architecture is shown in the figure below:

Note

What is VisiBroker RT for C++?

- 26/607 - © 2024 Rocket Software

VisiBroker RT for C++ Features
VisiBroker RT for C++ has several key features as described in the following sections.

VisiBroker RT for C++ Smart Agent architecture
VisiBroker RT for C++’s Smart Agent (osagent) is a dynamic, distributed directory service that provides
facilities for both client applications and object implementations. Multiple Smart Agents on a network
cooperate to provide load balancing and high availability for client access to server objects. The Smart
Agent keeps track of objects that are available on a network, and locates objects for client applications
at invocation time. VisiBroker RT for C++ can determine if the connection between your client
application and a server object has been lost, due to an error such as a server crash or a network
failure. When a failure is detected, an attempt is automatically made to connect your client to another
server on a different node, if it is so configured. For information on the Smart Agent, see Using the
Smart Agent and Using Quality of Service.

Enhanced object discovery with the Location Service
VisiBroker RT for C++ provides a powerful Location Service — an extension to the CORBA specification
— that enables you to access the information from multiple Smart Agents.

Working with the Smart Agents on a network, the Location Service can see all the available instances of
an object to which a client can bind. Using triggers, a callback mechanism, client applications can be
instantly notified of changes to an object’s availability. Used in combination with interceptors, the
Location Service is useful for developing enhanced load balancing of client requests to server objects.
See Using the Location Service for more information.

Implementation and object activation support
VisiBroker RT for C++ provides functionality that enables you to defer object activation until a client
request is received. You can defer activation for a particular object or an entire class of objects. See
Using POAs for more information on servant managers.

VisiBroker RT for C++ Features

- 27/607 - © 2024 Rocket Software

Robust thread and connection management
VisiBroker RT for C++ provides native support for multithreading thread management. With VisiBroker
RT for C++’s thread pooling model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client will be serviced by multiple threads — ensuring that
the requests are quickly executed—while less active clients can share a single thread, and still have
their requests immediately serviced.

VisiBroker RT for C++’s connection management minimizes the number of client connections to the
server. All client requests for objects residing on the same server are multiplexed over the same
connection, even if they originate from different threads.

Additionally, released client connections are recycled for subsequent reconnects to the same server,
eliminating the need for clients to incur the overhead of new connections to the same server.

All thread and connection behavior is fully configurable. See Connection Management for details on
how VisiBroker RT for C++ manages connections.

IDL compilers
VisiBroker RT for C++ comes with two IDL compilers that make object development easier:

idl2cpp — The idl2cpp compiler takes IDL files as input and produces the necessary client stubs
and server skeletons (in C++).

idl2ir — The idl2ir compiler takes an IDL file and populates an interface repository with its
contents.

The Interface Repository is available only on the Development Host.

See Using the IDL compiler and Using Interface Repositories for details on these compilers.

Dynamic invocation with DII and DSI
For dynamic invocation, VisiBroker RT for C++ provides implementations of both the Dynamic
Invocation Interface (DII) and the Dynamic Skeleton Interface (DSI). The DII allows client applications to
dynamically create requests for objects that were not defined at compile time. The DII is covered in
Using the Dynamic Invocation Interface. The DSI allows servers to dispatch client operation requests to
objects that were not defined at compile time. See Using the Dynamic Skeleton Interface for complete
details.

• •

• •

Robust thread and connection management

- 28/607 - © 2024 Rocket Software

Interface repositories
The Interface Repository (IR) is an online database of meta information about ORB objects. Meta
information stored for objects includes information about modules, interfaces, operations, attributes,
and exceptions. Using Interface Repositories.md covers how to start an instance of the Interface
Repository, add information to an interface repository from an IDL file, and extract information from an
interface repository.

The Interface Repository is available only as a Development Host utility.

Server-side portability
VisiBroker RT for C++ supports the CORBA Portable Object Adapter (POA), which is a replacement to the
Basic Object Adapter (BOA). The POA shares some of the same functionality as the BOA, such as
activating objects, support for transient or persistent objects, and so forth. The POA also has new
features, such as the POA Manager and Servant Manager which creates and manages instances of your
objects. See Using POAs for more information.

Customizing the ORB with interceptors and object wrappers
VisiBroker RT for C++’s interceptors enable developers to view under-thecover communications
between clients and servers. Interceptors can be used to extend the ORB with customized client and
server code that enables load balancing, monitoring, or security to meet specialized needs of
distributed applications. See Using Portable Interceptors.md for information.

VisiBroker RT for C++’s object wrappers allow you to define methods that are called when a client
application invokes a method on a bound object or when a server application receives an operation
request. See Using Object Wrappers for information.

Note

Interface repositories

- 29/607 - © 2024 Rocket Software

VisiBroker RT for C++ CORBA compliance
VisiBroker RT for C++ is fully compliant with the CORBA specification (version 2.3) from the Object
Management Group (OMG). For more details, refer to the CORBA specification.

VisiBroker RT for C++ Development Environment
VisiBroker RT for C++ is used in both the development and deployment phases. The VisiBroker RT for C+
+ development environment includes the following components:

Administration and Development tools

C++ header files

VisiBroker ORB libraries (including the VisiBroker Smart Agent)

Sample applications

Administration tools
The following tools are used to administer the VisiBroker RT for C++ ORB during development:

Developer’s tools
The following tools are used during the development phase:

• •

• •

• •

• •

Tool Purpose

osagent Used to manage the Smart Agent. See Using the Smart Agent.

osfind Reports on objects running on a given network.

irep Used to manage the Interface Repository. See Using Interface Repositories .

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined
in an IDL file.

VisiBroker RT for C++ CORBA compliance

- 30/607 - © 2024 Rocket Software

http://www.omg.org/

VisiBroker RT for C++ header files
The VisiBroker RT for C++ for VxWorks 7 header files have been installed under <VBRT_install>/include .
See Development process for a description of how to develop VisiBroker RT for C++ for VxWorks 7
applications.

VisiBroker ORB Libraries
The VisiBroker RT for C++ ORB libraries enable client and server applications to use and provide
distributed objects. The run-time support services is included with the VisiBroker product.

VisiBroker RT for C++ version 7.0 provides a set of libraries for each supported CPU variant. See Step 6:
Integrating VisiBroker RT with VxWorks 7 for details on how to use the VisiBroker run-time libraries.

VisiBroker Sample Applications
VisiBroker RT for C++ provides a set of sample applications as a starting point for the user. These
sample applications can be found in the <VBRT_install>/examples directory.

Interoperability with VisiBroker for Java
Applications created with VisiBroker RT for C++ can communicate with object implementations
developed with VisiBroker for Java, which is sold separately. Simply use the same IDL you used to
develop your C++ application as input to the VisiBroker for Java IDL compiler, supplied with VisiBroker
for Java. You may then use the resulting Java skeletons to develop the object implementation.

Also, object implementations written with VisiBroker RT for C++ will work with clients written in
VisiBroker for Java. In fact, a server written with VisiBroker RT for C++ will work with any CORBA-
compliant client; a client written with VisiBroker RT for C++ will work with any CORBA-compliant server.

Tool Purpose

idl2cpp This tool generates C++ stubs and skeletons from an IDL file.

VisiBroker RT for C++ header files

- 31/607 - © 2024 Rocket Software

Interoperability with other ORB products
CORBA-compliant software objects communicate using the Internet InterORB Protocol (IIOP) and are
fully interoperable, even when they are developed by different vendors who have no knowledge of each
other’s implementations. VisiBroker RT for C++’s use of IIOP allows client and server applications you
develop with VisiBroker RT for C++ to interoperate with a variety of ORB products from other vendors.

Interoperability with other ORB products

- 32/607 - © 2024 Rocket Software

Setting up the Development Environment

VisiBroker RT for C++ requires very little development host environment configuration. The following section
specifies what environment variables VisiBroker uses. There are three mandatory environment variables which
must be set and/or modified:

VBROKERDIR

PATH

VBROKER_ADM

Setting the VBROKERDIR Environment Variable
The VBROKERDIR environment variable defines the directory where the VisiBroker RT for C++ distribution
was installed.

This environment variable must be set in order for the VisiBroker development host tools to work
correctly.

Setting VBROKERDIR on a Linux platform
If you are using csh , and you installed the VisiBroker distribution in the default location, the following
Solaris command can be used for setting the VBROKERDIR environment variable.

prompt> setenv VBROKER_ADM $VBRT_INSTALL/adm

If you are using Bourne (or BASH) shell, and you installed the VisiBroker distribution in the default
location, the following Solaris command can be used for setting the VBROKERDIR environment variable:

prompt> VBROKER_ADM=$VBRT_INSTALL/adm prompt> ; export VBROKER_ADM

• •

• •

• •

Note

Setting up the Development Environment

- 33/607 - © 2024 Rocket Software

Setting the Path environment variable
The PATH environment variable should be set to include the bin directory which contains the VisiBroker
RT for C++ distribution. The bin directory is where the VisiBroker RT for C++ tools/utilities for
developers and users are located.

If you choose to explicitly set the PATH environment variable, the following sections explain how to do
so.

Setting the Path on a Linux platform
If you are using Bourne (or BASH) shell and you installed the VisiBroker distribution in the default
location the following Linux command can be used for updating the PATH environment variable:

Setting VBROKER_ADM Environment Variable
The VBROKER_ADM environment variable defines the administration directory where important
configuration information for development host environment tools such as VisiBroker’s interface
repository and Smart Agent are stored.

Setting VBROKER_ADM on a Linux platform
If you are using Bourne (or BASH) shell, and you installed the VisiBroker distribution in the default
location, the following Linux command can be used for setting the VBROKER_ADM environment variable:

prompt> export PATH=$PATH:$VBRT_INSTALL/VisiBrokerRT/bin

Setting the Path environment variable

- 34/607 - © 2024 Rocket Software

Setting OSAGENT_PORT environment variable
The OSAGENT_PORT environment variable defines the port number under which the Smart Agent will
listen. By default, the Smart Agent will listen on port number 14000.

It is often desirable to have two or more separate Osagent domains running at the same time. One
domain might consist of the production versions of client programs and object implementations while
another domain might be made up of test versions of the same clients and objects that have not yet
been released for general use. If several developers are working on the same local network, each may
want to establish their own ORB domain so that their testing efforts do not conflict with one another.
For details on establishing multiple Osagent domains see Using the Smart Agent.

Setting OSAGENT_PORT on a Linux platform
If you are using Bourne (or BASH) shell, and you want the Smart Agent to listen on port number 10000,
set the OSAGENT_PORT environment variable as follows:

Logging Output on the Host System
Many VisiBroker tools offer a verbose mode that displays information about the tool as it executes. In
addition, any application that is linked with the VisiBroker library may also produce output. On Linux
systems this output is either written to the console, or to the corresponding shell if invoking commands
from a shell.

prompt> export VBROKER_ADM=$HOME/VisiBrokerRT/adm

prompt> export OSAGENT_PORT=10000

Setting OSAGENT_PORT environment variable

- 35/607 - © 2024 Rocket Software

Developing an Example Application with
VisiBrokerRT for C++

This section uses an example application to describe the development process for creating distributed,
object-based applications.

The code for this example application is provided in the <VBRT_install>/examples/vbroker_kernel/basic/
bank_account directory where the VisiBroker RT for C++ distribution was installed. If you do not know the
location of your VisiBroker RT for C++ distribution, see your system administrator.

Development Process
When you develop distributed applications with VisiBroker RT for C++, you must first identify the objects
required by the application. You will then usually follow these steps:

Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an object will provide and
how they should be invoked. In this example, we define, in IDL, the Account interface with a balance()
method and the AccountManager interface with an open() method.

Use the IDL compiler to generate the client stub code and server POA servant skeleton code.

Using the idl2cpp compiler, we’ll produce client-side stubs (which provide the interface to the Account
and the AccountManager objects’ methods) and server-side classes (which provides classes for the
implementation of the remote objects).

Write the client program code.

To complete the implementation of the client program, initialize the ORB, bind to the Account and the
AccountManager objects, invoke the methods on these objects, and print out the balance.

Write the server object code.

To complete the implementation of the server object code, we must derive from the POA_Account and
POA_AccountManager classes, provide implementations of the interfaces’ methods, and implement the
server’s “main/start” routine.

Compile the client and server code.

To create the client program, compile and link the client program code with the client stub. To create
the Account server, compile and link the server object code with the server skeleton.

Integrate the VisiBroker libraries needed into VxWorks.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Developing an Example Application with VisiBrokerRT for C++

- 36/607 - © 2024 Rocket Software

Initialize the ORB for the Server processor and start the server.

Initialize the ORB for the Client processor and run the client program.

The figure below shows how to develop the sample bank application:

7. 7.

8. 8.

Development Process

- 37/607 - © 2024 Rocket Software

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker RT for C++ is to specify all of your objects and
their interfaces using the OMG’s Interface Definition Language (IDL). The IDL can be mapped to a
variety of programming languages. The IDL mapping for C++ is summarized in the VisiBroker RT for C+
+ Reference Guide.

You then use the idl2cpp compiler to generate stub routines and servant skeleton code from the IDL
specification. The stub routines are used by your client program to invoke operations on an object. You
use the servant code, along with code you write, to create a server that implements the object. The
code for the client and object, once completed, is used as input to your C++ compiler to produce a client
application and an object server.

Writing the account interface in IDL
IDL has a syntax similar to C++ and can be used to define modules, interfaces, data structures, and
more.

IDL sample 1 shows the contents of the Bank.idl file for the bank_account example. The Account
interface provides a single member function for obtaining the current balance. The AccountManager
interface creates an account for the user if one does not already exist.

IDL sample 1 Bank.idl file provides the Account and Account Manager interface definition

Step 1: Defining object interfaces

- 38/607 - © 2024 Rocket Software

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker RT for C++’s idl2cpp compiler to
generate C++ stub routines for the client program, and skeleton code for the object implementation.
The stub routines are used by the client program for all member function invocations. You use the
skeleton code, along with code you write, to create the server that implements the objects.

The code for the client program and server object, once completed, is used as input to your C++
compiler and linker to produce the client and server. These steps are shown in the sample bank
application figure above.

Because the bank.idl file requires no special handling, it can be compiled with the following command:

For more information on the command-line options for the idl2cpp compiler, see Using the IDL
compiler.

Files produced by the idl compiler
The idl2cpp compiler generates four files from the bank.idl file:

bank_c.hh — Contains the definitions for the Account and AccountManager classes.

bank_c.cc — Contains internal stub routines used by the client.

bank_s.hh — Contains the definitions for the POA_Account and POA_AccountManager servant classes.

bank_s.cc — Contains the internal routines used by the server.

module Bank
{

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

prompt> idl2cpp -source_ext cpp bank.idl

• •

• •

• •

• •

Step 2: Generating client stubs and server servants

- 39/607 - © 2024 Rocket Software

You will use the bank_c.hh and bank_c.cc files to build the client application. The bank_s.hh and
bank_s.cc files are for building the server object. All generated files have either a .cc or .hh suffix. The
suffix may be controlled by the -source_ext option on the idl2cpp command line.

Never modify the contents of files generated by the idl2cpp compiler.

Step 3: Implementing the client
Many of the classes used in implementing the bank client are contained in the code generated by the
idl2cpp compiler The file named client.cpp , part of the bank_account example, contains the
implementation of the client program. Normally you would create this file.

Because your program uses the Account as well as the AccountManager IDL interfaces, it must include the
bank_c.hh file.

For a client and/or server application to be able to use the ORB, the ORB object must be initialized. The
file corba_init.C contains the ORB initialization code for both the server and client objects. The function
start_corba can be called from the VxWorks C shell after loading the corba_init program. See the
bank_account.html file for a detailed description of how to load (where applicable) and execute the
bank_account client example on your VxWorks target.

The files corba_init.C and client.C implement the sequence of steps required to run the
start_account_client program. These are:

Initialize the ORB (corba_init.C)

Bind to an AccountManager object (client.C)

Obtain an Account object by invoking open() on the AccountManager object (client.C)

Obtain the balance by invoking balance() on the Account object (client.C)

Caution

• •

• •

• •

• •

Step 3: Implementing the client

- 40/607 - © 2024 Rocket Software

corba_init.C
The first task that your client application needs to do is initialize the ORB object, as shown in Code
example 1:

Code example 1 Initializing the ORB

corba_init.C

- 41/607 - © 2024 Rocket Software

#include <vxWorks.h>
#include "corba.h"
#include <taskLib.h>
#include "vutil.h"

#define OSAGENT_PORT "14000"

/*--*/
/* Forward Declarations. */
/*--*/

extern "C" void start_corba(char * ORB_options_string);
static void do_corba(char * ORB_options_string);

/*--*/
/* Global Variable Declarations */
/*--*/

CORBA::ORB_var orb;

/*--*/
/* function ==> start_corba */
/* This function will spawn a vxWork task @ */
/* priority 100, which will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*--*/

void start_corba(char * ORB_options_string)
{

char taskName = "DO_CORBA";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

/*--*/
/* Spawn do_corba task. */
/*--*/
taskSpawn(taskName,

Prio,
option,
stackSize,
(FUNCPTR)do_corba,
(int)ORB_options_string,0,0,0,0,0,0,0,0,0);

}

/*--*/

corba_init.C

- 42/607 - © 2024 Rocket Software

/* function ==> do_corba */
/* This function will perform the necessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*--*/

void do_corba(char * ORB_options_string)
{

/*--*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba*/
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*--*/

int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

VISUtil::freeArgv(new_argc, new_argv);
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

corba_init.C

- 43/607 - © 2024 Rocket Software

client.C
The start_bank _client program implements the client application which obtains the current balance of a
bank account. The client program performs the following steps:

Bind to an AccountManager object (client.C)

Obtain an Account object by invoking open() on the AccountManager object (client.C)

Obtain the balance by invoking balance() on the Account object (client.C)

Code example 2 Client side program

1. 1.

2. 2.

3. 3.

client.C

- 44/607 - © 2024 Rocket Software

//bank_account client

#include <vxWorks.h>
#include "corba.h"
#include <vport.h>
#include "bank_c.hh"

/*--*/
/* Forward Declarations */
/*--*/

extern "C" void start_bank_client(const char* name);
static void bank_client(const char* name);

/*--*/
/* Global Variable Declarations */
/*--*/

extern CORBA::ORB_var orb;

void start_bank_client(const char* name)
{

char * taskName = "BANK_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,
(int)name,0,0,0,0,0,0,0,0,0);

}

void bank_client(const char* name)
{

// The client uses the "_bind" method by default which locates
// the Server Object via the OSAgent.There is also a provision
// for the client to use the Server's stringified IOR
// (eg. cases where using the OsAgent may not be supported). To
// use the IOR method, copy the stringified IOR in place of the
// NULL value below.This stringified IOR is typically displayed
// on the server console after the server has been activated.
char * IOR = NULL ;

client.C

- 45/607 - © 2024 Rocket Software

VISTRY {

// Locate an account manager. Give the full POA name and the
// servant ID.
Bank::AccountManager_var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference

CORBA::Object_var object = orb->string_to_object(IOR);

VISIFNOT_EXCEP
manager = Bank::AccountManager::_narrow(object);

VISEND_IFNOT_EXCEP
}
else {

PortableServer::ObjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind("bank_account_poa",

(CORBA_OctetSequence &)managerId);
VISEND_IFNOT_EXCEP

}

Bank::Account_var account;

// Set the account name
if (name==NULL) {

name = "Jack B. Quick";
}

VISIFNOT_EXCEP
account = manager->open(name);

VISEND_IFNOT_EXCEP

// Get the balance of the account.
CORBA::Float balance;

VISIFNOT_EXCEP
balance = account->balance();

VISEND_IFNOT_EXCEP

// Print out the balance.
VISIFNOT_EXCEP

cout << "The balance in " << name << "'s account is $"
<< balance << endl;

client.C

- 46/607 - © 2024 Rocket Software

Binding to the AccountManager object
Before your client program can invoke the open(String name) member function, it must first use the
_bind() member function to establish a connection to the server that implements the AccountManager
object. The implementation of the _bind() member function is generated automatically by the idl2cpp
compiler. The _bind() member function requests the ORB to locate and establish a connection to the
CORBA server object. If the server object is successfully located and a connection is established, a proxy
object is created to represent the server’s POA_AccountManager object. A pointer to this proxy
AccountManager object is returned to your client program.

Obtaining an Account object
Next your client program needs to call the open() member function on the AccountManager object to get
a pointer to the Account object for the specified customer name.

Obtaining the balance
Once your client program has established a connection with an Account object, the balance() member
function can be used to obtain the balance. The balance() member function on the client side is actually
a stub generated by the idl2cpp compiler that gathers all the data required for the request and sends it
to the server object.

Other member functions
Several other member functions are provided that allow your client program to manipulate an
AccountManager object reference. Many of these are not used in the example client application, but they
are described in detail in the VisiBroker RT for C++ Reference Guide.

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
}
VISEND_CATCH
return;

}

client.C

- 47/607 - © 2024 Rocket Software

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank server are contained in the
header files generated by the idl2cpp compiler. The server.C file is a server implementation included
for the purposes of illustrating this example. Normally you, the programmer, would create this file.

Just as with the client, the server program requires the ORB to have already been initialized. The file
corba_init.C contains the ORB initialization code for the server objects. See the bank_account.html file
for a detailed description of how to load and execute the bank_acount example on your VxWorks
target.

server.C
This file implements the Server class for the server side of our bank_account example. The server
program does the following:

Initializes the ORB (corba_init.C).

Creates a Portable Object Adapter with the required policies (server.C).

Creates the account manager servant object (server.C).

Activates the servant object (server.C).

Activates the POA manager (and the POA) (server.C).

Code example 3 Server-side program

Note

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Step 4: Implementing the server

- 48/607 - © 2024 Rocket Software

//bank_account server
#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"

/*--*/
/* Forward Declarations. */
/*--*/

extern "C" void start_bank_server(void);
static void bank_server(void);

extern CORBA::ORB_var orb;

// Declare global objects
AccountRegistry AccountManagerImpl::_accounts;

void start_bank_server(void)
{

char* taskName = "BANK_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::narrow(obj);

VISEND_IFNOT_EXCEP

server.C

- 49/607 - © 2024 Rocket Software

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_account_poa",

poa_manager, policies);
VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId = PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(
(CORBA_OctetSequence&)managerId,managerServant);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var ref;

VISIFNOT_EXCEP

server.C

- 50/607 - © 2024 Rocket Software

Understanding the Account class hierarchy
The Account class that you implement is derived from the POA_Bank::Account class that was generated by
the idl2cpp compiler . Look closely at the POA_Bank::Account class definition that is defined in the
bank_s.hh file. The figure below shows the class hierarchy for the AccountImpl interface :

ref = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

CORBA::String_var string_ref;

VISIFNOT_EXCEP
string_ref = orb->object_to_string(ref.in());

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string_ref << endl << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

server.C

- 51/607 - © 2024 Rocket Software

Step 5: Building the example
There are three types of VxWorks modules which are produced with each example:

ORB Initializer (corba_init)

The server skeleton (bank_s.o) and the client stub (bank_c.o) are compiled and linked in as part of
this program, to support the use of the dynamic linking loader via the ld command from the
VxWorks C shell.

Server implementation (server)

Created from the server.C file.

Client program (client)

Created from the client.C file.

The corba_init , server , and client programs/modules are all dependent on the VisiBroker RT for C++
ORB libraries (i.e. liborb.o or liborb_compact.o , and the libagentsupport.o or libagentsupport_min.o ,
depending on whether you intend to use the OSAgent location service). See Step 6: Integrating
VisiBroker RT with VxWorks 7 for more information on the delivered VisiBroker libraries.

Each example directory contains an md file detailing, in addition to a description of the example, the
procedure for building that specific example. The top level of the examples directory (i.e.
<VBRT_install>/examples) also contains a README.html which contains links to all the individual example
md files.

Step 6: Integrating VisiBroker RT with VxWorks 7

The VisiBroker RT Runtime
The VisiBroker RT for C++ run-time is composed of several libraries. Each library supports a particular
feature set of VisiBroker RT. A VisiBroker RT library need only be selected if its contained features are
required by any application code that is to be executed on the target system.

VisiBroker RT libraries are delivered in the following formats:

Relocatable object modules (liborb.o)

This format is provided to support linking the VisiBroker RT library with the VxWorks kernel to
make a bootable VxWorks image when building a VxWorks image from the command line. (e.g.
make vxWorks , from the VxWorks Board Support Package directory)

"munched" relocatable object modules (e.g. liborb_munched.o)

• •

• •

• •

• •

• •

Step 5: Building the example

- 52/607 - © 2024 Rocket Software

VisiBroker RT provides "munched" libraries as “ease-of-use” libraries to allow dynamic loading
when using either the VxWorks C shell or VxWorks cmd shell. (e.g. from the VxWorks C shell
->ld < liborb_munched.o)

VisiBroker RT VxWorks 7 Components

This format is provided to support building a VisiBroker RT enabled "bootable VxWorks image
(custom configured)".

VisiBroker RT runtime libraries
The following table describes the VisiBroker RT runtime libraries and the features provided by each:

• •

Library Description

Relocatable Object Module:
liborb.o
"munched" Relocatable Object Module:
liborb_munched.o

Dynamic CORBA version of the VisiBroker Object
Request Broker library.
Note: the VisiBroker Object Activiation Daemon is
not supported in VisiBrokerRT for C++.

Relocatable Object Module:
liborb_no_libc_llong.o
"munched" Relocatable Object Module:

liborb_no_libc_llong_munched.o

This library provides the same funtionality as
liborb.o library, with the exception that it DOES NOT
INCLUDE the GCC libc long long arithmetic
operators.
The long long arithmetic operators are not provided
by the VxWorks libraries (e.g. libPPC604gnuvx.a), but
are included for the default ORB libraries (liborb),
since full support for the CORBA:Longlong is
dependent on them.
Since other VxWorks products also include these
long long arithmetic operators as well, these
"no_libc_llong" libraries are delivered to support
coexistence with these other products.

Relocatable Object Module:
libagentsupport.o
"munched" Relocatable Object Module:

libagentsupport_munched.o

Provides the functionality required for the ORB to
communicate with the Osagent. This library is
required if your application requires the services of
the VisiBroker SmartAgent (Osagent).

Relocatable Object Module:
libboa.o
"munched" Relocatable Object Module:

libboa_munched.o

This library provides support for the Basic Object
Adapter (BOA). Use of the library is required if your
application requires the CORBA 2.1 BOA interface.

The VisiBroker RT Runtime

- 53/607 - © 2024 Rocket Software

Library Description

Relocatable Object Module:
libevchn_c_s.o
"munched" Relocatable Object Module:

libevchn_c_s_munched.o

This library provides the interfaces to allow
applications to be clients of the VisiBroker RT for C++
Event Service. If one of your VxWorks nodes intends
to start a Event Service channel and/or factory it
must include both this library as well as the library
libevchn.o (described below)

Relocatable Object Module:
libevchn.o
"munched" Relocatable Object Module:

libevchn_munched.o

This library provides the interfaces for creating and
starting VisiBroker RT for C++ Event Service channels
and/or factories on a VxWorks node

Relocatable Object Module:
liblocsupport.o
"munched" Relocatable Object Module:

liblocsupport_munched.o

This library provides support for the liblocsupport.o
VisiBroker Location Service. Use of the library is
required if your application "munched" Relocatable
Object Module: requires use of the Location Service
liblocsupport_munched.o interface.

Relocatable Object Module:
liblog_message_catalog.o
"munched" Relocatable Object Module:

liblog_message_catalog_munched.o

This library provides support for the formatted
output of ORB log messages. Use of the library is
required if your application desires more verbose
logging. By default VisiBroker logging only includes
message keys not message text. Please refer to
VisiBroker Logging for details on the VisiBroker
Location Service.

Relocatable Object Module:
libmigrate.o
"munched" Relocatable Object Module:

libmigrate_munched.o

This library provides support for the 3.x style of
VisiBroker Interceptors. Use of the library is required
if you are migrating a 3.x application which use
Interceptors and want to keep the 3.x style
Interceptor API. Please refer to “Migrating VisiBroker
Code” for details on migrating 3.x style interceptor
applications.

Relocatable Object Module:
libname_c_s.o
"munched" Relocatable Object Module:
vlibname_c_s_munched.o

This library provides the interfaces for client
applications which intend to ONLY use the VisiBroker
RT for C++ Naming Service. If one of your VxWorks
target nodes intends to start a Naming Service "root
context" it must include both this library as well as
the library libname.o (described below).

The VisiBroker RT Runtime

- 54/607 - © 2024 Rocket Software

The figure below shows the interdependencies between the VisiBrokerRT libraries:

Library Description

Relocatable Object Module:
libname.o
"munched" Relocatable Object Module:

libname_munched.o

This library provides the interfaces for creating and
starting a VisiBroker RT for C++ Naming Service on a
VxWorks node.

Relocatable Object Module:
libobjwrap.o
"munched" Relocatable Object Module:

libobjwrap_munched.o

This library provides support for VisiBroker Object
Wrappers. Use of the library is required if your
application requires use of Object Wrappers. Please
refer to Using Object Wrappers for details on the
Object Wrappers type of Interceptors.

Relocatable Object Module:
ibpluggable.o
"munched" Relocatable Object Module:

libpluggable_munched.o

This library provides support for the VisiBroker
Pluggable Transport interfaces. Use of the library is
required if your application requires use of a user
provided transport other than TCP/IP.

Relocatable Object Module: libsrvmgr.o

"munched" Relocatable Object Module:

libsrvmgr_munched.o

This library provide provides support for
communicating with the VisiBroker Console. Note
that the VisiBroker Console has been deprecated
with this release; it is not included within the
distribution, but can be obtained by contacting the
Rocket Support team.

Relocatable Object Module:
libservicesupport.o
"munched" Relocatable Object Module:
libservicesupport_munched.o

This library provides support for the VisiBroker
Common Object Services. Use of the library is
required if your application requires use of the
Naming or Event Service.

Relocatable Object Module:
osagent.o
"munched" Relocatable Object Module:

osagent_munched.o

The VisiBroker SmartAgent. This library is required to
run the VisiBroker Smart Agent on a VxWorks node.

The VisiBroker RT Runtime

- 55/607 - © 2024 Rocket Software

Configuring the VxWorks Image Project (VIP) include path
Compiling code that references VisiBroker RT for C++ libraries requires the inclusion of VisiBroker RT
header files. To enable the compiler to locate these header files, the VisiBroker RT include directory can
be added as a VIP include path:

Open up the project Properties dialog box for your VIP.

Navigate to the Build Properties page and select the Paths tab.

Select the C++ compiler build tool, and click Add.

Insert “$(VBROKERDIR)/include” into the Value field and click OK.

Alternatively, adding the path directly to the tool chain’s include path make variable (CC_INCLUDE) will
achieve the same result. This approach is useful if your project is geared up to build directly from
makefiles, as is the case when building the VisiBroker RT for C++ examples. The configuration of the
include path in this way can be seen in the stdmk files which reside in the root directories of each of the
vbroker_kernel and vbroker_rtp example groups.

1. 1.

2. 2.

3. 3.

4. 4.

Configuring the VxWorks Image Project (VIP) include path

- 56/607 - © 2024 Rocket Software

Integrating VisiBroker RT Libraries with VxWorks 7
The VisiBroker RT for C++ libraries required by your applications at run-time can be either:

Statically linked into the VxWorks kernel at build time.

Loaded dynamically at run-time.

Statically linking VisiBroker RT libraries into the VxWorks Kernel
External library modules can be statically linked into the VxWorks kernel image by adding the full path
to each required library to the EXTRA_MODULES build variable, definable in the kernel VIP project
configuration. This can be accomplished via Workbench or via the command line.

Using Workbench 4 to statically link VisiBroker RT for C++ libraries into the VxWorks kernel
The steps required to use Workbench to statically link VisiBroker RT libraries into the kernel, by listing
the required modules in the EXTRA_MODULES build variable, are listed below:

Open up the project Properties dialog box for the VIP to be configured.

Navigate to the Build Properties page and select the Variables tab. Within the “Build spec specific
settings” group, select the EXTRA_MODULES variable:

Click 'Edit' to append the required VisiBroker RT libraries to its value field. Using the VBROKERDIR and
CPU variables helps to ensure that a consistent path to each of the libraries is used. See Setting up the
Development Environment. Note that the SUB_TARGETS variable should be kept at the head of the
updated value: Click OK to accept. The Workbench Edit Build Macro dialog box does not give the
option to browse for libraries to be included. For convenience, provided below is a picklist of library
entries that can be copied directly into the EXTRA_MODULES value as required:

• •

• •

1. 1.

2. 2.

3. 3.

Integrating VisiBroker RT Libraries with VxWorks 7

- 57/607 - © 2024 Rocket Software

The value of the CORBA_E_PROFILE refers to the profiles stated as part of the CORBA/e specifcation of
which VisiBroker RT supports two profiles - the full profile and the compact profile.

See VisiBroker RT Runtime section for information about the functionality provided by each of these
libraries.

Rebuild the VIP project to create a version of the kernel image including the symbols from the selected
VisiBroker RT for C++ libraries.

Once the required VisiBroker RT for C++ libraries have been linked into the kernel image, the symbols
contained within those libraries are available for use by all kernel-mode applications executing on that
kernel.

The method for configuring VxWorks projects can evolve with each new release, so it is recommended
that you refer to the Wind River documentation for your specific version of VxWorks to confirm the
method described above remains appropriate.

$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/liborb.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libagentsupport.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libboa.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libfirewall.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/liblocsupport.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/liblog_message_catalog.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libmigrate.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libobjwrap.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libobjwrap_min.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libpluggable.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libservicesupport.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/libsrvrmgr.o
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/$(CORBA_E_PROFILE)/osagent.o

Note

Integrating VisiBroker RT Libraries with VxWorks 7

- 58/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0/PDF

Using the command line to statically link VisiBroker RT for C++
libraries into VxWorks kernel

First, load the Wind River environment by executing wrenv.sh located at the root of your VxWorks
installation:

Using the wrtool utility, connect to the workspace containing the VIP project that is to be configured to
statically link VisiBroker RT libraries:

Change to the VIP directory:

Display the current value of the EXTRA_MODULES build variable:

Update the value of the EXTRA_MODULES build variable, by appending <path to library 1>
<path to library 2> … <path to library n> to the existing value. Using the VBROKERDIR and CPU
environment variables ensures consistent pathing. The VisiBroker RT run-time library picklist provided
in the previous section can be used equally well here. For example, the following command illustrates
adding the CORBA/e Compact Profile ORB and the client-side Smart Agent component:

Build the VIP:

<vxworks7_install_directory>/wrenv.sh -p vxworks-7

wrtool -data <path to workspace directory>
workspace_dir>

workspace_dir> cd <VIP directory name>
VIP_dir>

VIP_dir> prj vip buildmacro get EXTRA_MODULES
$(SUB_TARGETS)
VIP_dir>

VIP_dir> prj vip buildmacro set EXTRA_MODULES “$(SUB_TARGETS) \
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/liborb.o \
$(VBROKERDIR)/lib/WB4/$(CPU)/SMP/libagentsupport.o”
VIP_dir>

Using the command line to statically link VisiBroker RT for C++ libraries into VxWorks kernel

- 59/607 - © 2024 Rocket Software

Loading VisiBroker RT libraries into the VxWorks Kernel
dynamically

The VxWorks kernel supports run-time loading of C++ modules, thus allowing symbols to be added to
the kernel symbol table without having to rebuild the kernel image and reboot.

It should be borne in mind that the VxWorks loader can only support C++ modules that are self-
contained. Under VxWorks, a C++ module cannot use classes from other C++ modules, nor can its
classes be used by other C++ modules. Therefore, all related C++ object files should be linked into a
single downloadable object module.

To satisfy this requirement for applications that are to execute within kernel space, VxWorks provides a
type of project called a Downloadable Kernel Module (DKM). To build a dynamically loadable kernel-
mode application that uses VisiBroker RT, it is necessary to package that application as a VxWorks DKM.

Refer to the Wind River documentation for your specific version of VxWorks for instructions on how to
create and configure a DKM to include (statically link) VisiBroker RT for C++ libraries (munched).

Using Munched Libraries
Some toolchains require that object binaries have been ‘munched’ before they can be dynamically
loaded into the VxWorks kernel. This is a process that ensures static objects’ constructors and
destructors are called correctly and in the correct order. For further information, refer to the Wind River
documentation concerning the VxWorks object module loader and munching C++ applications.

VisiBroker RT for C++ libraries are supplied in both munched and unmunched forms. When building a
DKM that is intended to be dynamically loaded into the VxWorks kernel, the munched form of the
VisiBroker RT libraries should be linked in.

Loading Downloadable Kernel Modules Dynamically
A kernel-mode application deployed as a Downloadable Kernel Module (DKM) can be loaded using one
of the following methods:

· Execute the VxWorks kernel shell ld (or ‘module load’) command.

· Call loadModule() programmatically.

VIP_dir> prj build

Loading VisiBroker RT libraries into the VxWorks Kernel dynamically

- 60/607 - © 2024 Rocket Software

Using the Kernel Shell ld command
The VxWorks object module loader can be instructed to load your DKM manually via the kernel shell.
The specific command needed depends upon which interpreter (C or command) is active within the
shell:

C Interpreter

Command Interpreter

The behavior of the ‘module load’ command variant can be adjusted through the use of command
line options. A summary of these can be retrieved by executing:

Refer to the Wind River documentation for further information relating to manual loading of DKMs.

Calling loadModule() programmatically
DKMs can be loaded (and unloaded) programmatically by using one of the loadModule / unld family of
functions. Refer to the Wind River documentation for further information relating to programmatic
loading of DKMs.

-> ld < myDKM.out

[VxWorks *] module load myDKM.out

Note

[VxWorks *] help module load

Loading VisiBroker RT libraries into the VxWorks Kernel dynamically

- 61/607 - © 2024 Rocket Software

Using VisiBroker RT with VxSim
VxSim, the VxWorks simulator, can be used as a prototyping and test-bed environment for VxWorks
applications. It provides a simulated hardware ‘target’, executed as a process running on the
development host. There are a couple of important points to note regarding VxSim:

It does not emulate real target instructions as it uses code based on the host architecture.

Because it does not use a real hardware target, VxSim is unsuitable for device driver development.
VxSim is suitable, however, for trialling code written at a higher abstraction level than device
drivers.

This release of VisiBroker RT for C++ provides libraries built for Linux distributions of VxSim.

As the method for statically linking external libraries with the VxWorks kernel varies between VxWorks
releases, it is recommended that you refer to the Wind River documentation for your specific version of
VxWorks for instructions on how to configure your VIP project to do so.

Step 7: Starting the Smart Agent (osagent) Service
The Smart Agent provides VisiBroker’s object location functions and must be started on at least one
node on the local network. The Smart Agent (OSAgent) is required to be initialized prior to any server
objects attempting to register, and prior to any client applications attempting to bind to any server
objects. The Smart Agent is described in detail in Using the Smart Agent.

The VisiBroker Smart Agent is required if you are using the _bind operation in your client application to
locate and connect to server implementations. For initial development and familiarity with the
VisiBroker product use of the Smart Agent is recommended. However if your application will eventually
use some alternative Location Service (e.g. VisiBroker Interoperable Naming Service, custom location
service,...) the Smart Agent will not be required.

When use of the Smart Agent is not required, the library libagentsupport is not required resulting in a
smaller footprint for the required VisiBroker ORB libraries. See Step 6: Integrating VisiBroker RT with
VxWorks 7 for a description of these libraries and their dependencies.

There are two categories of osagent executables which are delivered with the VisiBroker RT for C++
product release, a Development Host osagent and a VxWorks node osagent. To be able to “start” the
VxWorks node osagent, it must have been made available on the VxWorks node.

• •

• •

Using VisiBroker RT with VxSim

- 62/607 - © 2024 Rocket Software

Configuring the Osagent to work with VxSim
Configuration of Osagent to ORB communications is required on both the development host as well as
the VxWorks VxSim virtual target.

Configuring the VisiBroker ORB running on VxSim to support
osagent communications

The default mechanism for establishing communications between the VisiBroker ORB and the
OSAgent, as well as between OSAgents, uses the IP subnet broadcast mechanism (UDP broadcast). In
order for VxSim to support OSAgent discovery via this approach, the VxSim network daemon
configuration file must have the SUBNET_BROADCAST parameter set to 'yes'. Note that this is its default
value.

If, for whatever reason, you need to disable UDP broadcast in your VxSim instance, the VisiBroker ORB
can be directed to known OSAgent instances using the environment variable OSAGENT_ADDR or the
ORB_init parameter -ORBagentAddr . See the section “ORB options” in the VisiBroker RT for C++
Programmers’ Reference for details on the use of the -ORBAgentAddr parameter.

Configuring the Smart Agent for use on multihomed VxSim targets
When setting up to run a Smart Agent on a multihomed VxSim target, it may be necessary to identify
the network interface that it should use. This is achieved via use of OSAGENT_LOCAL_TABLE - refer to Use of
the OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks Targets for more information about how to
configure a target-resident Smart Agent.

Starting the Osagent on a Linux Development Host
The VisiBroker Smart Agent can be started from a Linux shell as follows:

Starting the Osagent on a VxWorks Node
The Osagent task is initialized and started via a call to the following function:

osagent &

Configuring the Osagent to work with VxSim

- 63/607 - © 2024 Rocket Software

The header file vosagent.h must be included in the file which is calling this function. This header file
provides the function prototype for startOsagent , as well as a description on the use of the
OSAGENT_LOCAL_TABLE and the OSAGENT_ADDR_TABLE .

See the file corba_init.C in any of the example subdirectories which are delivered as part of the
VisiBroker RT for C++ product distribution. These example subdirectories can be found in the
<VBRT_install>/examples directory.

To turn on the VERBOSE option for the osagent, set Parameter #2 of startOsagent above to a value of
1 . Likewise, if you need the osagent to run at a different port number than the default (14000) set
Parameter #3 of startOsagent above to the desired port number value.

The VisiBroker Smart Agent can be started from a VxWorks C shell as follows:

--> startOsagent()

Step 8: Starting the server and running the example
You are now ready to run your first VisiBroker RT for C++ application. Make sure that you have:

Compiled your client program and server implementation.

Created a VxWorks bootable image containing the required VisiBroker libraries.

Started a VisiBroker Smart Agent (Osagent) on your local network.

startOsagent(
unsigned long priority // Osagent task priority (200 is

default)
int verbose = 0,
int port=-1, // (default is 14000)
short logger_priority=-1, // (VisiBroker Logger Task

priority)
OSAGENT_LOCAL_ENTRY *local_table = NULL, // (pointer to

OSAGENT_LOCAL_TABLE)
OSAGENT_ADDR_ENTRY *addr_table=NULL, // (pointer to OSAGENT_ADDR_TABLE)
long initial_heartbeat_window = 60, // (Osagent to ORB Heartbeat

interval)
long initial_heartbeat_frequency = 5, // (Osagent to ORB initial

Heartbeat frequency)
long heartbeat_frequency = 300); //(Osagent to ORB Heartbeat

frequency)

Note

1. 1.

2. 2.

3. 3.

Configuring the VisiBroker ORB running on VxSim to support osagent communications

- 64/607 - © 2024 Rocket Software

In the scenario described below, the server will be running on VxWorks node#1 and the client
application will be running on VxWorks node#2 .

Additionally, the steps below assume you are using the VxWorks C shell to dynamically load the sample
VisiBroker applications.

Starting the server
From the VxWorks C shell:

Load the programs on VxWorks node#1.

From a VxWorks C shell:

Initialize the ORB on VxWorks node#1

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank_s.cc) and the client stub (bank_c.cc) linked
in. This has been done in order to support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will need to reboot your target.
However as long as the IDL interface does not change (i.e. the bank_s(_c).cc files do not change,
which is usually the case) the server implementation and the client stub can be loaded and unloaded
multiple times. Without any adverse effects on the VisiBroker ORB libraries.

Start the bank server on VxWorks node#1

You should see output similar to:

1. 1.

-> ld < corba_init
-> ld < server

-> start_corba

2. 2.

-> start_bank_server

Configuring the VisiBroker ORB running on VxSim to support osagent communications

- 65/607 - © 2024 Rocket Software

Now you can run the osfind command from your UNIX/Windows development host to see what
interfaces and objects are currently available on your network. You should see output similar to:

An alternative to using the osfind utility is the VisiBroker Console. The VisiBroker Console gives you
a graphical interface into the VisiBroker Smart Agent database. Additionally, the Console provides a
view into the ORB instances running and the active objects on each as well as the configuration of
each ORB instance. For details on using the VisiBroker Console see Using the VisiBroker RT for C++
Console.

Please also note that the VisiBroker Console has been deprecated with this release; it is not included
within the distribution, but can be obtained by contacting the Rocket Support team.

CORBA Object ==>
Repository ID: IDL:Bank/AccountManager:1.0
Object name: NONE
IOR:002020200000001c49444c3a42616e6b2f4163636f756e744d616e6167
65723a312e300000000001000000000000004c000102200000000e3230302e
3230302e3230302e300004010000002b00504d4300000004000000102f6261
6e6b5f6167656e745f706f61000000000b42616e6b4d616e61676572200000
0000 is ready

3. 3.

osfind: Found one agent at port 14000
HOST: *<hostname where osagent is running>* osfind: There are no OADs running
on in your domain.
osfind: There are no Object Implementations registered with OADs.
osfind: Following are the list of Implementations started manually.
HOST: *<name of VxWorks target>*
REPOSITORY ID: IDL:Bank::Account:1.0
OBJECT NAME: NONE

Note

Configuring the VisiBroker ORB running on VxSim to support osagent communications

- 66/607 - © 2024 Rocket Software

Running the client
From the VxWorks C shell:

Load the programs on VxWorks node#2.

From a VxWorks C shell:

Initialize the ORB on VxWorks node#2:

-> start_corba

start_corba should be run only ONCE. This will initialize the ORB.

The program corba_init also has the server skeleton (bank_s.cc) and the client stub (bank_c.cc)
linked in. This has been done to support loading the server and/or client program multiple times.

If you require multiple loads of the server skeleton or client stub, you will need to reboot your target.
However, as long as the IDL interface does not change (i.e. the bank_s(_c).cc files do not change,
which is usually the case) the server implementation and the client stub can be loaded and unloaded
multiple times. Without any adverse effects on the VisiBroker ORB libraries.

Run the bank client program:

-> start_bank_client "john"

At this point you should see the following output on both VxWorks target #1 and VxWorks target #2’s
output console window:

1. 1.

-> ld < corba_init
-> ld < client

2. 2.

3. 3.

Client Server

The balance in john's account is
$243.06

Created john's account.
Returning john's account: Repository
ID:
IDL:Bank/Account:1.0
Object name: NONE

Running the client

- 67/607 - © 2024 Rocket Software

Developing an Example Application using
VxWorks Real-Time Processes and
Visibroker RT

This section uses an example application to describe the development process for creating distributed,
object-based applications.

The code for this example application is provided in the <VBRT_install>/examples/vbroker_rtp/basic/
bank_account directory where the VisiBroker RT for C++ distribution was installed. If you do not know the
location of your VisiBroker RT for C++ distribution, see your system administrator.

What are RTPs
Real-time processes (RTP) are VxWorks' mechanism for allowing you to develop applications in 'user
mode'. User mode applications have the benefit of being isolated from the operating system, allowing
these applications to be more fault tolerant and simpler to develop for than kernel mode applications.

When an unrecoverable fault occurs in a kernel mode application, for example a null pointer
dereference, the kernel does not have a good way to separate the affected memory/code from the
unaffected memory/code because all kernel mode code are peers. User mode code on the other hand is
in an isolated memory region allowing the kernel to remove the affected parts and handle the error
properly.

However, this isolation has negative side effects. To enable the isolation provided by RTPs, the operating
system must use a level of indirection. One example of this is virtual memory addresses where the
application does not have access to raw memory addresses but must instead use a virtual memory
table to translate between the two address types. These types of indirection, which are generally
referred as "context switching", cause a negative performance impact on your application every time
one of these operations is performed.

Developing an Example Application using VxWorks Real-Time Processes and Visibroker RT

- 68/607 - © 2024 Rocket Software

Development Process
When you develop distributed applications with VisiBroker RT for C++, you must first identify the objects
required by the application. You will then usually follow these steps:

Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an object will provide and
how they should be invoked. In this example, we define, in IDL, the Account interface with a balance()
method and the AccountManager interface with an open() method.

Use the IDL compiler to generate the client stub code and server POA servant skeleton code.

Using the idl2cpp compiler, we’ll produce client-side stubs (which provide the interface to the Account
and the AccountManager objects’ methods) and server-side classes (which provides classes for the
implementation of the remote objects).

Write the client program code.

To complete the implementation of the client program, initialize the ORB, bind to the Account and the
AccountManager objects, invoke the methods on these objects, and print out the balance.

Write the server object code.

To complete the implementation of the server object code, we must derive from the POA_Account and
POA_AccountManager classes, provide implementations of the interfaces’ methods, and implement the
server’s “main/start” routine.

Compile the client and server code.

To create the client program, compile and link the client program code with the client stub. To create
the Account server, compile and link the server object code with the server skeleton.

Integrate the VisiBroker libraries needed into VxWorks.

Initialize the ORB for the Server processor and start the server.

Initialize the ORB for the Client processor and run the client program.

The figure below shows how to develop the sample bank application:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

Development Process

- 69/607 - © 2024 Rocket Software

Development Process

- 70/607 - © 2024 Rocket Software

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker RT for C++ is to specify all of your objects and
their interfaces using the OMG’s Interface Definition Language (IDL). The IDL can be mapped to a
variety of programming languages. The IDL mapping for C++ is summarized in the VisiBroker RT for C++
Reference Guide.

You then use the idl2cpp compiler to generate stub routines and servant skeleton code from the IDL
specification. The stub routines are used by your client program to invoke operations on an object. You
use the servant code, along with code you write, to create a server that implements the object. The
code for the client and object, once completed, is used as input to your C++ compiler to produce a client
application and an object server.

Writing the account interface in IDL
IDL has a syntax similar to C++ and can be used to define modules, interfaces, data structures, and
more.

IDL sample 1 shows the contents of the Bank.idl file for the bank_account example. The Account
interface provides a single member function for obtaining the current balance. The AccountManager
interface creates an account for the user if one does not already exist.

IDL sample 1 Bank.idl file provides the Account and Account Manager interface definition

Step 1: Defining object interfaces

- 71/607 - © 2024 Rocket Software

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker RT for C++’s idl2cpp compiler to
generate C++ stub routines for the client program, and skeleton code for the object implementation.
The stub routines are used by the client program for all member function invocations. You use the
skeleton code, along with code you write, to create the server that implements the objects.

The code for the client program and server object, once completed, is used as input to your C++
compiler and linker to produce the client and server. These steps are shown in the sample bank
application figure above.

Because the bank.idl file requires no special handling, it can be compiled with the following command:

For more information on the command-line options for the idl2cpp compiler, see Using the IDL
compiler.

Files produced by the idl compiler
The idl2cpp compiler generates four files from the bank.idl file:

bank_c.hh — Contains the definitions for the Account and AccountManager classes.

bank_c.cc — Contains internal stub routines used by the client.

bank_s.hh — Contains the definitions for the POA_Account and POA_AccountManager servant classes.

bank_s.cc — Contains the internal routines used by the server.

module Bank
{

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

prompt> idl2cpp -source_ext cpp bank.idl

• •

• •

• •

• •

Step 2: Generating client stubs and server servants

- 72/607 - © 2024 Rocket Software

You will use the bank_c.hh and bank_c.cc files to build the client application. The bank_s.hh and
bank_s.cc files are for building the server object. All generated files have either a .cc or .hh suffix. The
suffix may be controlled by the -source_ext option on the idl2cpp command line.

Never modify the contents of files generated by the idl2cpp compiler.

Step 3: Implementing the client
Many of the classes used in implementing the bank client are contained in the code generated by the
idl2cpp compiler The file named bank_clnt.cpp , part of the bank_account example, contains the
implementation of the client program. Normally you would create this file.

Because your program uses the Account as well as the AccountManager IDL interfaces, it must include the
bank_c.hh file.

The file bank_clnt.cpp and client.cpp implement the sequence of steps required to run the program.
These are:

Initialize the ORB

Bind to an AccountManager object

Obtain an Account object by invoking open() on the AccountManager object

Obtain the balance by invoking balance() on the Account object

client.C
The bank_clnt.vxe program implements the client application which obtains the current balance of a
bank account. The client program performs the following steps:

Bind to an AccountManager object (bank_clnt.cpp)

Obtain an Account object by invoking open() on the AccountManager object (bank_clnt.cpp)

Obtain the balance by invoking balance() on the Account object (bank_clnt.cpp)

Code example 2 Client side program client.cpp

Caution

• •

• •

• •

• •

1. 1.

2. 2.

3. 3.

Step 3: Implementing the client

- 73/607 - © 2024 Rocket Software

#include <unistd.h>
#include "corba.h"

USE_STD_NS

extern void start_client(const char* name);
/*--*/
/* Global Variable Declarations */
/*--*/
CORBA::ORB_var orb;

int main(int argc, char* const* argv)
{

char *account_name= NULL;
/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return(1);

}
VISEND_CATCH

/*---*/
/* Args assignment */
/*---*/

if(argc >= 1)
{

account_name = argv[1];
}

/*--*/
/* Start the Client */
/* Pass the name from the args, if a name is supplied */
/*--*/

client.C

- 74/607 - © 2024 Rocket Software

Code example 3 Client side program bank_clnt.cpp

start_client(account_name);

return 0;

}

client.C

- 75/607 - © 2024 Rocket Software

//bank_account client
#include <pthread.h>
#include <stdlib.h>

#if defined(_VIS_STD)
#include <fstream>
#else
#include <fstream.h>
#endif

#include "bank_c.hh"

USE_STD_NS

extern CORBA::ORB_var orb;

void start_client(const char* name);

extern CORBA::ORB_var orb;

void start_client(const char* name)
{

// The client uses the "_bind" method by default which locates the Server
Object via

// the OSAgent. There is also a provision for the client to use the
Server's

// stringified IOR (eg. cases where using the OsAgent may not be
supported). To use the

// IOR method, copy the stringified IOR in place of the NULL value below.
This

// stringified IOR is typically displayed on the server console after the
server has

// been activated.
char * IOR = NULL ;

VISTRY {

// Locate an account manager. Give the full POA name and the servant ID.
Bank::AccountManager_var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference
CORBA::Object_var object = orb->string_to_object(IOR);

VISIFNOT_EXCEP
manager = Bank::AccountManager::_narrow(object);

client.C

- 76/607 - © 2024 Rocket Software

VISEND_IFNOT_EXCEP
}
else {

PortableServer::ObjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind("/bank_agent_poa",

(CORBA_OctetSequence
&)managerId);

VISEND_IFNOT_EXCEP
}

Bank::Account_var account;

// Set the account name
if (name==NULL) {

name = "Jack B. Quick";
}

VISIFNOT_EXCEP
account = manager->open(name);

VISEND_IFNOT_EXCEP

// Get the balance of the account.
CORBA::Float balance;

VISIFNOT_EXCEP
balance = account->balance();

VISEND_IFNOT_EXCEP

// Print out the balance.
VISIFNOT_EXCEP

cout << "The balance in " << name << "'s account is $"
<< balance << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
}
VISEND_CATCH

}

client.C

- 77/607 - © 2024 Rocket Software

Binding to the AccountManager object
Before your client program can invoke the open(String name) member function, it must first use the
_bind() member function to establish a connection to the server that implements the AccountManager
object. The implementation of the _bind() member function is generated automatically by the idl2cpp
compiler. The _bind() member function requests the ORB to locate and establish a connection to the
CORBA server object. If the server object is successfully located and a connection is established, a proxy
object is created to represent the server’s POA_AccountManager object. A pointer to this proxy
AccountManager object is returned to your client program.

Obtaining an Account object
Next your client program needs to call the open() member function on the AccountManager object to get
a pointer to the Account object for the specified customer name.

Obtaining the balance
Once your client program has established a connection with an Account object, the balance() member
function can be used to obtain the balance. The balance() member function on the client side is actually
a stub generated by the idl2cpp compiler that gathers all the data required for the request and sends it
to the server object.

Other member functions
Several other member functions are provided that allow your client program to manipulate an
AccountManager object reference. Many of these are not used in the example client application, but they
are described in detail in the VisiBroker RT for C++ Reference Guide.

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank server are contained in the
header files generated by the idl2cpp compiler. The bank_srvr.cpp file is a server implementation
included for the purposes of illustrating this example. Normally you, the programmer, would create this
file.

Step 4: Implementing the server

- 78/607 - © 2024 Rocket Software

server.C
This file implements the Server class for the server side of our bank_account example. The server
program does the following:

Initializes the ORB.

Creates a Portable Object Adapter with the required policies.

Creates the account manager servant object.

Activates the servant object.

Activates the POA manager (and the POA).

Code example 3 Server-side program

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

server.C

- 79/607 - © 2024 Rocket Software

//bank_account server
#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"

/*--*/
/* Forward Declarations. */
/*--*/

extern "C" void start_bank_server(void);
static void bank_server(void);

extern CORBA::ORB_var orb;

// Declare global objects
AccountRegistry AccountManagerImpl::_accounts;

void start_bank_server(void)
{

char* taskName = "BANK_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::narrow(obj);

VISEND_IFNOT_EXCEP

server.C

- 80/607 - © 2024 Rocket Software

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_account_poa",

poa_manager, policies);
VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId = PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(
(CORBA_OctetSequence&)managerId,managerServant);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var ref;

VISIFNOT_EXCEP

server.C

- 81/607 - © 2024 Rocket Software

Understanding the Account class hierarchy
The Account class that you implement is derived from the POA_Bank::Account class that was generated by
the idl2cpp compiler . Look closely at the POA_Bank::Account class definition that is defined in the
bank_s.hh file. The figure below shows the class hierarchy for the AccountImpl interface :

ref = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

CORBA::String_var string_ref;

VISIFNOT_EXCEP
string_ref = orb->object_to_string(ref.in());

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string_ref << endl << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

server.C

- 82/607 - © 2024 Rocket Software

Step 5: Building the example
There are three VxWorks executables which are produced with each example:

Server implementation (bank_srvr.vxe)

Created from the server.C file.

Client program (bank_clnt.vxe)

Created from the client.C file.

The bank_srvr.vxe , and bank_clnt.vxe executables are all dependent on the VisiBroker RT for C++ ORB
libraries. That is, liborb.a , and the libagentsupport.a , depending on whether you intend to use the
OSAgent location service.

Each example directory contains an .md file detailing, in addition to a description of the example, the
procedure for building that specific example. The top level of the examples directory. That is,
<VBRT_install>/examples) also contains a README.md which contains links to all the individual example .md
files.

Step 6: Linking VisiBroker RT

The VisiBroker RT Run-time
The VisiBroker RT for C++ run-time is composed of several libraries. Each library supports a particular
feature set of VisiBroker RT. A VisiBroker RT library need only be selected if its contained features are
required by any application code that is to be executed on the target system.

VisiBroker RT libraries are delivered in the following formats:

Object files (liborb.o)

This format is provided to support linking the VisiBroker RT library with the VxWorks Real-Time
Processes to make a runnable VxWorks executable when building a VxWorks executable from the
command line.

Shared object files (e.g. liborb.so)

VisiBroker RT provides shared libraries as a means of linking the object files into multiple
executables without having to duplicate the memory used to load that object file.

• •

• •

• •

• •

Step 5: Building the example

- 83/607 - © 2024 Rocket Software

VisiBroker RT runtime libraries
The following table describes the VisiBroker RT run-time libraries and the features provided by each:

Library Description

Relocatable Object file:
liborb.o

Shared Object File: liborb.
so

Dynamic CORBA version of the VisiBroker Object Request
Broker library.
Note: the VisiBroker Object Activiation Daemon is not
supported in VisiBroker RT for C++.

Relocatable Object file:
liborb_no_libc_llong.o

Shared Object File:
liborb_no_libc_llong.
so

This library provides the same funtionality as liborb.o
library, with the exception that it DOES NOT INCLUDE the GCC
libc long long arithmetic operators.
The long long arithmetic operators are not provided by the
VxWorks libraries, for example, libPPC604gnuvx.a , but are
included for the default ORB libraries (liborb), since full
support for the CORBA:Longlong is dependent on them.
Since other VxWorks products also include these long long
arithmetic operators as well, these no_libc_llong libraries
are delivered to support coexistence with these other
products.

Relocatable Object file:
libagentsupport.o
Shar
ed Object
File:
 libagentsupport.so`

Provides the functionality required for the ORB to
communicate with the OSAgent. This library is required if your
application requires the services of the VisiBroker Smart
Agent (OSAgent).

Relocatable Object file:
libboa.o

Shared Object File:
libboa.so

This library provides support for the Basic Object Adapter
(BOA). Use of the library is required if your application
requires the CORBA 2.1 BOA interface.

Relocatable Object file:
libevchn_c_s.o

Shared Object File:
libevchn_c_s.so

This library provides the interfaces to allow applications to be
clients of the VisiBroker RT for C++ Event Service. If one of
your VxWorks nodes intends to start a Event Service channel
and/or factory it must include both this library as well as the
library libevchn.o (described below)

Relocatable Object file:
libevchn.o

Shared Object File:
libevchn.so

This library provides the interfaces for creating and starting
VisiBroker RT for C++ Event Service channels and/or factories
on a VxWorks node

The VisiBroker RT Run-time

- 84/607 - © 2024 Rocket Software

Library Description

Relocatable Object file:
liblocsupport.o

Shared Object File:
liblocsupport.so

This library provides support for the liblocsupport.o
VisiBroker Location Service.

Relocatable Object file:
liblog_message_catalog.
o

Shared Object File:
liblog_message_catalog.
so

This library provides support for the formatted output of ORB
log messages. Use of the library is required if your application
desires more verbose logging. By default VisiBroker logging
only includes message keys not message text. See VisiBroker
Logging for details on the VisiBroker Location Service.

Relocatable Object file:
libmigrate.o

Shared Object File:
libmigrate.so

This library provides support for the 3.x style of VisiBroker
Interceptors. Use of the library is required if you are migrating
a 3.x application which use Interceptors and want to keep the
3.x style Interceptor API. See Migrating VisiBroker Code for
details on migrating 3.x style interceptor applications.

Relocatable Object file:
libname_c_s.o

Shared Object File:
libname_c_s.so

This library provides the interfaces for client applications
which intend to ONLY use the VisiBroker RT for C++ Naming
Service. If one of your VxWorks target nodes intends to start a
Naming Service "root context" it must include both this library
as well as the library libname.o (described below).

Relocatable Object file:
libname.o

Shared Object File:
libname.so

This library provides the interfaces for creating and starting a
VisiBroker RT for C++ Naming Service on a VxWorks node.

Relocatable Object file:
libobjwrap. o
Shared
Object
File:
l ibobjwrap.so`

This library provides support for VisiBroker Object Wrappers.
Use of the library is required if your application requires use
of Object Wrappers. See Using Object Wrappers for details on
the Object Wrappers type of Interceptors.

Relocatable Object file:
ibpluggable.o

Shared Object File:
libpluggable.so

This library provides support for the VisiBroker Pluggable
Transport interfaces. Use of the library is required if your
application requires use of a user provided transport other
than TCP/IP.

The VisiBroker RT Run-time

- 85/607 - © 2024 Rocket Software

The figure below shows the interdependencies between the VisiBrokerRT libraries:

Library Description

Relocatable Object file: libs
rvmgr.o

Shared Object File:
libsrvmgr.so

This library provide provides support for communicating with
the VisiBroker Console. Note that the VisiBroker Console has
been deprecated with this release. It is not included within the
distribution, but can be obtained by contacting Rocket
Software Support.

Relocatable Object file:
libservicesupport.o

Shared Object File: libserv
icesupport.so

This library provides support for the VisiBroker Common
Object Services. Use of the library is required if your
application requires use of the Naming or Event Service.

Relocatable Object file:
osagent.o

Shared Object File:
osagent.so

The VisiBroker Smart Agent. This library is required to run the
VisiBroker Smart Agent on a VxWorks node.

The VisiBroker RT Run-time

- 86/607 - © 2024 Rocket Software

Configuring the VxWorks RTP Makefile Project include path
Compiling code that references VisiBroker RT for C++ libraries requires the inclusion of VisiBroker RT
header files. To enable the compiler to locate these header files, the VisiBroker RT include directory can
be added to your Makefile by adding the following:

Alternatively, adding the path directly to the tool chain's include path make variable (CC_INCLUDE) will
achieve the same result. This approach is useful if your project is geared up to build directly from make
files, as is the case when building the VisiBroker RT for C++ examples. The configuration of the include
path in this way can be seen in the stdmk files which reside in the root directories of each of the
vbroker_kernel and vbroker_rtp example groups.

CC_INCLUDE += -I$(VBROKERDIR)/include

Configuring the VxWorks RTP Makefile Project include path

- 87/607 - © 2024 Rocket Software

Integrating VisiBroker RT Libraries with VxWorks RTP Makefile
Project

To integrate the Visibroker RT libraries with the VxWorks RTP Makefile Project you are required to set
the EXTERNAL_OBJS variable to to include the list of VisiBroker libraries that are used by your application.
For example:

where $(LIBDIR_RTP) is the location containing the RTP versions of the VisiBroker libraries.

Alternatively, if you have multiple executables inside of the Makefile you can also define this variable on
a per-executable basis by prefixing the executable name with the extension _EXTERNAL_OBJS . For
example:

where $(LIBDIR_RTP) is the location containing the RTP versions of the VisiBroker libraries.

Using VisiBroker RT with VxSim
VxSim, the VxWorks simulator, can be used as a prototyping and test-bed environment for VxWorks
applications. It provides a simulated hardware ‘target’, executed as a process running on the
development host. There are a couple of important points to note regarding VxSim:

It does not emulate real target instructions as it uses code based on the host architecture.

Because it does not use a real hardware target, VxSim is unsuitable for device driver development.
VxSim is suitable, however, for trialling code written at a higher abstraction level than device
drivers.

This release of VisiBroker RT for C++ provides libraries built for Linux distributions of VxSim.

As the method for statically linking external libraries with the VxWorks kernel varies between VxWorks
releases, it is recommended that you refer to the Wind River documentation for your specific version of
VxWorks for instructions on how to configure your VIP project to do so.

EXTERNAL_OBJS = $(LIBDIR_RTP)/liborb.o $(LIBDIR_RTP)/libagentsupport.o

colocated.vxe_EXTERNAL_OBJS = $(LIBDIR_RTP)/liborb.o $(LIBDIR_RTP)/
libagentsupport.o

• •

• •

Integrating VisiBroker RT Libraries with VxWorks RTP Makefile Project

- 88/607 - © 2024 Rocket Software

Step 7: Starting the Smart Agent (osagent) Service
The Smart Agent provides VisiBroker’s object location functions and must be started on at least one
node on the local network. The Smart Agent (OSAgent) is required to be initialized prior to any server
objects attempting to register, and prior to any client applications attempting to bind to any server
objects. The Smart Agent is described in detail in Using the Smart Agent.

The VisiBroker Smart Agent is required if you are using the _bind operation in your client application to
locate and connect to server implementations. For initial development and familiarity with the
VisiBroker product use of the Smart Agent is recommended. However, if your application will eventually
use some alternative Location Service, such as VisiBroker Interoperable Naming Service, custom
location service, or similar, the Smart Agent will not be required.

When use of the Smart Agent is not required, the library libagentsupport is not required, resulting in a
smaller footprint for the required VisiBroker ORB libraries. See Step 6: Integrating VisiBroker RT with
VxWorks 7 for a description of these libraries and their dependencies.

There are two categories of OSAgent executables which are delivered with the VisiBroker RT for C++
product release, a Development Host OSAgent and a VxWorks node OSAgent. To be able to “start” the
VxWorks node OSAgent, it must have been made available on the VxWorks node.

Configuring the OSAgent to work with VxSim
Configuration of OSAgent-to-ORB communications is required on both the development host as well as
the VxWorks VxSim virtual target.

Configuring the VisiBroker ORB to run on VxSim with OSAgent
communication support

The default mechanism for establishing communications between the VisiBroker ORB and the
OSAgent, as well as between OSAgents, is the IP subnet broadcast mechanism (UDP broadcast). For
VxSim to support OSAgent discovery via this approach, the VxSim network daemon configuration file
must have the SUBNET_BROADCAST parameter set to yes . Note that this is its default value.

If you need to disable UDP broadcast in your VxSim instance, the VisiBroker ORB can be directed to
known OSAgent instances using the environment variable OSAGENT_ADDR or the ORB_init parameter -
ORBagentAddr . See the section “ORB options” section in the VisiBroker RT for C++ Programmers’ Reference
for details on the use of the -ORBAgentAddr parameter.

Step 7: Starting the Smart Agent (osagent) Service

- 89/607 - © 2024 Rocket Software

Configuring the Smart Agent for use on multihomed VxSim targets
When running a Smart Agent on a multihomed VxSim target, it may be necessary to identify the
network interface that it should use. This is achieved using OSAGENT_LOCAL_TABLE - see Use of the
OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks Targets for more information about how to
configure a target-resident Smart Agent.

Starting the Osagent on a Linux Development Host
The VisiBroker Smart Agent can be started from a Linux shell as follows:

Starting the OSAgent on a VxWorks Node
The OSAgent task is initialized and started via a call to the following function:

The header file vosagent.h must be included in the file that is calling this function. This header file
provides the function prototype for startOsagent , as well as a description on the use of the
OSAGENT_LOCAL_TABLE and the OSAGENT_ADDR_TABLE .

See the file corba_init.C in any of the example subdirectories that are delivered as part of the VisiBroker
RT for C++ product distribution. These example subdirectories can be found in the <VBRT_install>/
examples directory.

osagent &

startOsagent(
unsigned long priority // OSAgent task priority (200 is

default)
int verbose = 0,
int port=-1, // (default is 14000)
short logger_priority=-1, // (VisiBroker Logger Task

priority)
OSAGENT_LOCAL_ENTRY *local_table = NULL, // (pointer to

OSAGENT_LOCAL_TABLE)
OSAGENT_ADDR_ENTRY *addr_table=NULL, // (pointer to OSAGENT_ADDR_TABLE)
long initial_heartbeat_window = 60, // (OSAgent to ORB Heartbeat

interval)
long initial_heartbeat_frequency = 5, // (OSAgent to ORB initial

Heartbeat frequency)
long heartbeat_frequency = 300); //(OSAgent-to-ORB Heartbeat

frequency)

Configuring the VisiBroker ORB to run on VxSim with OSAgent communication support

- 90/607 - © 2024 Rocket Software

To turn on the VERBOSE option for the OSAgent, set Parameter #2 of startOsagent above to a value of
1 . Likewise, if you need the OSAgent to run on a different port number than the default (14000), set
Parameter #3 of startOsagent above to the desired port number value.

The Visibroker OSAgent is not provided as a standalone VxWorks executable. If you want to run it as its
own executable, the OSAgent example application shows how you could create an application for this.

Step 8: Starting the server and running the example
You are now ready to run your first VisiBroker RT for C++ application. Make sure that you have:

Compiled your client program and server implementation.

Created a VxWorks bootable image containing the required VisiBroker libraries.

Started a VisiBroker Smart Agent (OSAgent) on your local network.

In the scenario described below, the server will be running on VxWorks node#1 and the client
application will be running on VxWorks node#2 .

Additionally, the steps below assume you are using the VxWorks C shell to dynamically load the sample
VisiBroker applications.

Starting the server
From the VxWorks C shell:

Start the bank server on VxWorks node#1

You should see output similar to:

Note

1. 1.

2. 2.

3. 3.

1. 1.

cmd start_bank_server

Configuring the VisiBroker ORB to run on VxSim with OSAgent communication support

- 91/607 - © 2024 Rocket Software

Now you can run the osfind command from your UNIX/Windows development host to see what
interfaces and objects are currently available on your network. You should see output similar to:

An alternative to using the osfind utility is the VisiBroker Console. The VisiBroker Console gives you
a graphical interface into the VisiBroker Smart Agent database. Additionally, the Console provides a
view into the ORB instances running and the active objects on each as well as the configuration of
each ORB instance. For details on using the VisiBroker Console see Using the VisiBroker RT for C++
Console.

Also note that the VisiBroker Console has been deprecated with this release. It is not included within
the distribution, but can be obtained by contacting Rocket Software support.

CORBA Object ==>
Repository ID: IDL:Bank/AccountManager:1.0
Object name: NONE
IOR:002020200000001c49444c3a42616e6b2f4163636f756e744d616e6167
65723a312e300000000001000000000000004c000102200000000e3230302e
3230302e3230302e300004010000002b00504d4300000004000000102f6261
6e6b5f6167656e745f706f61000000000b42616e6b4d616e61676572200000
0000 is ready

2. 2.

osfind: Found one agent at port 14000
HOST: *<hostname where osagent is running>* osfind: There are no OADs running
on in your domain.
osfind: There are no Object Implementations registered with OADs.
osfind: Following are the list of Implementations started manually.
HOST: *<name of VxWorks target>*
REPOSITORY ID: IDL:Bank::Account:1.0
OBJECT NAME: NONE

Note

Configuring the VisiBroker ORB to run on VxSim with OSAgent communication support

- 92/607 - © 2024 Rocket Software

Running the client
From the VxWorks C shell, run the bank client program on VxWorks node#2 :

cmd bank_clnt.vxe "john"

At this point you should see the following output on the output console window of VxWorks node#1 and
VxWorks node#2 :

Client Server

The balance in john's account is
$243.06

Created john's account.
Returning john's account: Repository
ID:
IDL:Bank/Account:1.0
Object name: NONE

Running the client

- 93/607 - © 2024 Rocket Software

Handling Exceptions

Exceptions in the CORBA model
The exceptions in the CORBA model include both system and user exceptions. The CORBA specification
defines a set of system exceptions that can be raised when errors occur in the processing of a client
request. Also, system exceptions are raised in the case of communication failures. System exceptions
can be raised at any time and they do not need to be declared in the interface. You can define user
exceptions in IDL for objects you create, and specify the circumstances under which those exceptions
are to be raised. They are included in the method signature. If an object raises an exception while
handling a client request, the ORB is responsible for reflecting this information back to the client.

System exceptions
System exceptions are usually raised by the ORB, though it is possible for object implementations to
raise them through interceptors discussed in Using Portable Interceptors. When the ORB raises a
SystemException , it will be one of the CORBA-defined error conditions shown in the following table.

Exception name Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

Handling Exceptions

- 94/607 - © 2024 Rocket Software

Code example 5 SystemException class

Exception name Description

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

MARSHAL Error marshalling parameter or result.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with ITS/
OTS).

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_REQUIRED Transaction is required (used in conjunction with ITS/ OTS).

TRANSACTION_ROLLEDBA
CK

Transaction was rolled back (used in conjunction with ITS/OTS).

TIMEOUT Request timeout.

UNKNOWN Unknown exception.

System exceptions

- 95/607 - © 2024 Rocket Software

Obtaining completion status
System exceptions have a completion status that tells you whether or not the operation that raised the
exception was completed. The CompletionStatus enumerated values are shown below. COMPLETED_MAYBE is
returned when the status of the operation cannot be determined.

IDL sample 2 CompletionStatus values

You can retrieve the completion status using these SystemException methods.

Code example 6 Retrieving completion status

class SystemException : public CORBA::Exception {
public:

static const char*_id;
virtual ~SystemException();
CORBA::ULong minor() const;
void minor(CORBA::ULong val);
CORBA::CompletionStatus completed() const;
void completed(CORBA::CompletionStatus status);
...
static SystemException *_downcast(Exception *);
...

};

enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;

};

Obtaining completion status

- 96/607 - © 2024 Rocket Software

Getting and setting the minor code
You can retrieve and set the minor code using these SystemException methods. Minor codes are used to
provide better information about the type of error.

Code example 7 Retrieving and setting minor codes

Determining the type of a SystemException
The design of the VisiBroker RT for C++ exception classes allows your program to catch any type of
exception and then determine its type by using the _downcast() method. A static method, _downcast()
accepts a pointer to any Exception object. As with the _downcast() method defined on CORBA::Object , if
the pointer is of type SystemException , downcast() will return the pointer to you. If the pointer is not of
type SystemException , _downcast() will return a NULL pointer. See CORBA Exceptions for details.

Catching system exceptions
Your applications should enclose the ORB and remote calls in a try catch block. Code example 8
illustrates how the account client program, discussed in Developing an Example Application with
VisiBroker RT for C++, prints an exception.

Code example 8 Printing an exception

CompletionStatus completed();

ULong minor() const;
void minor(ULong val);

Getting and setting the minor code

- 97/607 - © 2024 Rocket Software

#include "Bank_c.hh"
...
void start_client(const char* name)
{

// The client uses the "_bind" method by default which locates
// the Server Object via the OSAgent. There is a provision
// for the client to use the Server’s stringified IOR (cases
// where using the OsAgent may not be supported). To use the
// IOR method, copy the stringified IOR in place of the NULL
// value below. This stringified IOR is typically displayed on
// the server console after the server has been activated.
char * IOR = NULL;
VISTRY {

// Locate an account manager. Give the full POA name and
// the servant ID.
Bank::AccountManager_var manager;

if (IOR!=NULL) {
// convert the stringified IOR to an object reference
CORBA::Object_var object = orb->string_to_object(IOR);

VISIFNOT_EXCEP
manager = Bank::AccountManager::_narrow(object);

VISEND_IFNOT_EXCEP
}
else {

PortableServer::ObjectId_var managerId =
PortableServer::string_to_ObjectId("BankManager");

VISIFNOT_EXCEP
manager = Bank::AccountManager::_bind(

"/bank_account_poa", managerId);
VISEND_IFNOT_EXCEP

}
Bank::Account_var account;
...

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
}
VISEND_CATCH

return 0;
}

Catching system exceptions

- 98/607 - © 2024 Rocket Software

If you were to execute the client program with these modifications and without a server present, the
following output would indicate that the operation did not complete and the reason for the exception.

Downcasting exceptions to a system exception
You can modify the bank_account client program to attempt to downcast any exception that is caught to
a SystemException . Code example 9 shows how you might modify the client program. Code example 10
shows how the output would appear if a system exception occurred.

Code example 9 Downcasting an exception to a system exception

-> start_bank_client
Exception: CORBA::OBJECT_NOT_EXIST

Minor: 0
Completion Status: NO

Downcasting exceptions to a system exception

- 99/607 - © 2024 Rocket Software

Code example 10 Output from the system exception

void bank_client(const char* name)
{

VISTRY {
// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;
VISIFNOT_EXCEP

acct_balance = account->balance();
VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP

cout << "The balance in the account is $"
<< acct_balance << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

CORBA::SystemException_var sys_excep;
sys_excep = CORBA::SystemException::_downcast(&e);
if(sys_excep != NULL) {

cerr << "System Exception occurred:" << endl;
cerr << "exception name: " << sys_excep->_name() << endl;
cerr << "minor code: " << sys_excep->minor() << endl;
cerr << "ccompletion code: "

<< sys_excep->completed() << endl;
}
else {

cerr << "Not a system exception" << endl;
cerr << e << endl;

}
}
VISEND_CATCH

}

Downcasting exceptions to a system exception

- 100/607 - © 2024 Rocket Software

Catching specific types of system exceptions
Rather than catching all types of exceptions, you may choose to specifically catch each type of exception
that you expect. Code example 11 shows this technique.

Code example 11 Catching specific types of exceptions

System Exception occurred:
 exception name: CORBA::NO_IMPLEMENT
 minor code: 0
 completion code: 1

Downcasting exceptions to a system exception

- 101/607 - © 2024 Rocket Software

User exceptions
When you define your object’s interface in IDL, you can specify the user exceptions that the object may
raise. Code example 12 shows the UserException code from which the idl2cpp compiler will derive the
user exceptions you specify for your object.

Code example 12 UserException class

...
void bank_client(const char* name)
{

VISTRY {

// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;
VISIFNOT_EXCEP

acct_balance = account->balance();
VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP

cout << "The balance in the account is $"
<< acct_balance << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::SystemException, sys_excep) {

// Check for system errors
cout << "System Exception occurred:" << endl;
cout << "exception name: " << sys_excep->_name() << endl;
cout << "minor code: " << sys_excep->minor() << endl;
cout << "completion code: "

<< sys_excep->completed() << endl;
}
VISEND_CATCH

}
...

User exceptions

- 102/607 - © 2024 Rocket Software

Defining user exceptions
Suppose that you want to enhance the bank_account application (that was introduced in Developing an
Example Application with VisiBroker RT for C++), so that the account object will raise an exception. If the
account object has insufficient funds you need a user exception named AccountFrozen to be raised. The
additions required to add the user exception to the IDL specification for the Account interface are
shown in bold.

IDL sample 3 Defining user exceptions

The idl2cpp compiler will generate the following code for a AccountFrozen exception class:

Code example 13 AccountFrozen class generated by the idl compiler

class UserException : public Exception {
public:

...
static const char*_id;
virtual ~UserException();

static UserException *_downcast(Exception *);
};

// Bank.idl module Bank {
interface Account {

exception AccountFrozen {};
float balance() raises(AccountFrozen);

};
};

Defining user exceptions

- 103/607 - © 2024 Rocket Software

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising the exception under the
appropriate error conditions.

Code example 14 Modifying the object implementation to raise an exception

class Account : public virtual CORBA::Object {
...
class AccountFrozen: public CORBA_UserException {
public:

static const CORBA_Exception::Description description;

AccountFrozen() {}
static CORBA::Exception *_factory() {

return new AccountFrozen();
}
~AccountFrozen() {}
virtual const CORBA_Exception::Description& _desc() const;
static AccountFrozen *_downcast(CORBA::Exception *exc);
CORBA::Exception *_deep_copy() const {

return new AccountFrozen(*this);
}

void _raise() const { VISTHROW_INST(this) }
};
...

};

Defining user exceptions

- 104/607 - © 2024 Rocket Software

Catching user exceptions
When an object implementation raises an exception, the ORB is responsible for reflecting the exception
to your client program. Checking for a UserException is similar to checking for a SystemException . To
modify the account client program to catch the AccountFrozen exception, make modifications like those
shown in Code example 15:

Code example 15 Catching a UserException

CORBA::Float AccountImpl::balance()
{

if(_balance < 50) {
VISTHROW(Account::AccountFrozen());
VISRETURN(return 0.0;)

}
else {

return _balance;
}

}

Defining user exceptions

- 105/607 - © 2024 Rocket Software

Adding fields to user exceptions
You can associate values with user exceptions. Code example 16 shows how to modify the IDL interface
specification to add a reason code to the AccountFrozen user exception. The object implementation that
raises the exception is responsible for setting the reason code. The reason code is printed automatically
when the exception is put on the output stream.

Code example 16 Adding a reason code to the AccountFrozen exception

...
VISTRY {

// Bind to an account.
Account_var account = Account::_bind();

// Get the balance of the account.
CORBA::Float acct_balance;
VISIFNOT_EXCEP

acct_balance = account->balance();
VISEND_IFNOT_EXCEP

}
VISCATCH (Account::AccountFrozen, e){

cerr << "AccountFrozen returned:" << endl;
cerr << e << endl;
return(0);

}
// Check for system errors
VISAND_CATCH(CORBA::SystemException, sys_excep){
VISEND_CATCH
...

Defining user exceptions

- 106/607 - © 2024 Rocket Software

Exception Support in VisiBroker RT for C++
This version of VisiBroker RT for C++ provides support for C++ exceptions by use of native C++
exceptions only.

Earlier versions of VisiBroker RT supported use of the Environment class, as defined by the CORBA
specification, to emulate the exception mechanism. This method was defined primarily for compiler
environments that do not themselves support native C++ exceptions.

Existing applications written to utilise emulated exceptions via the Environment class macros will
need to be rebuilt using the new toolchain. Use of the exception macros, as described in the next
section, makes that process straightforward.

Support for emulated exceptions may be re-instated alongside support for native C++ exceptions in a
future release. With that in mind, we strongly recommend that the exception macros described in the
following section are used in your application code to enable simple transition between use of native
and emulated exceptions, should that be required.

The Exception Macros
The following macros should be used when writing code to use exceptions in VisiBroker RT for C++.
Doing so will make your code ready to support both native C++ exceptions and emulated exceptions.

// Bank.idl
module Bank {

interface Account {
exception AccountFrozen {

int reason;
};
float balance() raises(AccountFrozen);

};
};

Note

Macro name Purpose

VISTRY Use this as you would use the try statement.

Exception Support in VisiBroker RT for C++

- 107/607 - © 2024 Rocket Software

Macro name Purpose

VISTHROW(type_na
me)

Throws the specified exception.

VISTHROW_LAST Used to re-throw the specified exception. Used only in an event
handler or in a method called by an event handler.

VISCATCH(type_na
me,
variable_name)

Use this to catch an exception of the specified type.

VISAND_CATCH If several exceptions are to be specified for a VISTRY block, use VI
SCATCH for the first catch statement and VISAND_CATCH for all

subsequent catch statements.

VISEND_CATCH Used to terminate a VISCATCH block.

VISCATCH_ALL Used to catch any exception which is thrown. As opposed to VISCAT
CH which catches the specified exception.

VISAND_CATCHALL If several exceptions are to be specified for a VISTRY block, use VI
SCATCH for the first catch statement and VISAND_CATCHALL to

catch all other types of exceptions which are thrown.

VISTHROW_INST Used to throw an exception from an object instance’s throw method
(e.g. instance>_throw).

VISIF_EXCEP Used to check if an exception was thrown and perform a specified
action which follows

VISCLEAR_EXCEP Clears the current environments, exception information,

VISIFNOT_EXCEP Used to check if an exception was not thrown and continue with the
application processing.

VISEND_IFNOT_EXC
EP

Used to terminate a VISIFNOT_EXCEP block.

VISRETURN(what) Used to return after a VISTHROW , for example
VISRETURN(return;) .

The Exception Macros

- 108/607 - © 2024 Rocket Software

Server basics

This section outlines the tasks that are necessary to set up a server to receive client requests.

Overview
The basic steps that need to be performed in setting up your server are:

Initialize the ORB

Select policies and Create the POA

Activate the POA Manager

Activate objects

Wait for client requests

This section describes each task in a global manner to give you an idea of what you must consider. The
specifics of each step is dependent on your individual requirements.

Initializing the ORB
As stated in the previous section, the ORB provides a communication link between client requests and
object implementations. Each application must initialize the ORB before communicating with it.

Code example 17 Initializing the ORB

• •

• •

• •

• •

• •

Server basics

- 109/607 - © 2024 Rocket Software

Creating the POA
Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) didn't permit portable
object server code. A new specification was developed by the OMG to address these issues and the
Portable Object Adapter (or POA) was created.

A discussion of the POA can be quite extensive. This section introduces you to some of the basic
features of the POA. For detailed information, see Using POAs and the OMG specification.

In basic terms, the POA (and its components) determines which servant should be invoked when a client
request is received, and then invokes that servant. A servant is a programming object that provides the
implementation of an abstract object. A servant is not a CORBA object.

One POA (called the root POA) is supplied by each ORB. You can create additional POAs and configure
them with different behaviors. You can also define the characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

Obtaining a reference to the root POA

Defining the POA policies

Creating a POA as a child of the root POA

Creating a servant and activating it

Activating the POA through its manager

Some of these steps may be different for your application.

// Initialize the ORB.
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

Note

• •

• •

• •

• •

• •

Creating the POA

- 110/607 - © 2024 Rocket Software

Obtaining a reference to the root POA
All server applications must obtain a reference to the root POA to manage objects or to create new
POAs.

Code example 18 Obtaining a reference to the root POA

You can obtain a reference to the root POA by using resolve_initial_references which returns a value of
type CORBA::Object . You are responsible for narrowing the returned object reference to the desired type,
which is PortableServer::POA in the above example.

You can then use this reference to create other POAs, if needed.

Creating the child POA
The root POA has a predefined set of policies that cannot be changed. A policy is an object that controls
the behavior of a POA and the objects the POA manages. If a different behavior, such as different
lifespan policy is desired, creation of a new POA is needed.

POAs are created as children of existing POAs using create_POA . As many POAs as required can be
created.

Child POAs do not inherit the policies of their parent POAs.

In the following example, a child POA is created from the root POA and has a persistent lifespan policy.
The POA Manager for the root POA is used to control the state of this child POA. More information on
POA Managers are described later in this section (see later in this section).

Code example 19 Creating the policies and the child POA

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
// narrow the object reference to a POA reference
PortableServer::POA_var rootPOA =

PortableServer::POA::_narrow(obj);

Note

Obtaining a reference to the root POA

- 111/607 - © 2024 Rocket Software

Implementing servant methods
IDL has a syntax similar to C++ and can be used to define modules, interfaces, data structures, and
more. When you compile an IDL that contains an interface, a class is generated which serves as the
base class for your servant. For example, in the bank.idl file, an AccountManager interface is described.

Code example 20 Interfaces described in bank.idl

The AccountManager implementation on the server side is shown below.

Code example 21 AccountManagerImpl code

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);
// Create myPOA with the right policies
PortableServer::POAManager_var rootManager =

rootPOA->the_POAManager();
PortableServer::POA_var myPOA =

rootPOA->create_POA("bank_account_poa",
rootManager, policies);

module Bank {
interface Account {

float balance();
};
interface AccountManager {

Account open (in string name);
};

};

Implementing servant methods

- 112/607 - © 2024 Rocket Software

//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountManagerImpl : public POA_Bank::AccountManager,

public virtual PortableServer::RefCountServantBase
{
public:

AccountManagerImpl() {}

Bank::Account_ptr open(const char* name) {
// Lookup the account in the account dictionary.
PortableServer::ServantBase_var servant =

_accounts.get(name);

if (servant == PortableServer::ServantBase::_nil()) {
// Seed the random number generator
srand((unsigned)time(&random_time));

// Make up the account’s balance, between 0 and 1000
// dollars.
CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl(balance);

// Print out the new account
cout << "Created " << name << "’s account." << endl;

// Save the account in the account dictionary.
_accounts.put(name, servant);

}

VISTRY {
// Activate it on the default POA which is
// root POA for this servant
PortableServer::POA_var default_poa = _default_POA();

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = default_poa->servant_to_reference(servant);

VISEND_IFNOT_EXCEP

Implementing servant methods

- 113/607 - © 2024 Rocket Software

The AccountManager implementation must be created and activated in the server code. In this example,
AccountManager is activated with activate_object_with_id , which passes the object ID to the Active Object
Map where it is recorded. The Active Object Map is simply a table that maps IDs to servants. This
approach ensures that this object is always available when the POA is active and is called explicit object
activation.

Code example 22 Creating and activating the servant

Bank::Account_var account;

VISIFNOT_EXCEP
account = Bank::Account::_narrow(ref);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the new account
cout << "Returning " << name << "’s account: "

<< account << endl;

// Return the account
return Bank::Account::_duplicate(account);

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << "_narrow caught exception: " << e << endl;
return;

}
VISEND_CATCH

return Bank::Account::_nil();
}

private:
static AccountRegistry _accounts;

};

Implementing servant methods

- 114/607 - © 2024 Rocket Software

Activating the POA
The last step is to activate the POA Manager associated with your POA. By default, POA Managers are
created in a holding state. In this state, all requests are routed to a holding queue and are not
processed. To allow requests to be dispatched, the POA Manager associated with the POA must be
changed from the holding state to an active state. A POA Manager is simply an object that controls the
state of the POA (whether requests are queued, processed, or discarded.) A POA Manager is associated
with a POA during POA creation. If a POA Manager is not specified the system will create a new one
(enter NULL as the POA Manager name in create_POA()).

Code example 23 Activating the POA manager

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;
// Create the object ID PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId = PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

Activating the POA

- 115/607 - © 2024 Rocket Software

Activating objects
In the preceding section, there was a brief mention of explicit object activation. There are several ways
in which objects can be activated:

Explicit — All objects are activated upon server start-up via calls to the POA.

On-demand — The servant manager activates an object when it receives a request for a servant
not yet associated with an object ID.

Implicit — Objects are implicitly activated by the server in response to an operation by the POA,
not by any client request.

Default servant — The POA uses the default servant to process the client request.

A complete discussion of object activation is in Using POAs. For now, just be aware that there are
several means for activating objects.

Complete example
The following shows the complete code described in this section. You can find this code in the example
bank_account , which is part of the installation of VisiBroker RT.

Code example 24 Complete Servant Implementation for Server side code (bankImpl.h)

// Activate the POA Manager
PortableServer::POAManager_var mgr = rootPoa->the_POAManager();
VISIFNOT_EXCEP

mgr->activate();
VISEND_IFNOT_EXCEP

• •

• •

• •

• •

Activating objects

- 116/607 - © 2024 Rocket Software

//bankImpl.h

#include <vxWorks.h>
#include <math.h>
#include <time.h>
#include <vport.h>
#include <tickLib.h>
#include "bank_s.hh"

#define _MAX_SIZE256
#define _TYPE_SIZE 32

// The AccountRegistry is a holder of Bank account
// implementations
class AccountRegistry
{
public:

AccountRegistry() : _count(0), _max(16), _data((Data*)NULL)
{

_data = new Data[16];
}

~AccountRegistry() { delete[] _data; }

void put(const char* name,
PortableServer::ServantBase_ptr servant) {

VISMutex_var lock(_lock);
if (_count + 1 == _max) {

Data* oldData = _data;
_max += 16;
_data = new Data[_max];
for (CORBA::ULong i = 0; i < _count; i++)

_data[i] = oldData[i];
delete[] oldData;

}
}
_data[_count].name = name;
servant->_add_ref();
_data[_count].account = servant;
_count++;

}

PortableServer::ServantBase_ptr get(const char* name) {
VISMutex_var lock(_lock);
for (CORBA::ULong i = 0; i < _count; i++) {

if (strcmp(name, _data[i].name) == 0) {

Complete example

- 117/607 - © 2024 Rocket Software

_data[i].account->_add_ref();
return _data[i].account;

}
}
return PortableServer::ServantBase::_nil();

}

private:
struct Data {

CORBA::String_var name;
PortableServer::ServantBase_var account;

};

CORBA::ULong _count;
CORBA::ULong _max;
Data*_data;
VISMutex_lock; // Lock for synchronization

};

//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountImpl : public virtual POA_Bank::Account,

public virtual PortableServer::RefCountServantBase
{
public:

AccountImpl(CORBA::Float balance) : _balance(balance){}
CORBA::Float balance() { return _balance; }

private:
CORBA::Float _balance;

};

//
// We inherit from PortableServer::RefCountServantBase so that
// the servant object will be automatically deleted when the
// object is deactivated
// The _remove_ref method is called as part object
// deactivation by the POA
//
class AccountManagerImpl : public POA_Bank::AccountManager,

public virtual PortableServer::RefCountServantBase
{

Complete example

- 118/607 - © 2024 Rocket Software

public:
AccountManagerImpl() {}

Bank::Account_ptr open(const char* name) {
// Lookup the account in the account dictionary.
PortableServer::ServantBase_var servant =

_accounts.get(name);

if (servant == PortableServer::ServantBase::_nil()) {
// Seed the random number generator
srand((unsigned)tickGet());

// Make up the account’s balance, between 0 and 1000
// dollars.
CORBA::Float balance = abs(rand()) % 100000 / 100.0;

// Create the account implementation, given the balance.
servant = new AccountImpl(balance);

// Print out the new account
cout << "Created " << name << "’s account." << endl;

// Save the account in the account dictionary.
_accounts.put(name, servant);

}
VISTRY {

// Activate it on the default POA which is root POA for
// this servant
PortableServer::POA_var default_poa = _default_POA();

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = default_poa->servant_to_reference(servant);

VISEND_IFNOT_EXCEP

Bank::Account_var account;

VISIFNOT_EXCEP
account = Bank::Account::_narrow(ref);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the new account
cout << "Returning " << name << "’s account: "

<< account << endl;
// Return the account

Complete example

- 119/607 - © 2024 Rocket Software

Code example 25 Server Implementation for Server side code (server.C)

return Bank::Account::_duplicate(account);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e) {

cerr << "_narrow caught exception: " << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return Bank::Account::_nil();
}

private:
static AccountRegistry _accounts;

};

Complete example

- 120/607 - © 2024 Rocket Software

//bank_account server

#include <vxWorks.h>
#include "bankImpl.h"

extern CORBA::ORB_var orb;

// Declare global objects
AccountRegistry AccountManagerImpl::_accounts;

static void bank_server(void);

void start_bank_server(void)
{

char * taskName = "BANK_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;

VISTRY {
//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(

Complete example

- 121/607 - © 2024 Rocket Software

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_account_poa",
poa_manager, policies);

VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the object ID
PortableServer::ObjectId_var managerId;
VISIFNOT_EXCEP

managerId =
PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var ref;

VISIFNOT_EXCEP
ref = myPOA->servant_to_reference(managerServant);

VISEND_IFNOT_EXCEP

CORBA::String_var string_ref;

VISIFNOT_EXCEP
string_ref = orb->object_to_string(ref.in());

VISEND_IFNOT_EXCEP

Complete example

- 122/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << ref << endl;
cout << string_ref << endl << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Complete example

- 123/607 - © 2024 Rocket Software

Using POAs

This section describes the Portable Object Adapter (POA), instances of which are used in the
construction of the server-side of VisiBroker applications. The description of the POA in this section is
derived from the corresponding chapter of the CORBA specification, which should be consulted for a
complete description.

What is a Portable Object Adapter?
A POA is the intermediary between the implementation of an object (a 'servant') and the ORB. In its role
as an intermediary, a POA routes requests to servants. If necessary, it may cause servants and even
other POAs to be created.

An ORB can support multiple POAs. At least one POA is always present, which is called the rootPOA. The
rootPOA is created automatically. All other POAs are created by the application. The set of POAs is
hierarchical; all POAs have the rootPOA as an ancestor.

Servant managers locate and assign servants to objects for the POA. When an abstract object is
assigned to a servant, it is called an active object and the servant is said to incarnate the active object.
Every POA has one Active Object Map which keeps track of the object IDs of active objects and their
associated active servants:

Using POAs

- 124/607 - © 2024 Rocket Software

POA terminology
The following are definitions of some terms with which you will become more familiar as you read
through this secion:

Term Description

Active Object
Map

Table that maps active CORBA objects (through their object IDs) to servants.
There is one Active Object Map per POA.

adapter
activator

Object that can create a POA on demand when a request is received for a child
POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA object.
incarnateAssociate a servant with an abstract CORBA object

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID can be
assigned by the object adapter or the application and is unique only within the
object adapter in which it was created. Servants are associated with abstract
objects through ObjectIDs.

persistent
object

CORBA objects that live beyond the ORB instance was used to create them.

POA
manager

Object that controls the state of the POA; for example, whether the POA is
receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects the
POA manages.

rootPOA Each ORB is created with one POA called the rootPOA. You can create
additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the
CORBA object itself.

servant
manager

An object responsible for managing the association of objects with servants,
and for determining whether an object exists. More than one servant manager
can exist.

POA terminology

- 125/607 - © 2024 Rocket Software

Steps for creating and using POAs
Although the exact process can vary, the following are the basic steps that occur during the POA
lifecycle:

Define the POA’s policies.

Create the POA.

Activate the POA through its POA manager.

Create and activate servants.

Create and use servant managers.

Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you only have to activate
the POA if you want it to process requests.

POA policies
Each POA has a set of policies that define its characteristics. When creating a new POA, you can use the
default set of policies or use different values to suit your requirements. You can only set the policies
when creating a POA; you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

The following sections lists the POA policies, their values, and the default value (used by the rootPOA).

Term Description

transient
object

A CORBA object that lives only within the ORB instance that created it.

• •

• •

• •

• •

• •

• •

Steps for creating and using POAs

- 126/607 - © 2024 Rocket Software

Compact CORBA and POA Policies
VisiBroker delivers both a “full” and “CORBA/e Compact Profile” version of the ORB libraries. In
VisiBroker RT for C++ for VxWorks, the compact profile version supports the full set of POA policy
values.

For details, refer to the CORBA/e Compact Profile as described by the CORBA Embedded specification
which can be found at https://www.omg.org/spec/CORBAe/1.0/PDF.

Thread policy
The thread policy specifies the threading model to be used by the POA. The thread policy can have the
following values:

Default Values:

Root POA default: ORB_CTRL_MODEL

Child POA default: ORB_CTRL_MODEL

Lifespan policy
The lifespan policy specifies the lifespan of the objects implemented in the POA. The lifespan policy can
have the following values:

Value Description

ORB_CTRL_MOD
EL

The POA is responsible for assigning requests to threads.
In a multi-threaded environment, concurrent requests may be delivered to
the same servant via using multiple threads.

SINGLE_THREA
D_MODEL

The POA processes requests sequentially. In a multi-threaded
environment, all calls made by the POA to servants and servant managers
are threadsafe.

This policy value is NOT SUPPORTED in VisiBroker RT which always
supports the multithreaded behavior.

•

•

Value Description

TRANSIENT A transient object activated by a POA cannot outlive the POA that created it.
Once the POA is deactivated, an OBJECT_NOT_EXIST exception occurs if an
attempt is made to use any object references generated by the POA.

Compact CORBA and POA Policies

- 127/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0/PDF

Default Values:

Root POA default: TRANSIENT

Child POA default: TRANSIENT

Object ID Uniqueness policy
The Object ID Uniqueness policy allows a single servant to be shared by many Object ID’s (and hence
object references). The Object ID Uniqueness policy can have the following values:

Default Values:

Root POA default: UNIQUE_ID

Child POA default: UNIQUE_ID

ID Assignment policy
The ID assignment policy specifies whether object IDs are generated by server applications or by the
POA. The ID Assignment policy can have the following values:

Typically, USER_ID is used for persistent objects, and SYSTEM_ID is used for transient objects. If you want
to use SYSTEM_ID value for persistent objects, you can extract them from the servant or object reference.

Value Description

PERSISTE
NT

A persistent object activated by a POA can outlive the ORB instance under
which it was first created. Requests invoked on a persistent object may result in
the implicit activation of a POA and the servant that implements the object.

•

•

Value Description

UNIQUE_ID Activated servants support only one Object ID.

MULTIPLE_
ID

Activated servants can have one or more Object IDs. The Object ID must be
determined within the method being invoked at run time.

• •

• •

Value Description

USER_ID Objects are assigned object IDs by the application.

SYSTEM_ID Objects are assigned object IDs by the POA. If the PERSISTENT policy is also
set, object IDs must be unique across all instantiations of the same POA.

Object ID Uniqueness policy

- 128/607 - © 2024 Rocket Software

Default Values:

Root POA default: SYSTEM_ID

Child POA default: SYSTEM_ID

Servant Retention policy
The Servant Retention policy specifies whether the POA retains active servants in the Active Object
Map. The Servant Retention policy can have the following values:

ServantActivators and ServantLocators are types of servant managers. For more information on servant
managers, see Using servants and servant managers.

Default Values:

Root POA default: RETAIN

Child POA default: RETAIN

Request Processing policy
The Request Processing policy specifies how requests are processed by the POA.

• •

• •

Value Description

RETAIN The POA tracks object activations in the Active Object Map. RETAIN is usually
used with ServantActivators or explicit activation methods on POA.

NON_RETA
IN

The POA does not retain active servants in the Active Object Map.

• •

• •

Value Description

USE_ACTIVE_O
BJECT_MAP_ON
LY

If the Object ID is not listed in the Active Object Map, an OBJECT_NOT
_EXIST exception is returned. The POA must also use the RETAIN policy

with this value.

USE_DEFAULT_
SERVANT

If the Object ID is not listed in the Active Object Map or the NON_RETAIN
policy is set, the request is dispatched to the default servant. If no default
servant has been registered, an OBJ_ADAPTER exception is returned. The
POA must also use the MULTIPLE_ID policy with this value.

Servant Retention policy

- 129/607 - © 2024 Rocket Software

Default Values:

Root POA default: USE_ACTIVE_OBJECT_MAP_ONLY

Child POA default: USE_ACTIVE_OBJECT_MAP_ONLY

Implicit Activation policy
The Implicit Activation policy specifies whether the POA supports implicit activation of servants. The
Implicit Activation policy can have the following values:

Default Values:

Root POA default: IMPLICIT_ACTIVATION

Child POA default: NO_IMPLICIT_ACTIVATION

Bind Support policy
The Bind Support policy (a VisiBroker RT for C++-specific policy) controls the registration of POAs and
active objects with the VisiBroker RT for C++ osagent. If you have several thousands of objects, it is not
feasible to register all of them with the osagent. Instead, you can register the POA with the osagent.
When a client request is made, the POA name and the object ID is included in the bind request so that
the osagent can correctly forward the request.

The BindSupport policy can have the following values:

Value Description

USE_SERVANT_
MANAGER

If the Object ID is not listed in the Active Object Map or the NON_RETAIN
policy is set, the servant manager is used to obtain a servant.

• •

• •

Value Description

IMPLICIT_ACT
IVATION

The POA supports implicit activation of servants.
Servants can be activated by converting them to an object reference with
POA::servant_to_reference() or by invoking _this() on the

servant. The POA must also use the SYSTEM_ID and RETAIN policies with
this value.

NO_IMPLICIT_
ACTIVATION

The POA does not support implicit activation of servants.

• •

• •

Implicit Activation policy

- 130/607 - © 2024 Rocket Software

Default Values:

Root POA default: BY_POA

Child POA default: BY_POA

Server Engine policy
The Server Engine policy (a VisiBroker RT for C++-specific policy) controls the association of POAs with
Server Engines.

The value of a Server Engine policy is a CORBA::StringSequence specifying a list of Server Engines that a
particular POA is to be associated with. For details on using a Server Engine policy, see Associating a
POA with Server Engines.

Creating POAs
To implement objects using the POA, at least one POA object must exist on the server. To ensure that a
POA exists, a rootPOA is provided during the ORB initialization. This POA uses the default POA policies
described earlier in this section.

Once the rootPOA is obtained, you can create child POAs that implement a specific server-side policy
set.

Value Description

BY_INSTANCE All active objects are registered with the osagent. The POA must also use
the PERSISTENT and RETAIN policy with this value.

BY_POA Only POAs are registered with the osagent. The POA must also use the PE
RSISTENT policy with this value.

NO_REGISTRA
TION

Neither POAs nor active objects are registered with the osagent.

• •

• •

Server Engine policy

- 131/607 - © 2024 Rocket Software

POA naming convention
Each POA keeps track of its name and its full POA name (the full hierarchical path name.) The hierarchy
is indicated by a slash (/). For example, /A/B/C means that POA C is a child of POA B, which in turn is a
child of POA A. The first slash (see the above example) indicates the rootPOA. If the BindSupport::BY_POA
policy is set on POA C, then /A/B/C is registered with the osagent and the client binds with /A/B/C .

If your POA name contains escape characters or other delimiters, VisiBroker precedes these characters
with a double backslash (\\) when recording the names internally. For example, if you have two POAs
in a hierarchy like:

a client would bind using:

Obtaining the rootPOA
The following code sample illustrates how a server application can obtain its rootPOA.

Code example 26 Obtaining the rootPOA

PortableServer::POA_var myPOA1 =
rootPOA->create_POA("A/B",poa_manager,policies);

PortableServer::POA_var myPOA2 =
myPOA1->create_POA("\t",poa_manager,policies);

Bank::AccountManager_var manager =
Bank::AccountManager::_bind("/A/B/\t", managerId);

POA naming convention

- 132/607 - © 2024 Rocket Software

The resolve_initial_references method returns a value of type CORBA::object . You are responsible for
narrowing the returned object reference to the desired type, which is PortableServer::POA in the
previous example.

Setting the POA properties
Policies are not inherited from the parent POA. If you want a POA to have a specific characteristic, you
must identify all the policies that are different from the default value. For more information about POA
policies, see POA policies.

Code example 27 Example of creating policies for a POA

Creating and activating the POA
A POA is created using create_POA on its parent POA. You can name the POA anything you like; however,
the name must be unique with respect to all other POAs with the same parent. If you attempt to give
two POAs the same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:

// Initialize the ORB.

CORBA::Object_var obj =
orb->resolve_initial_references(“RootPOA”);

// get a reference to the root POA
PortableServer::POA_var rootPOA =

PortableServer::POA::_narrow(obj);

Note

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

Setting the POA properties

- 133/607 - © 2024 Rocket Software

The POA manager controls the state of the POA (for example, whether it is processing requests). If null
is passed to create_POA as the POA manager name, a new POA manager object is created and
associated with the POA. Typically, you’ll want to have the same POA manager for all POAs. For more
information about the POA manager, see Managing POAs with the POA manager.

POA managers (and POAs) are not automatically activated once created. Use activate() to activate the
POA manager associated with your POA.

Code example 28 Example of creating a POA

Activating objects
When CORBA objects are associated with an active servant, that CORBA object is considered Activated.
If that POA’s Servant Retention Policy is RETAIN , then the associated object ID of that CORBA Object is
recorded in the POA’s Active Object Map.

CORBA Object Activation can occur in one of several ways:

Explicit activation

The server application itself explicitly activates objects by calling activate_object or
activate_object_with_id .

PortableServer::POA_ptr create_POA(POA_Name, POAManager,
PolicyList);

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// Create myPOA with the right policies
VISIFNOT_EXCEP

PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
PortableServer::POA_var myPOA =

rootPOA->create_POA("bank_agent_poa", rootManager, policies);
VISEND_IFNOT_EXCEP

•

Activating objects

- 134/607 - © 2024 Rocket Software

On-demand activation

The server application instructs the POA to activate objects through a user-supplied servant manager.
The servant manager must first be registered with the POA through set_servant_manager .

Implicit activation

The server activates objects solely in response to certain operations. If a servant is not active, there is
nothing a client can do to make it active (for example, requesting for an inactive object does not make it
active.)

Default servant

The POA uses a single servant to implement all of its objects.

Activating objects explicitly
By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated without having to
specify an object ID. The server invokes activate_object on the POA which activates, assigns and
returns an object ID for the object. This type of activation is most common for transient objects. No
servant manager is required since neither the object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during server
initialization where the user invokes activate_object_with_id to activate all the objects managed by the
server. No servant manager is required since all the objects are already activated. If a request for a non-
existent object is received, an OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if
your server manages large numbers of objects.

Code example 29 Example of explicit activation using activate_object_with_id

•

•

•

Activating objects explicitly

- 135/607 - © 2024 Rocket Software

Activating objects on demand
On-demand activation occurs when a client requests an object that does not have an associated
servant. After receiving the request, the POA searches the Active Object Map for an active servant
associated with the object ID. If none is found, the POA invokes incarnate on the servant manager
which passes the object ID value to the servant manager. The servant manager can do one of three
things:

Find an appropriate servant which then performs the appropriate operation for the request

Raise an OBJECT_NOT_EXIST exception that is returned to the client

Forward the request to another object

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy::USE_SERVANT_MANAGER and ServantRetentionPolicy::RETAIN are enabled, the Active
Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown in Code example 32.

// Create the servant
AccountManagerImpl managerServant;

// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId,&managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

rootManger->activate();

• •

• •

• •

Activating objects on demand

- 136/607 - © 2024 Rocket Software

Activating objects implicitly
A servant can be implicitly activated by certain operations if the POA has been created with
ImplicitActivationPolicy::IMPLICIT_ACTIVATION , IdAssignmentPolicy::SYSTEM_ID and
ServantRetentionPolicy::RETAIN . Implicit activation can occur with:

the POA::servant_to_reference member function

the POA::servant_to_id member function

the _this() servant member function

If the POA has ObjectIdUniquenessPolicy::UNIQUE_ID set, implicit activation can occur when any of the
above operations are performed on an inactive servant.

If the POA has ObjectIdUniquenessPolicy::MULTIPLE_ID set, servant_to_reference and servant_to_id
operations always perform implicit activation, even if the servant is already active.

Activating with the default servant
Use the RequestProcessing::USE_DEFAULT_SERVANT policy to have the POA invoke the same servant no
matter what the object ID is. This is useful when little data is associated with each object.

Code example 30 Example of activating all objects with the same servant

• •

• •

• •

Activating objects implicitly

- 137/607 - © 2024 Rocket Software

void bank_server()
{

PortableServer::POA_var rootPOA;
PortableServer::Current_var cur;

VISTRY {
cur = PortableServer::Current::_instance();

CORBA::Object_var obj;
// get a reference to the root POA
VISIFNOT_EXCEP

obj = orb->resolve_initial_references("RootPOA");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create policies for our persistent POA
CORBA::PolicyList policies;
policies.length(3);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(
PortableServer::USE_DEFAULT_SERVANT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] =

rootPOA->create_id_uniqueness_policy(
PortableServer::MULTIPLE_ID);

VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

Activating with the default servant

- 138/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_default_servant_poa",

poa_manager, policies);
VISEND_IFNOT_EXCEP

// Set the default servant
AccountManagerImpl *managerServant;
VISIFNOT_EXCEP

managerServant = new AccountManagerImpl(cur);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
myPOA->set_servant(managerServant);

VISEND_IFNOT_EXCEP

// Call _remove_ref since POA will invoke _add_ref on the
// default servant
managerServant->_remove_ref();

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Bank Manager is ready" << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
return;

}
VISEND_CATCH
return;

}

Activating with the default servant

- 139/607 - © 2024 Rocket Software

Deactivating objects
A POA can remove a servant from its Active Object Map. This may occur, for example, as some form of
garbage-collection scheme. When the servant is removed from the map, it is deactivated. You can
deactivate an object using deactivate_object() . When an object is deactivated, it doesn’t mean this
object is lost forever. It can always be reactivated at a later time.

Code example 31 Example of deactivating an object

Deactivating objects

- 140/607 - © 2024 Rocket Software

Using servants and servant managers
Servant managers perform two types of operations:

Find and return a servant.

Deactivate a servant.

They allow the POA to activate objects when a request for an inactive object is received. Servant
managers are optional. For example, servant managers are not needed when your application creates
all CORBA objects at startup. Servant managers may also inform clients to forward requests to another
object using ForwardRequest.

// DeActivatorThread
class DeActivatorThread: public VISThread {
private:

PortableServer::ObjectId _oid;
PortableServer::POA_ptr_poa;

public:
virtual ~DeActivatorThread(){}
// Constructor
DeActivatorThread(const PortableServer::ObjectId& oid,

PortableServer::POA_ptr poa) : _oid(oid), _poa(poa) {
// start the thread
run();

}

// implement begin() callback
void begin() {

// Sleep for 15 seconds
VISPortable::vsleep(15);

CORBA::String_var s =
PortableServer::objectId_to_string(_oid);

// Deactivate Object
cout << "\nDeActivating the object with ID =" << s << endl;
if (_poa)

_poa->deactivate_object(_oid);
}

};

1. 1.

2. 2.

Using servants and servant managers

- 141/607 - © 2024 Rocket Software

A servant is an active instance of an implementation. The POA maintains a map of the active servants
and the object IDs of the servants. When a client request is received, the POA first checks this map to
see if the object ID (embedded in the client request) has been recorded. If it exists, then the POA
forwards the request to the servant. If the object ID is not found in the map, the servant manager is
asked to locate and activate the appropriate servant. The figure below shows only an example scenario;
the exact scenario depends on what POA policies you have in place.

There are two types of servant managers: ServantActivator and ServantLocator. The type of policy already
in place determines which servant manager is used. For more information on POA policy, see POA
policies. Typically, a ServantActivator activates persistent objects and a ServantLocator activates
transient objects.

To use servant managers, RequestProcessingPolicy::USE_SERVANT_MANAGER must be set as well as the policy
which defines the type of servant manager (ServantRetentionPolicy::RETAIN for ServantActivator or
ServantRetentionPolicy::NON_RETAIN for ServantLocator).

Using servants and servant managers

- 142/607 - © 2024 Rocket Software

ServantActivators
ServantActivators are used when ServantRetentionPolicy::RETAIN and
RequestProcessingPolicy::USE_SERVANT_MANAGER are set. Servants activated by this type of servant manager
are tracked in the Active Object Map.

The following events occur while processing requests using servant activators:

A client request is received (client request contains the POA name, the object ID.)

The POA first checks the active object map. If the object ID is found there, the operation is passed to
the servant, and the response is returned to the client.

If the object ID is not found in the active object map, the POA invokes incarnate on a servant
manager. incarnate passes the object ID and the POA in which the object is being activated.

The servant manager locates the appropriate servant.

The object ID is entered into the active object map, and the response is returned to the client.

The etheralize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources, including the
deactivate_object operation, deactivation of the POA manager associated with that POA, and so forth.
More information on deactivating objects is described in Deactivating objects.

Code example 32 Example server code illustrating servant activator-type servant manager

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Note

ServantActivators

- 143/607 - © 2024 Rocket Software

void bank_server()
{

VISTRY {
// get a reference to the root POA
CORBA::Object_var obj;
VISIFNOT_EXCEP

obj = orb->resolve_initial_references("RootPOA");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(2);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(
PortableServer::USE_SERVANT_MANAGER);

VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

// Create myPOA with the right policies
myPOA = rootPOA->create_POA(

"bank_servant_activator_poa",
poa_manager, policies);

VISEND_IFNOT_EXCEP

// Create a Servant activator
AccountManagerActivator *servant_activator_impl;
VISIFNOT_EXCEP

servant_activator_impl = new AccountManagerActivator;
VISEND_IFNOT_EXCEP

ServantActivators

- 144/607 - © 2024 Rocket Software

The servant manager for this example:

Code example 33 Servant manager for servant activator example

VISIFNOT_EXCEP
// Set the servant activator
myPOA->set_servant_manager(servant_activator_impl);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the POA Manager
poa_manager->activate();

VISEND_IFNOT_EXCEP

// Waiting for incoming requests
cout << " BankManager is ready" << endl;

}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

ServantActivators

- 145/607 - © 2024 Rocket Software

// Servant Activator
class AccountManagerActivator :

public PortableServer::ServantActivator
{
public:

virtual PortableServer::Servant incarnate (
const PortableServer::ObjectId& oid,
PortableServer::POA_ptr poa) {

CORBA::String_var s = PortableServer::ObjectId_to_string(oid);

cout << "\nAccountManagerActivator.incarnate called with ID = "
<< s << endl;

PortableServer::Servant servant;

if (VISPortable::vstricmp((char *)s,
"SavingsAccountManager") == 0) {

// Create CheckingAccountManager Servan
servant = new SavingsAccountManagerImpl;

}
else if (VISPortable::vstricmp((char *)s,

"CheckingAccountManager") == 0) {
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;

}
else

VISTHROW(CORBA::OBJECT_NOT_EXIST());

// Create a deactivator thread
new DeActivatorThread(oid, poa);

// return the servant
servant->_add_ref();
return servant;

}

virtual void etherealize(const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations) {

// If there are no remaining activations i.e ObjectIds
// associated with the servant delete it.
CORBA::String_var s = PortableServer::ObjectId_to_string(oid);
cout <<

"\nAccountManagerActivator.etherealize called with ID = "

ServantActivators

- 146/607 - © 2024 Rocket Software

ServantLocators
In many situations, the POA’s Active Object Map could become quite large and consume memory. To
reduce memory consumption, a POA can be created with RequestProcessingPolicy::USE_SERVANT_MANAGER
and ServantRetentionPolicy::NON_RETAIN , meaning that the servant-to-object association is not stored in
the active object map. Since no association is stored, ServantLocator servant managers are invoked for
each request.

The following events occur while processing requests using servant locators:

A client request, which contains the POA name and the object id, is received.

Since ServantRetentionPolicy::NON_RETAIN is used, the POA does not search the active object map for
the object ID.

The POA invokes preinvoke on a servant manager. preinvoke passes the object ID, the POA in which
the object is being activated, and a few other parameters.

The servant locator locates the appropriate servant.

The operation is performed on the servant and the response is returned to the client.

The POA invokes postinvoke on the servant manager.

The preinvoke and postinvoke methods are user-supplied code.

Code example 34 Example server code illustrating servant locator-type servant managers

<< s << endl;
if (!remaining_activations)

delete servant;
}

};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Note

ServantLocators

- 147/607 - © 2024 Rocket Software

void bank_server()
{

VISTRY {
//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create a child POA with Persistence life span policy that
// uses servant manager with non-retain retention policy (no
// Active Object Map) causing the POA to use the servant locator.

CORBA::PolicyList policies;
policies.length(3);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] =

rootPOA->create_servant_retention_policy(
PortableServer::NON_RETAIN);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] =

rootPOA->create_request_processing_policy(
PortableServer::USE_SERVANT_MANAGER);

VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_servant_locator_poa",
poa_manager, policies);

VISEND_IFNOT_EXCEP

ServantLocators

- 148/607 - © 2024 Rocket Software

The servant manager for this example follows:

Code example 35 Servant manager for servant locator example

// Create the servant locator
AccountManagerLocator *servant_locator_impl;
VISIFNOT_EXCEP

servant_locator_impl = new AccountManagerLocator;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
myPOA->set_servant_manager(servant_locator_impl);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

// Ready for incoming requests
VISIFNOT_EXCEP

cout << "Bank Manager is ready" << endl;
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

ServantLocators

- 149/607 - © 2024 Rocket Software

// Servant Locator
class AccountManagerLocator :

public PortableServer::ServantLocator
{
public:

AccountManagerLocator (){}

// preinvoke is very similar to ServantActivator’s incarnate
// method but gets alled every time a request comes in unlike
// incarnate() which gets called every time the POA does not find
// a servant in the active object map
virtual PortableServer::Servant preinvoke(

const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie& the_cookie) {

CORBA::String_var s = PortableServer::ObjectId_to_string(oid);
cout << "\nAccountManagerLocator.preinvoke called with ID = "

<< s << endl;
PortableServer::Servant servant;

if (VISPortable::vstricmp((char *)s,
"SavingsAccountManager") == 0) {

// Create CheckingAccountManager Servant
servant = new SavingsAccountManagerImpl;

}
else if (VISPortable::vstricmp((char *)s,

"CheckingAccountManager") == 0) {
// Create CheckingAccountManager Servant
servant = new CheckingAccountManagerImpl;

}
else

VISTHROW(CORBA::OBJECT_NOT_EXIST());

// Note also that we do not spawn of a thread to explicitly
// deactivate an object unlike a servant activator, this is
// because the POA itself calls post invoke after the request is
// complete. In the case of a servant activator the POA calls
// etherealize() only if the object is deactivated by calling
// poa->de_activateobject or the POA itself is destroyed.

// return the servant
servant->_add_ref();
return servant; }

}

ServantLocators

- 150/607 - © 2024 Rocket Software

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued or discarded), and can
deactivate the POA. Each POA is associated with a POA manager object. A POA manager can control one
or many POAs.

A POA manager is associated with a POA when the POA is created. You can specify the POA manager to
use, or specify null to have a new POA Manager created.

Code example 36 Naming the POA and its POA Manager

A POA manager is "destroyed" when all its associated POAs are destroyed.

A POA manager can have four states:

Holding

Active

Discarding

virtual void postinvoke(
const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie the_cookie,

PortableServer::Servant the_servant) {
CORBA::String_var s = PortableServer::ObjectId_to_string(oid);
cout << "\nAccountManagerLocator.postinvoke called with ID = "

<< s << endl;
the_servant->_remove_ref;

}
};

PortableServer::POAManager_var rootManager =
rootPOA->the_POAManager();

VISIFNOT_EXCEP
PortableServer::POA_var myPOA = rootPOA->create_POA(

"bank_servant_locator_poa",
rootManager,
policies);

VISEND_IFNOT_EXCEP

• •

• •

• •

Managing POAs with the POA manager

- 151/607 - © 2024 Rocket Software

Inactive

These states in turn determine the state of the POA.

Getting the current state
To get the current state of the POA manager, use:

PortableServer::POAManager::State get_state();

The valid state values are:

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};

Holding state
By default, when a POA manager is created, it is in the holding state. When the POA manager is in the
holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is in the holding
state.

To change the state of a POA manager to holding, use:

wait_for_completion is Boolean . If FALSE , this operation returns immediately after changing the state to
holding. If TRUE , this operation returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than holding. AdapterInactive is the
exception raised if the POA manager was in the inactive state prior to calling this operation.

POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued during the holding
state.

• •

void hold_requests(wait_for_completion)
raises (AdapterInactive);

Note

Getting the current state

- 152/607 - © 2024 Rocket Software

Active state
When the POA manager is in the active state, its associated POAs process requests.

To change the POA manager to the active state, use:

AdapterInactive is the exception raised if the POA manager was in the inactive state prior to calling this
operation.

POA managers currently in the inactive state can not change to the active state.

Discarding state
When the POA manager is in the discarding state, its associated POAs discard all requests that have not
yet started. In addition, the adapter activators registered with the associated POAs are not called. This
state is useful when the POA is receiving too many requests. You need to notify the client that their
request has been discarded and to resend their request. There is no inherent behavior for determining
if and when the POA is receiving too many requests.

To change the POA manager to the discarding state, use:

The wait_for_completion option is Boolean. If FALSE , this operation returns immediately after changing
the state to discarding. If TRUE , this operation returns only when all requests started prior to the state
change have completed or when the POA manager is changed to a state other than discarding.
AdapterInactive is the exception raised if the POA manager was in the inactive state prior to calling this
operation.

POA managers currently in the inactive state can not change to the discarding state.

void activate()
raises (AdapterInactive);

Note

void discard_requests(wait_for_completion)
raises (AdapterInactive);

Note

Active state

- 153/607 - © 2024 Rocket Software

Inactive state
When the POA manager is in the inactive state, its associated POAs reject incoming requests. This state
is used when the associated POAs are to be shut down.

POA managers in the inactive state can not change to any other state.

To change the POA manager to the inactive state, use:

After the state changes, if etherealize_objects is TRUE , then all associated POAs that have Servant
RetentionPolicy::RETAIN and RequestProcessingPolicy::USE_SERVANT_MANAGER set call etherealize on the
servant manager for all active objects. If etherealize_objects is FALSE , then etherealize is not called.

The wait_for_completion option is Boolean. If FALSE , this operation returns immediately after changing
the state to inactive. If TRUE , this operation returns only when all requests started prior to the state
change have completed or etherealize has been called on all associated POAs (that have
ServantRetentionPolicy::RETAIN and RequestProcessingPolicy::USE_SERVANT_MANAGER).

AdapterInactive is the exception raised if the POA manager was in the inactive state prior to calling this
operation.

Adapter activators
Adapter activators are associated with POAs and provide the ability to create child POAs on-demand.
This can be done during the find_POA operation, or when a request is received that names a specific
child POA.

An adapter activator supplies a POA with the ability to create child POAs on demand, as a side-effect of
receiving a request that names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE . An application server that creates all its needed POAs at the
beginning of execution does not need to use or provide an adapter activator; it is necessary only for the
case in which POAs need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to objects managed by
the new POA (or any descendant POAs) will be queued. This serialization allows the adapter activator to
complete any initialization of the new POA before requests are delivered to that POA.

Note

void deactivate(etherealize_objects, wait_for_completion)
raises (AdapterInactive);

Inactive state

- 154/607 - © 2024 Rocket Software

For an example on using adapter activators, see the POA adaptor_activator example located in:

<VBRT_install>/examples/vbroker_kernel/poa/adaptor_activator

Processing requests
Requests contain the Object ID of the target object and the POA that created the target object
reference. When a client sends a request, the ORB first locates the appropriate server, it then locates the
appropriate POA within that server.

Once the ORB has located the appropriate POA, it delivers the request to that POA. How the request is
processed at that point depends on the policies of the POA and the object’s activation state. For
information about object activation states, see Activating objects.

If the POA has ServantRetentionPolicy::RETAIN , the POA looks at the Active Object Map to locate a
servant associated with the Object ID from the request. If a servant exists, the POA invokes the
appropriate method on the servant.

If the POA has ServantRetentionPolicy::NON_RETAIN or has ServantRetentionPolicy::RETAIN but did not
find the appropriate servant, the following may take place:

If the POA has RequestProcessingPolicy::USE_DEFAULT_SERVANT , the POA invokes the appropriate
method on the default servant.

If the POA has RequestProcessingPolicy::USE_SERVANT_MANAGER , the POA invokes incarnate or
preinvoke on the servant manager.

If the POA has RequestProcessingPolicy::USE_OBJECT_MAP_ONLY , an exception is raised.

If a servant manager has been invoked but can not incarnate the object, the servant manager can raise
a ForwardRequest exception.

• •

• •

• •

• •

• •

Processing requests

- 155/607 - © 2024 Rocket Software

Using the Tie Mechanism

This section describes:

How the tie mechanism can be used to integrate existing C++ code into a distributed object
system.

How to create a delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?
Object implementation classes normally inherit from a servant class generated by the idl2cpp compiler.
The servant class, in turn, inherits from PortableServer::Servant . When it is not convenient or possible to
change existing classes to inherit from the VisiBroker RT for C++ servant skeleton class, the tie
mechanism offers an appropriate alternative.

The tie mechanism provides object servers with a delegator implementation class that inherits from
PortableServer::Servant . The delegator implementation does not provide any semantics of its own. It
simply delegates every request it receives to the real implementation class, which can be implemented
separately. The real implementation class is not required to inherit from PortableServer::Servant .

With using the tie mechanism, two additional generated classes are required:

<InterfaceName>POATie defers implementation of all IDL defined methods to a delegate. The
delegate implements the interface <InterfaceName>Operations . Legacy implementations can be
trivially extended to implement the operations interface and in turn delegate to the real
implementation.

<InterfaceName>Operations defines all of the methods that must be implemented by the object
implementation. This interface acts as the delegate object for the associated
<InterfaceName>POATie class when the tie mechanism is used.

• •

• •

• •

• •

Using the Tie Mechanism

- 156/607 - © 2024 Rocket Software

Example program

Location of an example program using the tie mechanism
A version of the Bank example using the tie mechanism can be found in the VisiBroker for C++
distribution under <VBRT_install>/examples/vbroker_kernel/basic/bank_tie .

Looking at the tie template
The idl2cpp compiler will automatically generate a _tie_Account template class, as shown in Code
example 37. The POA_Bank_Account_tie class is instantiated by the object server and initialized with an
instance of AccountImpl . The POA_Bank_Account_tie class delegates every operation request it receives to
AccountImpl , the real implementation class. In this example, the AccountImpl class does not inherit from
the POA_Bank::Account class.

Code example 37 Looking at the POA_Bank_Account_tie template

Example program

- 157/607 - © 2024 Rocket Software

...
template <class T>
class POA_Bank_Account_tie : public POA_Bank::Account {
private:

CORBA::Boolean _rel;
PortableServer::POA_ptr _poa;
T *_ptr;
POA_Bank_Account_tie(const POA_Bank_Account_tie&) {}
void operator=(const POA_Bank_Account_tie&) {}

public:
POA_Bank_Account_tie (T& t)

: _ptr(&t), _poa(NULL), _rel((CORBA::Boolean)0) {}
POA_Bank_Account_tie (T& t, PortableServer::POA_ptr poa)

: _ptr(&t),
_poa(PortableServer::_duplicate(poa)),
_rel((CORBA::Boolean)0) {}

POA_Bank_Account_tie (T *p, CORBA::Boolean release= 1)
: _ptr(p), _poa(NULL), _rel(release) {}

POA_Bank_Account_tie (T *p, PortableServer::POA_ptr poa,
CORBA::Boolean release =1)
: _ptr(p),

_poa(PortableServer::_duplicate(poa)),
_rel(release) {}

virtual ~POA_Bank_Account_tie() {
CORBA::release(_poa);
if (_rel) {

delete _ptr;
}

}
T* _tied_object() { return _ptr; }
void _tied_object(T& t) {

if (_rel) {
delete _ptr;

}
_ptr = &t;
_rel = 0;

}

void _tied_object(T *p, CORBA::Boolean release=1) {
if (_rel) {

delete _ptr;
}
_ptr = p;
_rel = release;

}

Looking at the tie template

- 158/607 - © 2024 Rocket Software

Changing the server to use the _tie_account class
Code example 38 shows the modifications to the Server.C file required to use the _tie_account class:

Code example 38 Example of a server using the _tie class

CORBA::Boolean _is_owner() { return _rel; }

void _is_owner(CORBA::Boolean b) { _rel = b; }

CORBA::Float balance() {
return _ptr->balance();

}

PortableServer::POA_ptr _default_POA() {
if (!CORBA::is_nil(_poa)) {

return _poa;
} else {

return PortableServer_ServantBase::_default_POA();
}

}
};

Changing the server to use the _tie_account class

- 159/607 - © 2024 Rocket Software

//bank_tie_server
#include <vxWorks.h>
#include "corba.h"
#include "bankImpl.h"
/*---*/
/* Forward Declarations. */
/*---*/
extern "C" void start_bank_server(void);
static void bank_server(void);

extern CORBA::ORB_var orb;

// Static initialization
AccountRegistry AccountManagerImpl::_accounts;

void start_bank_server(void)
{

char * taskName = "BANK_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_server,
0,0,0,0,0,0,0,0,0,0);

}

void bank_server()
{

PortableServer::POA_var rootPOA;
VISTRY {

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(

Changing the server to use the _tie_account class

- 160/607 - © 2024 Rocket Software

PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_account_poa", poa_manager,
policies);

VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the delegator
POA_Bank_AccountManager_tie<AccountManagerImpl> *tieServer;
VISIFNOT_EXCEP

tieServer = new
POA_Bank_AccountManager_tie<AccountManagerImpl>(*managerServant);

VISEND_IFNOT_EXCEP

// Create the object ID for the servant
PortableServer::ObjectId_var managerId;
VISIFNOT_EXCEP

managerId =
PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(
(CORBA_OctetSequence&)managerId,tieServer);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(tieServer);
VISEND_IFNOT_EXCEP

Changing the server to use the _tie_account class

- 161/607 - © 2024 Rocket Software

Building the tie example
The instructions described in Developing an Example Application with VisiBroker RT for C++ are also
valid for building the tie example.

VISIFNOT_EXCEP
cout << endl << "CORBA Object ==> " << endl << endl;
cout << reference << endl;
cout << " is ready" << endl << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Building the tie example

- 162/607 - © 2024 Rocket Software

Client basics

This section describes how client programs access and use distributed objects.

Initializing the ORB
The Object Request Broker (ORB) provides a communication link between the client and the server.
When a client makes a request, the ORB locates the object implementation, delivers the request to the
object (and activates the object if necessary), and returns the response to the client. The client is
unaware that the object may be on the same machine or across a network.

Though much of the work done by the ORB is transparent to you, your client program must explicitly
initialize the ORB. ORB options, described in the VisiBroker RT for C++ Reference Guide can be specified as
command-line arguments. Therefore, you must pass argc and argv to ORB_init to ensure that these
options take effect.

Code example 39 Initializing the ORB ...

Client basics

- 163/607 - © 2024 Rocket Software

Binding to objects
A client program uses a remote object by obtaining a reference to the object. Object references are
usually obtained using the <interface>::_bind() member function. The ORB hides most of the details
involved with obtaining the object reference, such as locating the server that implements the object and
establishing a connection to that server.

/*---*/
/* function ==> do_corba */
/* This function will perform the necessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*---*/
void do_corba(void)
{

int argc = 3;
char *argv[] ={"DO_CORBA","-ORBagentport", OSAGENT_PORT};

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(argc, argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Binding to objects

- 164/607 - © 2024 Rocket Software

Action performed during the bind process
When the CORBA server application starts, it performs a CORBA::ORB_init() and announces POA names
and object IDs to Smart Agents on the network.

When your client program invokes the _bind() member function, the ORB performs several functions
on behalf of your program.

The ORB contacts the Smart Agent to locate an object implementation that offers the requested
interface. If an object name was specified when _bind() was invoked, that name will be used to
further qualify the directory service search.

When an object implementation is located, the ORB attempts to establish a connection between
the object implementation that was located and your client program.

Once the connection is successfully established, the ORB will create a proxy object and return a
reference to that object. The client will invoke methods on the proxy object which will, in turn,
interact with the server object:

Your client program will never invoke a constructor for the server class. Instead, an object reference
is obtained by invoking the static _bind() member function.

There are two forms of the static _bind() member functions which are generated by the idl2cpp
compiler.

One form of the _bind interface must be used if the CORBA object implementation that the Client
intends to bind to has been activated on a POA whose 'BIND SUPPORT POLICY' was 'BY_POA'. This is
refered to as the "2 parameter _bind interface". An example of the use of the 2 parameter _bind
interface is shown below.

• •

• •

• •

Note

1. 1.

Action performed during the bind process

- 165/607 - © 2024 Rocket Software

Note that BY_POA is the default policy value for the BIND SUPPORT POLICY :

Code example 40 Example of use of the 2 parameter _bind interface.

The second form of the _bind interface must be used if the CORBA object implementation that the
Client intends to bind to has been activated on a POA whose BIND SUPPORT POLICY value was
BY_INSTANCE . This is referred to as the "one parameter _bind interface". An example of the use of the
one parameter _bind interface is shown below.

Note the one parameter _bind interface gives equivalent functionality as in previous versions of
VisiBroker RT for C++ (e.g version 3.2.2).

Code example 41 Example of use of the 1 parameter _bind interface

For more information on the BIND SUPPORT POLICY, see Bind Support policy

Invoking operations on an object
Your client program uses an object reference to invoke an operation on an object or to reference data
contained by the object. Manipulating object references describes the variety of ways that object
references can be manipulated.

Code example 42 Invoking an operation using an object reference

...
PortableServer::ObjectId_var manager_id

PortableServer::string_to_ObjectId(“BankManager”);
Bank::AccountManager_var = Bank::AccountManager::_bind(

"/bank_agent_poa", manager_id);
...

2. 2.

...
Bank::AccountManager_var =

Bank::AccountManager::_bind(“BankManager”);
...

Invoking operations on an object

- 166/607 - © 2024 Rocket Software

Manipulating object references
The object reference returned to your client program by the _bind() member function represents a
CORBA object. Your client program can use the object reference to invoke operations on the object that
have been defined in the object’s IDL interface specification. In addition, there are member functions
that all ORB objects inherit from the class CORBA::Object that you can use to manipulate the object.

Checking for nil references
You can use the CORBA class method is_nil() shown below to determine if an object reference is nil.
This method returns 1 if the object reference passed is nil . It returns 0 if the object reference is not
nil .

Code example 43 Method for checking for a nil object reference

Obtaining a nil reference
You can obtain a nil object reference using the CORBA::Object class _nil() member function. It returns a
NULL value that is cast to an Object_ptr .

Code example 44 Method for obtaining a nil reference

...
// Invoke the balance operation.
balance = account->balance();
cout << "Balance is $" << balance << endl;
...

class CORBA {
...
static Boolean is_nil(CORBA::Object_ptr obj);
...

};

Manipulating object references

- 167/607 - © 2024 Rocket Software

Duplicating an object reference
When your client program invokes the _duplicate member function, the reference count for the object
reference is incremented by one and the same object reference is returned. Your client program can
use the _duplicate() member function to increase the reference count for an object reference so that
the reference can be stored in a data structure or passed as a parameter. Increasing the reference
count ensures that the memory associated with the object reference will not be freed until the
reference count has reached zero.

The IDL compiler generates a _duplicate() member function for each object interface you specify. The
_duplicate() member function accepts and returns a generic Object_ptr .

Code example 45 Method for duplicating an object reference

The _duplicate() member function has no meaning for the POA or ORB because these objects do
not support reference counting.

class Object {
...
static CORBA::Object_ptr _nil();
...

};

class Object {
...
static CORBA::Object_ptr _duplicate(CORBA::Object_ptr obj);
...

};

Note

Duplicating an object reference

- 168/607 - © 2024 Rocket Software

Releasing an object reference
You should release an object reference when it is no longer needed. One way of releasing an object
reference is by invoking the CORBA::Object class _release() member function.

Always use the _release() member function. Never invoke operator delete on an object
reference.

Code example 46 Releasing an object reference

You can also use CORBA::release() which is provided for compatibility with the CORBA specification.

Code example 47 CORBA method for releasing an object reference

Obtaining the reference count
Each object reference has a reference count that you can use to determine how many times the
reference has been duplicated. When you first obtain an object reference by invoking _bind() , the
reference count is set to one. Releasing an object reference will decrement the reference count by one.
Once the reference count reaches 0, VisiBroker RT for C++ automatically deletes the object reference.
Code example 48 shows the _ref_count() member function for retrieving the reference count.

Caution

class CORBA {
class Object {

...
void _release();
...

};
};

class CORBA {
...
static void release(Object_ptr);
...

};

Releasing an object reference

- 169/607 - © 2024 Rocket Software

When a remote client duplicates or releases an object reference, the server’s object reference count
is not affected.

Code example 48 Method for obtaining the reference count

Converting a reference to a string
VisiBroker RT for C++ provides an ORB class member function that allows you to convert an object
reference to a string or convert a string back into an object reference. The CORBA specification refers to
this process as 'stringification'. This table shows the member functions for stringification and de-
stringification:

A client program can use the object_to_string member function to convert an object reference to a
string and pass it to another client program. The second client may then de-stringify the object
reference, using the string_to_object member function and use the object reference without having to
explicitly bind to the object.

The caller of object_to_string() is responsible for calling CORBA::string_free() on the returned
string.

Transient object references (i.e. Object references created via a POA whose lifespan policy is set
to TRANSIENT) that are stringified are not guaranteed to be valid beyond the life of the ORB
instance that created the reference.

Note

class Object {
...
CORBA::Long _ref_count() const;
...

};

Method Description

object_to_string Converts an object reference to a string.

string_to_object Converts a string to an object reference.

Notes

• •

• •

Converting a reference to a string

- 170/607 - © 2024 Rocket Software

Obtaining object and interface names
The table below shows the member functions provided by the Object class that you can use to obtain
the interface and object names as well as the repository ID associated with an object reference. The
interface repository is discussed in Using Interface Repositories.

If you did not specify an object name when you invoked the _bind() member function, invoking the
_object_name() member function with the resulting object reference will return NULL.

Determining the type of an object reference
You can check whether an object reference is of a particular type by using the _is_a() member
function. You must first obtain the repository ID of the type you wish to check using the
_repository_id() member function. This method returns 1 if the object is either an instance of the type
represented by repository_id() or if it is a sub-type. The member function returns 0 if the object is not
of the type specified. Note that this may require remote invocation to determine the type.

You can use the _is_equivalent() member function to check if two object references refer to the same
object implementation. This member function returns 1 if the object references are equivalent. This
member function returns 0 if the object references are distinct, but does not necessarily indicate that
the object references are two distinct objects. This is a lightweight member function and does not
involve actual communication with the server object.

The _hash() member function can be used to obtain a hash value for an object reference. While this
value is not guaranteed to be unique, it will remain consistent through the lifetime of the object
reference and can be stored in a hash table.

Note

Method Description

_interface_name Returns the interface name of this object.

_object_name Returns this object’s name.

_repository_id Returns the repository’s type identifier.

Method Description

_hash Returns a hash value for the object reference.

_is_a Determines if an object implements a specified interface.

Obtaining object and interface names

- 171/607 - © 2024 Rocket Software

Determining the location and state of bound objects
Given a valid object reference, your client program can use the _is_bound() member function to
determine if the object is bound, (i.e. if a connection is currently active for this object). The method
returns 1 if the object is bound and 0 if the object is not bound.

The _is_local() member function returns 1 if the client program and the object implementation reside
within the same address space.

The _is_remote() member function returns 1 if the client program and the object implementation reside
in a different address space.

If the object is in the same address space as the method that is invoked, _is_local() returns 1.

Checking for non-existent objects
You can use the _non_existent() member function to determine if the object implementation
associated with an object reference still exists. This method actually "pings" the object to determine if it
still exists and returns 1 if it does not exist.

Method Description

_is_equivalent Returns true if two objects refer to the same interface implementation.

Method Description

_is_bound Returns 1 if a connection is currently active for this object.

_is_local Returns 1 if this object is implemented in the local address space.

_is_remote Returns 1 if this object’s implementation does not reside in the local address
space.

Note

Determining the location and state of bound objects

- 172/607 - © 2024 Rocket Software

Narrowing object references
The process of converting an object reference’s type from a general supertype to a more specific sub-
type is called narrowing.

The _narrow() member function may construct a new C++ object and returns a pointer to that object.
When you no longer need the object, you must release the object reference returned by _narrow() .

VisiBroker RT for C++ maintains a typegraph for each object interface so that narrowing can be
accomplished by using the object’s _narrow() method. If the narrow member function determines it is
not possible to narrow an object to the type you request, it will return NULL .

Code example 49 Narrow method generated for the AccountManager

Widening object references
Converting an object reference’s type to a super-type is called widening.

Code example 50 shows an example of widening an Account pointer to an Object pointer. The pointer
acct can be cast as an Object pointer because the Account class inherits from the Object class.

Code example 50 Widening an object reference

Note

Account *acct;
Account *acct2;
Object *obj;

acct = Account::_bind();
obj = (CORBA::Object *)acct;
acct2 = Account::_narrow(obj);

Narrowing object references

- 173/607 - © 2024 Rocket Software

Using Quality of Service
Quality of Service (QoS) utilizes policies to define and manage the connection between your client
applications and the servers to which they connect.

Understanding Quality of Service
Quality of Service policy management is performed through operations accessible in the following
contexts:

ORB level policies are handled by a locality constrained PolicyManager , through which you can set
Policies and view the current Policy overrides.

Policies set at the ORB level override system defaults.

Thread level policies are set through PolicyCurrent , which contains operations for viewing and
setting Policy overrides at the thread level.

Policies set at the thread level override system defaults and values set at the ORB level.

Object level policies can be applied by accessing the base Object interface’s quality of service
operations.

Policies applied at the Object level override system defaults and values set at the ORB or thread
level.

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all applicable policy overrides
have been applied. The effective policy is determined by comparing the Policy as specified by the IOR
with the effective override. The effective Policy is the intersection of the values allowed by the effective
override and the IOR-specified Policy. If the intersection is empty, an INV_POLICY exception is raised.

...
Account *acct;
CORBA::Object *obj;
acct = Account::_bind();
obj= (CORBA::Object *)acct;
...

• •

• •

• •

Using Quality of Service

- 174/607 - © 2024 Rocket Software

QoS interfaces
The following interfaces are used to get and set QoS policies.

CORBA::Object
CORBA::Object contains the following methods used to get the effective policy and get or set the policy
override.

_get_policy

Returns the effective policy for an object reference.

_set_policy_override

Returns a new object reference with the requested list of Policy overrides at the object level.

_get_client_policy

Returns the effective Policy for the object reference without doing the intersection with the
server-side policies. The effective override is obtained by checking the specified overrides first at
the object level, then at the thread level, and finally at the ORB level. If no overrides are specified
for the requested PolicyType , the system default value for PolicyType is used.

_get_policy_overrides

Returns a list of Policy overrides of the specified policy types set at the object level. If the
specified sequence is empty, all overrides at the object level will be returned. If no PolicyType s are
overridden at the object level, an empty sequence is returned.

_validate_connection

Returns a boolean value based on whether the current effective policies for the object will allow
an invocation to be made. If the object reference is not bound, a binding will occur. If the object
reference is already bound, but current policy overrides have changed or the binding is no longer
valid, a rebind will be attempted regardless of the setting of the RebindPolicy overrides. A false
return value occurs if the current effective policies would raise an INV_POLICY exception. If the
current effective policies are incompatible, a sequence of type PolicyList is returned listing the
incompatible policies.

• •

• •

• •

• •

• •

QoS interfaces

- 175/607 - © 2024 Rocket Software

CORBA::PolicyManager
The PolicyManager is an interface that provides methods for getting and setting Policy overrides for the
ORB level.

get_policy_overrides

Returns a PolicyList sequence of all the overridden policies for the requested PolicyTypes . If the
specified sequence is empty, all Policy overrides at the current context level will be returned. If
none of the requested PolicyTypes are overridden at the target PolicyManager , an empty sequence
is returned.

set_policy_overrides

Modifies the current set of overrides with the requested list of Policy overrides. The first input
parameter, policies , is a sequence of references to Policy objects. The second parameter,
set_add (type SetOverrideType), indicates whether these policies should be added to any other
overrides that already exist in the PolicyManager using ADD_OVERRIDE , or they should be added to a
PolicyManager that does not contain any overrides using SET_OVERRIDES . Calling
set_policy_overrides with an empty sequence of policies and a SET_OVERRIDES mode removes all
overrides from a PolicyManager . Should you attempt to override policies that do not apply to your
client, a NO_PERMISSION exception will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or added and an
CORBA::InvalidPolicies exception is raised.

CORBA::PolicyCurrent
The PolicyCurrent interface derives from PolicyManager without adding new methods. It provides access
to the policies overridden at the thread level. A reference to a thread’s PolicyCurrent is obtained by
invoking resolve_initial_references and specifying an identifier of PolicyCurrent .

Messaging::RebindPolicy
RebindPolicy reads in a value of type Messaging::RebindMode to define the behavior of the client when
rebinding. Rebind policies are set only on the client side. It can have one of six values that determines
the behavior in the case of a disconnection, an object forwarding request, or an object failure. The
currently supported values are:

Messaging::TRANSPARENT

Allows the ORB to silently handle object forwarding and necessary reconnections during the
course of making a remote request.

Messaging::NO_REBIND

• •

• •

• •

• •

CORBA::PolicyManager

- 176/607 - © 2024 Rocket Software

Allows the ORB to silently handle reopening of closed connections while making a remote
request, but prevents any transparent object forwarding that would cause a change in client-
visible effective QoS policies. When RebindMode is set to NO_REBIND only explicit rebind is allowed.

Messaging::NO_RECONNECT

Prevents the ORB from silently handling object-forwards or the reopening of closed connections.
You must explicity rebind and reconnect when RebindMode is set to NO_RECONNECT .

QoSExt::VB_TRANSPARENT

Is the default policy. It extends the functionality of TRANSPARENT by allowing transparent rebinding
with both implicit and explicit binding. VB_TRANSPARENT is designed to be compatible with the object
failover implementation in VisiBroker RT for C++ 3.x.

QoSExt::VB_NOTIFY_REBIND

Throws an exception if a rebind is necessary. The client catches this exception, and binds on the second
invocation.

Be aware that if the effective policy for your client is VB_TRANSPARENT and your client is working
with servers that hold state data, VB_TRANSPARENT could connect the client to a new server without
the client being aware of the change of server, any state data held by the original server will be
lost.

In the case of NO_REBIND or NO_RECONNECT the reopening of the closed connection or forwarding
may be explicitly allowed by calling validate_connection on the CORBA::Object interface.

The following table lists the behavior of the different RebindMode types.

• •

• •

• •

Notes

• •

• •

RebindMode
type

Reestablish
closed
connection to the
same object?

Allow object
forwarding?

Object failover?1

NO_RECONNE
CT

No, throws REBI
ND exception.

No, throws RE
BIND

exception.

No

NO_REBIND Yes Yes, if QoS
policies match

No

TRANSPARENT Yes Yes No

CORBA::PolicyManager

- 177/607 - © 2024 Rocket Software

For more information on QoS policies and types, see the VisiBroker RT for C++ Reference Guide and the
OMG Messaging specification. Our QoS implementation is based on the OMG document orbos/98-05-05.

Messaging::RelativeRequestTimeoutPolicy
RelativeRequestTimeoutPolicy s a local object (i.e. locality constrained) derived from CORBA::Policy . It is
used to indicate the relative amount of time for which a Request may be delivered. After this amount of
time the Request is cancelled. This policy is applied to both synchronous and asynchronous invocations.
If asynchronous invocation is used, this policy only limits the amount of time during which the request
may be processed. Assuming the request completes within the specified timeout, the reply will never be
discarded due to timeout.

When instances of RelativeRequestTimeoutPolicy are created, a value of type TimeBase::TimeT is passed to
CORBA::ORB::create_policy . The value specified is the number of 100 nanoseconds which the client
application will wait for a request to be delivered to the Server implementation. If the time-out period
expires before the message is delivered to the Server implementation, a CORBA::NO_RESPONSE exception is
raised.

If a RelativeRequestTimeoutPolicy is not specified, RelativeRequestTimeout is set to 0 indicating that your
client program wishes to block indefinitely.

This policy is only applicable as a client-side override.

RebindMode
type

Reestablish
closed
connection to the
same object?

Allow object
forwarding?

Object failover?1

VB_NOTIFY_
REBIND

Yes Yes Yes. VB_NOTIFY_REBIND
throws an exception after
failure detection, and then
tries a failover on subsequent
requests.

VB_TRANSPA
RENT

Yes Yes Yes, transparently

CORBA::PolicyManager

- 178/607 - © 2024 Rocket Software

Messaging::RelativeRoundtripTimeoutPolicy
RelativeRoundtripTimeoutPolicy is a local object (i.e. locality constrained) derived from CORBA::Policy . It is
used to indicate the relative amount of time for which a Request or its corresponding Reply may be
delivered. After this amount of time the Request is cancelled (if a response has not yet been received
from the target) or the Reply is discarded (if the Request had already been delivered and a Reply
returned from the target). This policy is applied to both synchronous and asynchronous invocations.

When instances of RelativeRoundtripTimeoutPolicy are created, a value of type TimeBase::TimeT is passed
to CORBA::ORB::create_policy . The value specified is the number of 100 nanoseconds which the client
application will wait for a request and its corresponding reply to be received. If the time-out period
expires before the invocation is completed (i.e. reply received by the ORB), a CORBA::NO_RESPONSE
exception is raised.

If a RelativeRoundtripTimeoutPolicy is not specified, RelativeRoundtripTimeout is set to 0, indicating that
your client program wishes to block indefinitely.

This policy is only applicable as a client-side override.

QoSExt::RelativeConnectionTimeoutPolicy
RelativeConnectionTimeoutPolicy is a local object (i.e. locality constrained) derived from CORBA::Policy . It is
used to indicate the relative amount of time after which an attempt to connect to the server ORB using
one of the available communication endpoints is aborted. This policy is applied to both synchronous
and asynchronous invocations.

When instances of RelativeConnectionTimeoutPolicy are created, a value of type TimeBase::TimeT is passed
to CORBA::ORB::create_policy . The value specified is the number of 100 nanoseconds which the client
application will wait for a connection to be established. If the time-out period expires before the
connection to the server ORB is established, a CORBA::TIMEOUT exception is raised.

If a RelativeConnectionTimeoutPolic is not specified, RelativeConnectionTimeoutPolicy is set to 0 seconds,
indicating that your client program wishes to block indefinitely.

This policy is only applicable as a client-side override.

QoSExt::DeferBindPolicy
The DeferBindPolicy determines if the ORB will attempt to contact the remote object when it is first
created, or to delay this contact until the first invocation is made. The possible values of DeferBindPolicy
are TRUE and FALSE . If DeferBindPolicy is set to TRUE , all binds will be deferred until the first invocation
usng that Client proxy. The default value is FALSE.

If you create a client object and its DeferBindPolicy is set to true, you may delay the server startup until
the first invocation. This option existed with prior versions of VisiBroker RT for C++ as a bind option that
could be specified as a parameter to the _ bind method.

CORBA::PolicyManager

- 179/607 - © 2024 Rocket Software

QoSExt::SmartBindPolicy
SmartBindPolicy is a local object (i.e. locality constrained) derived from CORBA::Polic**y . It is used to
control the VisiBroker SmartBinding optimization. The currently supported values are:

QosExt::SMARTBIND_OFF

When SmartBindPolicy is set to QosExt::SMARTBIND_OFF , communications between the VisiBroker
client and server will use the local IP LOOPBACK interface, thereby ignoring any optimization. This
option existed with prior versions of VisiBroker RT for C++ as a bind option that could be specified
as a parameter to the _bind method.

QosExt::SMARTBIND_POA_TRANSPARENT

When SmartBindPolicy is set to QosExt::SMARTBIND_POA_TRANSPARENT , all co-located invocations (i.e.
between VisiBroker clients and servants in the same address space) are optimized. When using
this policy value all POA policies and states applicable to that CORBA Server are honored.

QosExt::SMARTBIND_CACHED

When SmartBindPolicy is set to QosExt::SMARTBIND_CACHED , all co-located invocations (i.e. between
VisiBroker clients and servants in the same address space) are optimized. Using this policy value
the servant pointer is cached during the initial invocation to the CORBA object. Subsequent
requests to this server will use this cached pointer, thereby ignoring all POA policies and POA
states. This policy value provides the highest level of optimization.

This cached pointer to the servant can be updated by calling _bind . This may be useful in cases
where the servant goes away and the client needs to update its cached pointer to a new instance
of the servant. In that case, the client application can catch the generated CORBA exception and
call _bind again to update the cached pointer.

If the POA that the servant is activated or is created with a value other than
USE_ACTIVE_OBJECT_MAP_ONLY for the RequestProcessingPolicy , the SMARTBIND_CACHE behavior reverts to
QosExt::SMARTBIND_POA_TRANSPARENT .

The default value for this policy is QosExt::SMARTBIND_CACHED . This policy applies to both synchronous and
asynchronous invocations. This policy is only applicable as a client-side override.

QoS exceptions

CORBA::INV_POLICY

Is raised when there is an incompatibility between Policy overrides.

CORBA::REBIND

Is raised when the RebindPolicy has a value of NO_REBIND , NO_RECONNECT , or VB_NOTIFY_REBIND and an
invocation on a bound object reference results in an object-forward or location-forward message.

• •

• •

• •

• •

• •

CORBA::PolicyManager

- 180/607 - © 2024 Rocket Software

CORBA::PolicyError

Is raised when the requested Policy is not supported.

CORBA::InvalidPolicies

Can be raised when an operation is passed a PolicyList sequence. The exception body contains
the policies from the sequence that are not valid, either because the policies are already
overridden within the current scope, or are not valid in conjunction with other requested policies.

The appropriate CORBA exception will be thrown in the case of a communication problem or an
object failure.

• •

• •

1. 1.

CORBA::PolicyManager

- 181/607 - © 2024 Rocket Software

Using the VisiBroker RT for C++ Console

The VisiBroker RT Console has been deprecated with this release; it is not included within the
distribution, but can be obtained by contacting the Rocket Support team.

VisiBroker RT for C++ provides a graphical user interface, the VisiBroker Console which functions as the
main control point for the server. The VisiBroker Console lets you view servers on the network, change
server configurations, and manage the services and tools that enable you to build, deploy, and manage
CORBA-based applications.

This section provides an overview of how to use the VisiBroker Console to start and stop a server,
change server configurations, and manage top-level services.

The libsrvmgr.o library is required when building a VisiBroker RT 60 application to support
communicating with the VisiBroker Console. For a description of all the libraries provided by the
VisiBroker RT for C++ product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

What is the VisiBroker Console?
The VisiBroker Console is a tool that allows you to view, configure, and monitor the Borland Enterprise
Server ORB Services in a graphical interface. In particular, you can use the ORB Services browsers to
manage object servers, control the configuration of gatekeepers, browse the interface repository, edit
naming contexts, look up object instances, and view the OADs on your network.

The design of the VisiBroker Console is similar to the graphical interfaces of the Borland Enterprise
Server Console product.

The VisiBroker Console provides browser support and is divided as follows into the following areas,
which correspond to the ORB Services that it supports:

Location Service

Naming Services

Interface Repositories1

Note

Note

• •

• •

• •

Using the VisiBroker RT for C++ Console

- 182/607 - © 2024 Rocket Software

Implementation Repositories1

Server Managers

Gatekeepers1

Integrated Transaction Services1

Navigating the VisiBroker Console
The VisiBroker Console has a typical Explorer-style user interface with elements such as menus, tools,
and status bars; a navigation pane on the left side of the viewing area; and a content pane on the right
side. You choose options from pull-down or context (right-click) menus to perform common functions;
select specific ORB Services from the navigation pane; or perform tasks in the content pane (work area)
related to the ORB Service that you select.

• •

• •

• •

• •

Navigating the VisiBroker Console

- 183/607 - © 2024 Rocket Software

The VisiBroker Console's main window consists of the following elements that help you complete the
tasks related to the specific ORB Service:

Menu bar

The menu bar is located at the top of the VisiBroker Console's main window. The menu bar provides you with some of the common
navigational and management options in the VisiBroker Console.

Toolbar

The toolbar is located at the top of the VisiBroker Console main window, just under the menu bar. The toolbar lets you perform some
of the VisiBroker Console functions with a single click of the mouse. Toolbar functions are dimmed when their functions are not
available in a specific context.

Status bar

The status bar is located at the bottom of the main window of the VisiBroker Console. The status bar displays information about the
status of your actions and also displays any warning messages for the current session.

Pull down or context menus

The pull-down menus are located in the menu bar area, at the top of the VisiBroker Console's main window. The context menus
display when you right-click an item on the VisiBroker Console. You can perform many common functions by either using pull-down
or context (right-click) menus. In some cases, you have the option to use either menu to perform the same function.

Navigation pane

The VisiBroker Console's viewing area is divided into two major parts: the Navigation pane on the left side and the Content pane on
the right side.

Navigating the VisiBroker Console

- 184/607 - © 2024 Rocket Software

The Navigation pane shows you a hierarchical tree structure in which you can expand items to navigate to the next level. The
hierarchical tree contains folders that represent the ORB Services.

Clicking these folders selects the Service and displays a browser to the right of the tree. Right-clicking provides a menu of possible
actions on the folder. Once you click an item, the right side of the panel - the Content pane - shows you information about the item
you just selected.

Content pane

The Content pane contains the content of the item you select in the Navigation pane. Depending on which item you select, different
sets of tabs appear at the bottom of the Content pane. Selecting one of theses tabs changes the information that appears in the
Content pane.

Supported ORB Services
With the VisiBroker Console, you can view, configure, and monitor the ORB Services. To access the ORB
Services, click on a specific service in the navigation pane. The selected ORB Service is displayed in the
content pane.

To browse the ORB Services on a particular Smart Agent port, right click on the root node (ORB Domain)
of the navigation pane. The Smart Agent port entry dialog will appear. After entering the desired Smart
Agent port number, a new VisiBroker ORB Services node will appear under the root node.

The VisiBroker Console supports the following ORB Services:

Location Service

The Location Service is the interface to the Smart Agent. This browser provides general purpose facilities for locating object
instances and displays all instances of an object to which a client can bind. Also, it provides a list of all Smart Agents running on the
current port.

For more information about the Location Service, see Using the Location Service.

Naming Services

The Naming Services displays, in a hierarchical format, the contents of the naming services running on your Borland Enterprise
Server domain. From here, you can select, navigate, and edit naming contexts and name bindings.

For more information about the Naming Service, see Using the Naming Service.

Interface Repositories

The Interface Repositories browser displays, in a hierarchical format, the contents of the interface repository on your Borland
Enterprise Server domain. An interface repository is like a database of CORBA object interface information. The information in an
interface repository is equivalent to the information in an IDL file.

For more information about the Interface Repositories, see Using Interface Repositories.

Note: The Interface Repository is not available on a VisiBroker RT 60 system. However, the Console
may still be used to browse Interface Repositories which may be present on other non-embedded
VisiBroker nodes in your network.

Supported ORB Services

- 185/607 - © 2024 Rocket Software

Implementation Repositories

The Implementation Repositories browser shows a list of all object implementations registered with each Object Activation Daemon
(OAD).

Note: The Implementation Repository is not available on a VisiBroker RT 60 system. However, the
Console may still be used to browse Implementation Repositories which may be present on other
non-embedded VisiBroker nodes in your network.

Server Manager

From within the Server Manager, an object server can publish its own properties. These properties appear in the content pane. The
ORB properties are published by default, but each server can hide or rearrange the containers, methods, or properties if it chooses
to. The Server Manager allows you to monitor and manage running servers, view the POA hierarchy, and set properties.

GateKeeper

The GateKeeper displays a list of active GateKeeper instances from which you select, to browse and configure their properties. The
selected GateKeeper instance displays in the content pane.

For more information on the GateKeeper, see the Borland Enterprise Server VisiBroker GateKeeper Guide.

Note: The Gatekeeper is not available on a VisiBroker RT 60 system. However, the Console may still
be used to browse Gatekeepers which may be present on other non-embedded VisiBroker nodes in
your network.

Integrated Transaction Service

The Integrated Transaction Services (ITS) provides a complex solution for distributed transactional CORBA applications.
Implemented on top of the VisiBroker ORB, ITS simplifies the complexity of distributed transactions by providing an essential set of
services, which includes a transaction service, recovery and logging, integration with database and legacy systems, and
administration facilities within one, integrated architecture..

For more information on the Integrated Transaction Services (ITS), see the VisiBroker Integrated Transaction Services (ITS)
Programmer's Guide.

Note: The Integrated Transaction Service is not available on a VisiBroker RT 60 system; however the
Console may still be used to browse ITSs which may be present on other non-embedded VisiBroker
nodes in your network.

Supported ORB Services

- 186/607 - © 2024 Rocket Software

Starting the VisiBroker Console
To start the VisiBroker Console, use one of the following methods make sure that the following
environment variables have been set:

VBROKERDIR set to <VBRT_install> .

OSAGENT_PORT set to the port number where the osagent is running. Use one of the following
methods to start the Console:

Linux

Run vbconsole.sh from the <VBRT_install>/bin directory.

To recognize the console command, your path system variable must include the Console bin
directory (<VBRT_install>/bin), or you can enter the path explicitly.

Once the Console starts, the preferences that were configured during installation take effect. If you
have problems, please check the path and classpath settings.

When the Console login window appears, enter your user name, password, and server realm (default
User Name=> admin, Default Password=> admin). After logging in to the Console, select VisiBroker
from the left most button bar of the Console to launch the VisiBroker Console.

VisiBroker Console main menu
The VisiBroker Console provides the following main menu items:

Console menu

The following table describes the commands on the VisiBroker Console menu:

• •

• •

Note

Select this ... To do this ...

Refresh Manually update server state information shown in the VisiBroker Console.

Preferences... Open the Preferences dialog box to set VisiBroker Console and VisiBroker
Server configurations settings. See Setting the VisiBroker Console
preferences.

Login Log on to the console with your user name, password, and realm credentials.

Starting the VisiBroker Console

- 187/607 - © 2024 Rocket Software

View menu

The following table describes the commands on the View menu:

Help menu

The following table describes the commands on the Help menu.

Select this ... To do this ...

Logout Log out of the console so that you can log on with new user name, password,
and realm credentials.

Exit Dismiss the VisiBroker Console.

Select this ... To do this ...

Messages Show or hide the errors window.

Tool bar Show or hide the tool bar at the top of the Console window.

Status bar Show or hide the status bar at the bottom of the Console window.

Select this ... To do this ...

Installation Guide Get online help on installing VisiBroker RT.

User's Guide Get online help on using the Console and other tools including the
DDEditor and the Application Assembly

Developer's Guide Get online help on packaging, deployment, and management of
distributed object-based applications.

Deployment
Descriptor Editor
(DDE)

Get online help on using the DDEditor.

VisiBroker
Developer's Guide

Get online help on how to develop VisiBroker applications in Java or
C++ and the configuration and management of the VisiBroker ORB.

VisiBroker
Programmer's
Reference

Get online help on the classes and interfaces supplied with VisiBroker
for Java and C++ and on using the programming tools and command-
line options

VisiBroker Console main menu

- 188/607 - © 2024 Rocket Software

Setting the VisiBroker Console preferences
VisiBroker Console preferences enable you to specify configuration, operation, and appearance settings
used by the VisiBroker Console such as the Smart Agent port, the default polling interval for
performance information displayed, and so forth:

Select this ... To do this ...

VisiBroker
GateKeeper Guide

Get online help on the VisiBroker GateKeeper that enables VisiBroker
clients to communicate with servers across networks while
conforming to the security restrictions imposed by web browses and
firewalls.

VisiNotify Guide Get online on using the VisiNotify notification message framework.

Micro Focus Home
Page

Access the Micro Focus web site.

News Group Access the Micro Focus Newsgroups web site.

About Open a dialog box containing the following tabs:
About: Shows the Borland Enterprise Server version number and
copyright information.
General System Information: Shows various system configuration
settings that Borland Enterprise Server has detected such as the
operating system, Java version, Java vendor, Java Compiler, and so
forth.
Java Properties: Shows the Java virtual machine property settings in
use by VisiBroker RT.

Setting the VisiBroker Console preferences

- 189/607 - © 2024 Rocket Software

To set Console preferences:

Start the VisiBroker Console and choose Preferences from the Console menu. A dialog box appears
with a list of preferences grouped into the following tabs:

General
Security
State
Tools**

Navigate through the tabs and select the preferences as desired. (If you want to restore the settings
shown on a particular tab to the values last saved, click Reset.)

When you have finished making your selections, click OK.

The following sections provide details on each of the Preferences tabs.

1. 1.

2. 2.

3. 3.

Setting the VisiBroker Console preferences

- 190/607 - © 2024 Rocket Software

General tab
This tab provides the following options:

Look and feel: Sets the display format and behavior of the Console windows. The available
options are: Metal, Windows or CDE/Motif.

Tab Memory: Specifies the view state information the Console uses. The following options are
available:

Don't Remember last visited tab pane: Tells the Console to open each node in the tree with
the General tab displayed on the right.

Remember last visited tab pane by type: Tells the Console to open a node on the same type of
tab (on a similar node) that was most recently viewed. For example, if the Logs tab is currently in
view and you click on another node that has a Logs tab, the Console first displays the Logs tab
for that node.

Remember last visited tab pane by type and name: Tells the Console to open a node that had
been expanded earlier in the Console session to the tab that was last in view when that node
was selected.

Sound beep on errors:: If checked, the Console sounds an alarm when an error occurs.

Enable debug output: Tells the Console to report debugging information in the Errors pane at
the bottom of the Console.

Security tab
This tab provides the following options:

Default Realm: Specifies the name of the authentication realm used by the VisiBroker Console to
interact with each Borland Enterprise Server.

Default User: Specifies the user name used by the VisiBroker Console to interact with each
Borland Enterprise Server.

Enable Security: Determines how the VisiBroker Console handles security:

When checked, enables the VisiBroker Console to communicate with a server regardless if it has
security enabled or not. When the VisiBroker Console receives a request from a server with
security enabled, however, it must first pass the user's login credentials (realm, username, and
password) to that server for authentication before it can access services on that server.

When this box is not checked, the VisiBroker Console will communicate only with servers that do
not have security enabled.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

General tab

- 191/607 - © 2024 Rocket Software

State tab
This tab provides the following options:

Enable polling for events: When checked, tells the Console to automatically update information
displayed about the state of the server and services (such as running, stopped, and so forth). The
following settings determine the time intervals (in milliseconds) of how often the Console checks
to verify the state of Borland Enterprise Servers, and they specify how often the state of services
are updated in the tree in the Console Servers View:

Background polling interval: Determines how frequently the Console checks the state of the
server when no user interaction is initiated.

Foreground polling interval: Determines how frequently the Console checks server state of the
server when the user performs any action that causes the user name server state to change,
such as stopping, refreshing, or restarting a server.

Number of foreground cycles: Determines how many times within the specified Foreground
Polling Interval that the Console check the server state.

Enable background refreshes: When checked, tells the Console to automatically update
information displayed about the changes in the navigation tree, such as when a server, service, or
module is added or removed. Clear this check box to reduce the processing overhead used by
Console polling activity. If this box is unchecked, however, the Console will not display changes in
the navigation tree until the box is checked, or until you either restart the Console, or log out and
log back in to the Console.

Refreshes every: Determines (in milliseconds) how frequently the Console checks and refreshes
the display of the state of the navigation tree.

State Legend: Shows the icons used by the Console to represent the various server states.

Tools tab
Use this tab to specify an absolute (fully qualified) path location in which OptimizeIt Profiler is installed
on the machine on which the Console is running. Enter a path or click Browse to locate the local
OptimizeIt installation directory. If you installed the OptimizeIt Suite, be sure to select the second level
OptimizeIt folder (the folder that contains the lib directory, as well as other directories).

If you are using the Console to manage a remote server, you must also install OptimizeIt on the
machine on which the server is running.

• •

• •

• •

• •

• •

• •

• •

Note

State tab

- 192/607 - © 2024 Rocket Software

For more information about configuring OptimizeIt, see the Borland Enterprise Server User's Guide.

Note that the VisiBroker RT for C++ for VxWorks console can be used to view and manage this
service on the network. However, the service itself is not available on a VisiBroker RT for C++ for
VxWorks system.

1. 1.

Tools tab

- 193/607 - © 2024 Rocket Software

Setting Properties

This section describes how to set VisiBroker properties that can be used to configure many aspects of
VisiBroker’s behavior.

Overview
VisiBroker has number of properties that can be used to configure its behavior. For example,
vbroker.agent.debug directs the ORB to turn on output of debugging information for all communication
with the Smart Agent. Each property has a predetermined data type, either string, unsigned long or
boolean, and one or more possible values. For example, vbroker.agent.enableLocator=false disables
lookups to the smart agent.

Properties can be set:

Before starting the application, via environment variables (only a few properties may be set in this
way).

When starting applications - in a Property Table or as a command-line argument.

After ORB_init() via the Property Manager interface.

The order in which these properties take precedence (starting with the highest precedence) is
properties specified via:

The Property Manager interface.

Individually at ORB_init .

A Property Table passed in at ORB_init .

Environment variables.

ORB defaults.

The properties data specified during ORB_init() , (i.e. item 3 above) are not referenced again after those
properties have been copied into the memory of the Property Manager.

The following sections describe how to use each of the above methods for specifying properties and
their values.

• •

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Setting Properties

- 194/607 - © 2024 Rocket Software

Setting Properties Through the Property Manager
Interface

The following code sample shows how to set properties using the Property Manager interface.

Code example 51 Using the Property Manager interface to set properties after ORB_init()

Setting Properties Through the Property Manager Interface

- 195/607 - © 2024 Rocket Software

...
void do_corba(void)
{
/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/
int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT}; char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv, default_argc,
ORB_options_string);
/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{
// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);
VISUtil::freeArgv(new_argc, & new_argv);
}
VISCATCH(CORBA::Exception,e)
{
//Handle exception here
}
VISEND_CATCH
// Get the property manager; notice the value returned is not
// placed into a 'var' type.
VISPropertyManager_ptr pm = orb->getPropertyManager();
VISTRY
pm->addProperty("vbroker.se.mySe.scms", "scm1");
pm->
addProperty("vbroker.se.mySe.scm.scm1.manager.connectionMax", 100UL);
pm->
addProperty("vbroker.se.mySe.scm.scm1.manager.connectionMaxIdl e ", 300UL);
pm->addProperty("vbroker.se.mySe.scm.scm1.listener.type",
"IIOP"); pm->addProperty("vbroker.se.mySe.scm.scm1.listener.port",
1042UL); pm->
addProperty("vbroker.se.mySe.scm.scm1.listener.proxyPort", 0UL);

Setting Properties Through the Property Manager Interface

- 196/607 - © 2024 Rocket Software

Environment variables
The following table lists the environment variables that are the equivalent of some property names.

For information on setting VisiBroker RT for C++ environment variables, see the VisiBroker RT for C++
Installation Guide.

Setting Properties Through the Command Line
Any property can be set through command-line arguments, added to the argument list passed into
ORB_init() .

Code example 52 Setting properties from the VxWorks C shell command-line

->start_corba “-Dvbroker.agent.port=1024”

Properties set through the command line override properties in the properties table of the same name.

}
VISCATCH(CORBA::Exception,e)
{
//Handle exception here
} VISEND_CATCH

Property name Environment variable

vbroker.agent.port OSAGENT_PORT

vbroker.orb.clientPort OSAGENT_CLIENT_HANDLER_UDP_PORT

vbroker.agent.localFile OSAGENT_LOCAL_FILE

vbroker.agent.addr OSAGENT_ADDR

vbroker.agent.addrFile OSAGENT_ADD_RFILE

Note

Environment variables

- 197/607 - © 2024 Rocket Software

Setting Properties Through a Property Table
A Property Table is a list of property entries, with the following format:

property_name=value

The ORB has a predefined set of property names available for use. These names are case-insensitive.

There are only three property data types.

String

Unsigned long

Boolean

If the string value is null, you can enter null as the property value.

Code example 53 Setting a null value

vbroker.repository.name=null

If the value is boolean, enter true or false .

Code example 54 Setting a boolean value

vbroker.agent.enableLocator=true

To use your properties, place them in a Property Table and reference the table with the following
command-line argument:

-ORBpropTable=tableName

Code example 55 illustrates the steps involved in setting properties by specifying a Property Table as a
command line argument to ORB_init().

Code example 55 Using a Property Table to set properties at ORB_init()

• •

• •

• •

Setting Properties Through a Property Table

- 198/607 - © 2024 Rocket Software

ORB Default Properties
If a property value is not specified for a given property by any of the above methods, then the ORB
default value for that property will be used.

For a list of all VisiBroker RT for C++ properties and their corresponding default values see the VisiBroker
RT for C++ Reference Manual.

void do_corba(void)
{
// VISPropertyTable defining VisiBroker Properties required
// for Server Engine configuration. Note that the array of
// property strings and the VISPropertyTable object can be // destructed any
time after the ORB_init that uses them.
// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] =
{
"vbroker.se.myServerEngine.scms=scm1",
// Define manager property values
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMax=100"
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMaxIdle= 300",
// Define three listener property values
"vbroker.se.myServerEngine.scm.scm1.listener.type=IIOP",
"vbroker.se.myServerEngine.scm.scm1.listener.port=1042",
"vbroker.se.myServerEngine.scm.scm1.listener.proxyPort=0", NULL
};
VISPropertyTable property_table("my_properties", my_properties); cout <<
"Initialize the server" << endl; int argc = 5;
char *argv[] = {"DO_CORBA", "-ORBagentport", OSAGENT_PORT,
"-ORBpropTable", "my_properties"};
/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{
// Initialize the ORB orb = CORBA::ORB_init(argc, argv); ...

ORB Default Properties

- 199/607 - © 2024 Rocket Software

Using the IDL compiler

This section describes how to use the IDL compiler.

Introduction to IDL
The Interface Definition Language (IDL) is a descriptive language (not a programming language) to
describe the interfaces being implemented by the remote objects. Within IDL, you define the name of
the interface, the names of each of the attributes and methods, and so forth. Once you’ve created the
IDL file, you can use an IDL compiler to generate the client stub file and the server skeleton file in the C+
+ programming language.

The OMG has defined specifications for such language mapping. Information about the language
mapping is not covered in this manual since VisiBrokerRT for C++ adheres to the specification set forth
by OMG. If you need more information about language mapping, see the OMG web site at https://
www.omg.org/. The CORBA formal specification can be found at http:// www.omg.org/corba/
corbaiiop.html. See Bidirectional Communication for mapping of OMG IDL to C++.

Discussions on the IDL can be quite extensive. Since VisiBroker RT for C++ adheres to the specification
defined by OMG, you can visit the OMG site for more information about IDL.

How the IDL compiler generates code
You use the Interface Definition Language (IDL) to define the object interfaces that client programs may
use. The idl2cpp compiler uses your interface definition to generate code.

For details on usage syntax for the idl2cpp compiler, see the VisiBroker RT for C++ Reference Guide.

Using the IDL compiler

- 200/607 - © 2024 Rocket Software

https://www.omg.org/
https://www.omg.org/
http://www.omg.org/corba/corbaiiop.html
http://www.omg.org/corba/corbaiiop.html

Example IDL specification
Your interface definition defines the name of the object as well as all of the methods the object offers.
Each method specifies the parameters that will be passed to the method, their type, and whether they
are for input or output or both. IDL sample 4 shows an IDL specification for an object named example.
The example object has only one method, op1 .

IDL sample 4 Example IDL specification

Looking at code generated for clients
Code example 56 shows how the IDL compiler generates two client files — example_c.hh and
example_c.cc . These two files provide an example class that the client uses. By convention, files
generated by the IDL compiler always have either a .cc or .hh suffix to make them easy to distinguish
from files that you create yourself. If you wish, you can alter the convention to produce files with a
different suffix. See the VisiBroker RT for C++ Reference Guide.

Do not modify the contents of the files generated by the IDL compiler.

Code example 56 example generated class in example_c.hh generated file

// IDL specification for the example object
interface example {

long op1(in char x, out short y);
};

Caution

Example IDL specification

- 201/607 - © 2024 Rocket Software

Methods (stubs) generated by the IDL compiler
Code example 56 shows the op1 method generated by the IDL complier, along with several other
methods. The op1 method is called a stub because when your client program invokes it, it actually
packages the interface request and arguments into a message, sends the message to the object
implementation, waits for a response, decodes the response, and returns the results to your program.

Since the example class is derived from the CORBA::Object class , several inherited methods are available
for your use.

class example : public virtual CORBA_Object {
protected:

example() {}
example(const example&) {}

public:
virtual ~example() {}
static const CORBA::TypeInfo *_desc();

virtual const CORBA::TypeInfo *_type_info() const;
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;

static CORBA::Object*_factory();
example_ptr _this();
static example_ptr _duplicate(example_ptr _obj) { /*... */ }
static example_ptr _nil() { /*... */}
static example_ptr _narrow(CORBA::Object* _obj);
static example_ptr _clone(example_ptr _obj) { /*... */ }
static example_ptr _bind(

const char *_object_name = NULL,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA::ORB_ptr _orb = NULL);

static example_ptr _bind(
const char *_poa_name,
const CORBA::OctetSequence& _id,
const char *_host_name = NULL,
const CORBA::BindOptions* _opt = NULL,
CORBA::ORB_ptr _orb = NULL);

virtual CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y);
};

Methods (stubs) generated by the IDL compiler

- 202/607 - © 2024 Rocket Software

Pointer type _ptr definition
The IDL compiler always provides a pointer type definition. Code example 57 shows the type definition
for the example class.

Code example 57 _ptr type definition in the example_c.hh generated file

Automatic memory management _var class
The IDL compiler also generates a class named example_var , which you can use instead of an
example_ptr . The example_var class will automatically manage the memory associated with the
dynamically allocated object reference. When the example_var object is deleted, the object associated
with example_ptr is released. When an example_var object is assigned a new value, the old object
reference pointed to by example_ptr is released after the assignment takes place. A casting operator is
also provided to allow you to assign an example_var to a type example_ptr .

Code example 58 example_var class in example_c.hh generated file

The following table describes the methods in the _var class:

typedef example *example_ptr;

class example_var : public CORBA::_var {
...
public:

static example_ptr _duplicate(example_ptr);
static void _release(example_ptr);
example_var();
example_var(example_ptr);
example_var(const example_var &);
~example_var();
example_var& operator=(example_ptr);
example_var& operator=(const example_var& _var) { /*... */ }
operator example* () const { return _ptr; }

...
};

Method Description

example_var() Constructor that initializes the _ptr to NULL .

Pointer type _ptr definition

- 203/607 - © 2024 Rocket Software

Looking at code generated for CORBA server
implementations

Code example 59 shows how the IDL compiler generates two server files: example_s.hh and
example_s.cc . These two files provide a POA_example class that the server uses to derive an
implementation class. There are two main classes which are generated for a CORBA Object
implementation to use when implementing their servants. The PortableServer_RefCountServantBase and
the PortableServer_ServantBase are described below.

Method Description

example_var(exa
mple_ptr ptr)

Constructor that creates an object with the _ptr initialized to the
argument passed. The var invokes release() on _ptr at the time
of destruction. When the _ptr ’s reference count reaches 0, that
object will be deleted.

example_var(con
st example_var&
var)

Constructor that makes a copy of the object passed as a parameter var
and points _ptr to the newly copied object.

~example() Destructor that invokes _release() once on the object to which
_ptr points.

operator=(examp
le_ptr p)

Assignment operator invokes _release() on the object to which _
ptr points and then stores p in _ptr .

operator=(const
example_ptr p)

Assignment operator invokes _release() on the object to which _
ptr points and then stores a _duplicate() of p in _ptr .

example_ptr
operator->()

Returns the _ptr stored in this object. This operator should not be
called until this object has been properly initialized.

Looking at code generated for CORBA server implementations

- 204/607 - © 2024 Rocket Software

The PortableServer_RefCountServantBase class
The POA_example class is derived from the PortableServer_RefCountServantBase class. The POA class
PortableServer_RefCountServantBase is a thread-safe reference counting mix-in class which applications
can use to obtain thread-safe reference counting for their CORBA objects. This class extends the base
POA PortableServer_ServantBase which provides virtual empty implementations for the _add_ref and
_remove_ref methods. For details on the PortableServer_ServantBase see The
PortableServer_ServantBase class below.

Do not modify the contents of the files generated by the IDL compiler.

Code example 59 example using the RefCountServantBase class in example_s.hh generated file

Caution

The PortableServer_RefCountServantBase class

- 205/607 - © 2024 Rocket Software

The PortableServer_ServantBase class
The POA class PortableServer_ServantBase provides a base class for servants to inherit from. Unlike the
PortableServer_RefCountServantBase class above, this class provides empty implementations for the
_add_ref and _remove_ref methods. A CORBA Object implementation can inherit from this class and
implement its own _add_ref and _remove_ref methods if it chooses to provide its own reference
counting mechanism; otherwise the recommendation when developing applications with VisiBroker RT
for C++ is to use The PortableServer_RefCountServantBase class.

Do not modify the contents of the files generated by the IDL compiler.

Code example 60 example using the ServantBase class in example_s.hh generated file

class POA_example :
public virtual PortableServer_RefCountServantBase {

protected:
POA_example() {}
virtual ~POA_example() {}

public:
static const CORBA::TypeInfo _skel_info;
virtual const CORBA::TypeInfo *_type_info() const;
example_ptr _this();
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
static POA_example * _narrow(PortableServer_ServantBase *_obj);
// The following operations need to be implemented
virtual CORBA::Long op1(CORBA::Char _x,

CORBA::Short_out _y) = 0;
// Skeleton Operations implemented automatically
static void _op1(void *_obj, CORBA::MarshalInBuffer &_istrm,

};

Caution

The PortableServer_ServantBase class

- 206/607 - © 2024 Rocket Software

Methods (skeletons) generated by the IDL compiler
Notice that the op1 method declared in the IDL specification in IDL sample 4 is generated, along with
an _op1 method. The POA_example class declares a pure virtual method named op1 . The implementation
class that is derived from POA_example must provide an implementation for this method.

The POA_example class is called a skeleton and its method (_op1) is invoked by the POA when a client
request is received. The skeleton’s internal method will marshal all the parameters for the request,
invoke your op1 method and then marshal the return parameters or exceptions into a response
message. The ORB will then send the response to the client program.

The constructor and destructor are both protected and can only be invoked by inherited members. The
constructor accepts an object name so that multiple distinct objects can be instantiated by a server.

class POA_example : public virtual PortableServer_ServantBase {
protected:

POA_example() {}
virtual ~POA_example() {}

public:
static const CORBA::TypeInfo _skel_info;
virtual const CORBA::TypeInfo *_type_info() const;
example_ptr _this();
virtual void *_safe_narrow(const CORBA::TypeInfo&) const;
static POA_example * _narrow(PortableServer_ServantBase *_obj);
// The following operations need to be implemented
virtual CORBA::Long op1(CORBA::Char _x,

CORBA::Short_out _y) = 0;

// Skeleton Operations implemented automatically
static void _op1(void *_obj, CORBA::MarshalInBuffer &_istrm,

const char *_oper, VISReplyHandler& handler);
};

Methods (skeletons) generated by the IDL compiler

- 207/607 - © 2024 Rocket Software

Class template generated by the IDL compiler
In addition to the POA_example class, the IDL compiler generates a class template named _tie_example .
This template can be used if you wish to avoid deriving a class from POA_example . Templates can be
useful for providing a wrapper class for existing applications that cannot be modified to inherit from a
new class. Code example 61 shows the template class generated by the IDL compiler for the example
class.

Code example 61 Template class generated for the example class

For complete details on using the _tie template class, see Using the Tie Mechanism.

You may also generate a _ptie template for integrating an object database with your servers.

template <class T>
class POA_example_tie : public POA_example {
public:

POA_example_tie (T& t): _ptr(&t), _poa(NULL),
rel((CORBA::Boolean)0) {}

POA_example_tie (T& t, PortableServer::POA_ptr poa) :
_ptr(&t), _poa(PortableServer::_duplicate(poa)),
_rel((CORBA::Boolean)0) {}

POA_example_tie (T *p, CORBA::Boolean release= 1)
: _ptr(p),_poa(NULL), _rel(release) {}

POA_example_tie (T *p, PortableServer::POA_ptr poa,
CORBA::Boolean release =1)

: _ptr(p), _poa(PortableServer::_duplicate(poa)),
_rel(release) {}

virtual ~POA_example_tie() { /*... */ }
T* _tied_object() { /*... */ }
void _tied_object(T& t) { /*... */ }
void _tied_object(T *p, CORBA::Boolean release=1) { /*... */ }

CORBA::Boolean _is_owner() { /*... */ }
void _is_owner(CORBA::Boolean b) { /*... */ }
CORBA::Long op1(CORBA::Char _x, CORBA::Short_out _y){ /*... */ }
PortableServer::POA_ptr _default_POA() { /*... */ }

};

Class template generated by the IDL compiler

- 208/607 - © 2024 Rocket Software

Defining interface attributes in the IDL
In addition to operations, an interface specification can also define attributes as part of the interface. By
default, all attributes are read-write and the IDL compiler will generate two methods—one to set the
attribute’s value, and one to get the attribute’s value. You can also specify read-only attributes, for which
only the reader method is generated.

IDL sample 5 shows an IDL specification that defines two attributes—one read-write and one read-only.
Code example 62 shows the operations class generated for the interface declared in the IDL.

IDL sample 5 IDL specification with two attributes—one read-write and one readonly

Code example 62 Code generated for the testOperations interface

Specifying oneway methods with no return value
IDL allows you to specify operations that have no return value, called oneway methods. These
operations may only have input parameters. When a oneway method is invoked, a request is sent to the
server but there is no confirmation from the object implementation that the request was actually
received. VisiBroker RT for C++ uses TCP/IP for connecting clients to servers. This provides reliable
delivery of all packets so the client can be sure the request will be delivered to the server, as long as the
server remains available. Still, the client has no way of knowing if the request was actually processed by
the object implementation itself.

interface Test {
attribute long count;
readonly attribute string name;

};

class test : public virtual CORBA::Object {
...

// Methods for read-write attribute
virtual CORBA::Long count();
virtual void count(CORBA::Long count);

// Method for read-only attribute.
virtual char * name();

...
};

Defining interface attributes in the IDL

- 209/607 - © 2024 Rocket Software

Note
Oneway operations cannot raise exceptions or return values.

IDL sample 6 Defining a oneway operation

Specifying an interface in IDL that inherits from another
interface

IDL allows you to specify an interface that inherits from another interface. The classes generated by the
IDL compiler will reflect the inheritance relationship. All methods, data type definitions, constants and
enumerations declared by the parent interface will be visible to the derived interface.

IDL sample 7 Example of inheritance in an interface specification

The following code sample shows the code that is generated from the interface specification shown in
the previous IDL sample:

Code example 63 Code generated from the previous IDL sample

interface oneway_example {
oneway void set_value(in long val);

};

interface parent {
void operation1();

};
interface child : parent {

...
long operation2(in short s);

};

Note

- 210/607 - © 2024 Rocket Software

class parent : public virtual CORBA::Object {
...
void operation1();
...

};
class child : public virtual parent {

...
CORBA::Long operation2(CORBA::Short s);
...

};

Specifying an interface in IDL that inherits from another interface

- 211/607 - © 2024 Rocket Software

Using the Smart Agent

This section:

Describes the Smart Agent (osagent), with which Server programs register to allow Clients to find
their object implementations.

Explains how to configure your own ORB domain, connect Smart Agents on different local
networks, and migrate objects from one host to another.

The libagentsupport.o library is required to support ORB to Smart Agent communications. If a Smart
Agent is also required to be started on the VxWorks embedded node, the library osagent.o is
required. For a description of all the libraries provided by the VisiBroker RT for C++ product, see Step
6: Integrating VisiBroker RT with Tornado and VxWorks.

What is the Smart Agent?
VisiBroker RT for C++’s Smart Agent (osagent) is a dynamic, distributed directory service that provides
facilities used by both client programs and object implementations. A Smart Agent must be started on
at least one host within your local network, if the Smart Agent is to be used as the Location Service.
When your client program invokes _bind() on an object, the Smart Agent is automatically consulted.
The Smart Agent locates the specified implementation so that a connection can be established between
the client and the implementation. The communication with the Smart Agent is completely transparent
to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the Smart Agent
registers the object or implementation so that it can be used by client programs. When an object or
implementation is deactivated, the Smart Agent removes it from the list of available objects. As with
client programs, the communication with the Smart Agent is completely transparent to the object
implementation.

• •

• •

Note

Using the Smart Agent

- 212/607 - © 2024 Rocket Software

Locating Smart Agents
VisiBroker RT for C++ locates a Smart Agent for use by a client program or object implementation using
a UDP broadcast message. The first Smart Agent to respond is used.

After a Smart Agent has been located, a point-to-point UDP connection is used for sending registration
and look-up requests to the Smart Agent. The UDP protocol is used because it consumes fewer network
resources than a TCP connection. All registration and locate requests are dynamic, so there are no
required configuration files or mappings to maintain.

Broadcast messages are used only to locate a Smart Agent. All other communication with the Smart
Agent makes use of point-to-point communication. See Using point-to-point communications for
information on how to override the use of broadcast messages.

Locating objects through Agent cooperation
When a Smart Agent is started on more than one node in the local network, each Smart Agent will
recognize a subset of the objects available and communicate with other Smart Agents to locate objects
it cannot find. If one of the Smart Agent’s should terminate unexpectedly, all implementations
registered with that Smart Agent discover this event and they will automatically reregister with another
available Smart Agent.

Starting a Smart Agent (osagent)
At least one instance of the Smart Agent should be running on a node in your local network. Local
network refers to a subnetwork within which broadcast message can be sent.

The VisiBroker RT for C++ Smart Agent can be started in one of three ways:

From a command line of the development host.

From a command line on the target system.

Programmatically from within a VisiBroker RT 60 application.

Note

1. 1.

2. 2.

3. 3.

Locating Smart Agents

- 213/607 - © 2024 Rocket Software

Starting the Smart Agent on the Development Host
To start the Smart Agent from your development host, make sure that the PATH environment variable
has been updated to include the VisiBroker RT for C++ bin directory.

On a Linux system, enter the following command:

The development host osagent command accepts the following command line arguments:

The following example of the osagent command specifies a particular UDP port:

Starting the Smart Agent on the Target System
To start the Smart Agent from a VxWorks target system, make sure that the osagent library has been
included into the VxWorks target. Either the library osagent.o must be linked with the VxWorks image
or osagent_munched.o must be downloaded to the VxWorks target to provide this support.

To start the Smart Agent on the VxWorks target:

osagent &

Option Description

-
p UDP_port

Overrides the setting of OSAGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic
messages during execution.

-help , -? Prints the help message.

osagent -p 17000

-> startOsagent()

Option Value
range

Description

Task
Priority

0 - 255 The priority that the Osagent task will run at. If not specified
the Osagent task defaults to run at priority 200.

Starting the Smart Agent on the Development Host

- 214/607 - © 2024 Rocket Software

Option Value
range

Description

Verbosity 0,1 Value=1 turns verbose mode on, which provides
information and diagnostic messages during execution.
Default is Verbosity off.

Port 1024-65536 UDP Port which the Osagent Communicates on. Default is
14000.

Logger
Priority

0-255 The priority that the VisiBroker Logger Task will be started
at, if not already running. If the priority is not specified, the
Logger task will run at the priority specified for the osagent
thread, or the default Osagent task priority if neither is
specified. This parameter only applies if startOsagent is
called before ORB_init has been called, since the call to
ORB_init enables forwarding for the Default Logger

which includes starting the Forwarder Thread.

Osagent_L
ocal_Table

Pointer to
Array

The OSAGENT_LOCAL_TABLE is an array of network
interfaces that the Smart Agent should use. Each entry in
the OSAGENT_LOCAL_TABLE contains the IP ADDRESS ,
SUBNET MASK and BROADCAST ADDRESS for a single

network interface. Default is the Primary Network Interface.

Osagent_A
ddr_Table

Pointer to
Array

The OSAGENT_ADDR_TABLE is an array of IP Addresses
which the Osagent will use, when attempting to
communicate with other Osagents. The configuration of the
table is relatively simple, just create array entries containing
the IP ADDRESS of the NODE where the REMOTE Smart
Agent is running. Default is the Primary Network.

initial_h
eartbeat_
window

Time in
Seconds

Specifies an "initial window size" for the heartbeat_freq
uency period once an Osagent has been started. After this
initial_heartbeat_window period has passed, the rate

of the Osagent heartbeat is controlled by the heartbeat_
frequency parameter below. Default is 60.

Starting the Smart Agent on the Target System

- 215/607 - © 2024 Rocket Software

Starting the Smart Agent Programmatically from a VisiBroker RT
Development Host

The VisiBroker RT Smart Agent can also be started from within a VisiBroker RT application. The library
osagent.o is required to use the Smart Agent programmatically on a target system. For a description of
all the libraries provided by the VisiBroker RT for C++ product, see Step 6: Integrating VisiBroker RT with
VxWorks 7.

The sample application under <install-location>/VisiBrokerRT/examples/osagent demonstrates the Smart
Agent programatic API as well as the usage of libosagent library. The following code section shows the
startOsagent prototype.

Code example 64 Starting the Smart Agent

Option Value
range

Description

initial_h
eartbeat_
frequency

Time in
Seconds

Specifies the initial rate of the Osagent heartbeat. This
heartbeat is used by the Osagent to manage and maintain
Osagent to Osagent communications. This parameter will
dictate the initial rate at which the heartbeat message is
sent, once the Osagent is started. After the period specified
by the initial_heartbeat_window above, has passed,
the rate of the Osagent heartbeat is controlled by the hear
tbeat_frequency parameter below. Default is 5.

heartbeat_
frequency

Time in
Seconds

Specifies the rate of the Osagent heartbeat. This heartbeat
is used by the Osagent to manage and maintain Osagent to
Osagent communications. This parameter will dictate the
rate at which the heartbeat message is sent. Default is 300.

Starting the Smart Agent Programmatically from a VisiBroker RT Development Host

- 216/607 - © 2024 Rocket Software

Verbose output
Linux

On a Linux and VisiBroker RT target system, the verbose output for the Smart Agent is sent to stdout.

Disabling the agent
Communication with the Smart Agent can be disabled in two ways:

The preferred way is to not use the Osagent support library as part of your application. This is
accomplished by not linking or loading the osagent support library (i.e. libagentsupport.o).

If the Osagent support library is part of your VisiBroker RT 60 application, an alternative to turning off
communication with the Osagent is to pass an ORB property at ORB_init time:

Code example 65 Turning Off Agent Communication via a ORB property

startOsagent(
unsigned long priority, // Osagent task priority (default: 200)
int verbose = 0,
int port=-1, // default: 14000
short logger_priority = -1 // VisiBroker Logger Task priority
OSAGENT_LOCAL_ENTRY* local_table = NULL, // pointer to

// OSAGENT_LOCAL_TABLE
OSAGENT_ADDR_ENTRY *addr_table=NULL, // pointer to

// OSAGENT_ADDR_TABLE
long initial_heartbeat_window = 60, // Osagent to ORB

// Heartbeat interval
long initial_heartbeat_frequency = 5, // Osagent to ORB initial

// Heartbeat frequency
long heartbeat_frequency = 300 // Osagent to ORB

); // Heartbeat frequency

1. 1.

2. 2.

Verbose output

- 217/607 - © 2024 Rocket Software

If you use string-to-object references, a naming service or pass in a URL reference, the Smart Agent is
not required, so support can be either excluded or turned off. If your client uses the _bind() method,
you must use the Smart Agent.

void do_corba(void)
{

/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba*/
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/

int default_argc = 1;
char *default_argv[] = {"-Dvbroker.agent.enableLocator=false"};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*---*/
/* Call ORB_init */
/*---*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);
VISUtil::freeArgv(new_argc, & new_argv);

}
...

Disabling the agent

- 218/607 - © 2024 Rocket Software

Ensuring Agent availability
Starting a Smart Agent on more than one host within the local network allows clients to continue to
bind to objects, even if one of the Smart Agents terminates unexpectedly. If a Smart Agent becomes
unavailable, all object implementations registered with that Smart Agent will be automatically
reregistered with another Smart Agent. If no Smart Agents are running on the local network, object
implementations will continue retrying until a new Smart Agent can be contacted.

If a Smart Agent terminates, any connections between a client and an object implementation that were
established before the Smart Agent terminated will continue without interruption. However, any new
_bind() requests issued by a client will cause a new Smart Agent to be contacted.

No special coding techniques are required to take advantage of these fault tolerant features. You only
need to make sure a Smart Agent is started on one or more hosts on the local network.

Checking client existence
A Smart Agent sends an Are you Alive message (often called a heartbeat message) to its clients (i.e.
each ORB instance it is communcating with) every two minutes to verify that the client ORB is still
connected. If the client ORB does not respond, the Smart Agent assumes the client ORB has terminated
the connection.

You can not change the interval for polling the client ORB.

Working within ORB domains
It is often desirable to have two or more separate ORB domains running at the same time. One domain
might consist of the production versions of client programs and object implementations while another
domain might be made up of test versions of the same clients and objects that have not yet been
released for general use. If several developers are working on the same local network, each may want
to establish their own ORB domain so that their testing efforts do not conflict with one another:

Note

Ensuring Agent availability

- 219/607 - © 2024 Rocket Software

VisiBroker RT for C++ allows you to distinguish between multiple ORB domains on the same network by
using a unique UDP port number for the Smart Agents for each domain. By default, the OSAGENT_PORT
variable is set to 14000 . If you wish to use a different port number, check with your system administrator
to determine what port numbers are available. To override the default setting, the OSAGENT_PORT variable
must be set accordingly before running a Smart Agent, an OAD, object implementations or client
programs assigned to that ORB domain.

Code example 66 Setting the OSAGENT_PORT environment variable for a UNIX system running csh

The Smart Agent also uses another port number internally. This port number can be set by using the
OSAGENT_CLIENT_HANDLER_PORT environment variable. This port number is used for both TCP and UDP
protocols and is the same for both.

Connecting Smart Agents on different local networks
If you start multiple Smart Agents on your local network, they will discover each other by using UDP
broadcast messages. Your network administrator configures a local network by specifying the scope of
broadcast messages using the IP subnet mask. The figure below shows two local networks, located on
separate, connected local networks:

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &

Connecting Smart Agents on different local networks

- 220/607 - © 2024 Rocket Software

To allow the Smart Agent on one network to contact a Smart Agent on another local net-work, you must
make the host name or IP address of the remote Smart Agent available. On the host system, IP
addresses of Smart Agents outside of the local network are speci- fied in a file. The name of this file may
be specified by setting the OSAGENT_ADDR_FILE environment variable.

On VisiBroker RT target systems, the location of any Smart Agents outside of your local network can
also be specified via the OSAGENT_ADDR_FILE interface when starting the osagent.

Use of the OSAGENT_ADDR_FILE Environment Variable (applicable
on Development Host systems only)

The OSAGENT_ADDR_FILE environment variable specifies the filename of the file containing the address of
agents outside your local network. When a client program or object implementation has this
environment variable set, the ORB will try each address in the file until a Smart Agent is located. This
mechanism has the lowest precedence of all the mechanisms for specifying a host. If this file is not
specified, the <VBROKER_ADM Environment variable>/agentaddr file is used.

Code example 67 shows what this file would need to contain to allow the Smart Agent on local network
#1 to connect to the Smart Agent on the network #2 .

Code example 67 Content of the agentaddr file for the osagent on network #1.

Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development Host systems only)

- 221/607 - © 2024 Rocket Software

Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on
VxWorks Target systems only)

To allow the Smart Agent on one network to contact a Smart Agent on another local network, you must
make the IP address of the remote Smart Agent available in the OSAGENT_ADDR_TABLE .

The OSAGENT_ADDR_TABLE is customer declared array data structure specifiing the IP addresses of other
Smart Agents. These addresses represent Smart Agents executing on hosts/targets located outside the
local network with which the osagent is to communicate.

The include file vosagent.h provides a typedef for the structure to use when declaring your own
OSAGENT_ADDR_TABLE . Additionally, this header file provides an example of how to declare and use your
own OSAGENT_ADDR_TABLE when starting the osagent.

Code example 68 Specifying an OSAGENT_ADDR_TABLE on VxWorks Target System

101.10.2.6

Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target systems only)

- 222/607 - © 2024 Rocket Software

If a remote network has multiple Smart Agents running, you should list the IP addresses of all of the
Smart Agents on the remote network.

How Smart Agents detect each other
Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from two different
machines on the same subnet. Agent 1 starts before Agent 2. The following events occur:

When Agent 2 starts, it UDP broadcasts its existence and sends a request message to locate any
other Smart Agents.

Agent 1 makes note that Agent 2 is available on the network and responds to the request
message.

Agent 2 makes note that another agent, Agent 1, is available on the network.

#include “vosagent.h”
...
struct OSAGENT_ADDR_ENTRY {

char ip_address[INET_ADDR_LEN];
char subnet_mask[INET_ADDR_LEN];
char broadcast_address[INET_ADDR_LEN];

};
//
// Sample OSAGENT_LOCAL_TABLE
OSAGENT_ADDR_ENTRY my_osagent_addr_table[] =
{

{"101.10.2.6"},
{NULL}

}
// Then when starting the osagent specify the address of your
// OSAGENT_ADDR_TABLE when calling startOsagent
startOsagent(210, // Osagent task priority

0, // verbose = 0
21000, // port=21000 (default is 14000)
100, // VisLogger task priority
NULL, // pointer to your osagent_local_table
my_osagent_addr_table); // pointer to your

// osagent_addr_table
...

Note

• •

• •

• •

How Smart Agents detect each other

- 223/607 - © 2024 Rocket Software

If Agent 2 is terminated gracefully (such as killing with Ctrl-C in a Linux shell), Agent 1 is notified that
Agent 2 is no longer available.

If Agent 2 is terminated abnormally (such as rebooting the VisiBroker RT 60 target system that Agent 2
is running on), Agent 1 is not notified that Agent 2 is no longer available. Agent 1 continues until:

A client asks for an object reference that does not exist in Agent 1’s dictionary, and Agent 1 forwards
the request to Agent 2. Since Agent 2 is no longer available, Agent 1 is forced to clean up.

or:

Until the Agent to Agent heartbeat mechanism identifies that Agent to Agent communication
between Agent 1 and Agent 2 has failed at which point Agent 1 will clean up knowledge of Agent 2
from its data structures.

Until Agent 1 is forced to clean up, osfind still shows two agents listed and catches ObjLocation::Fail
exception.

Working with multihomed hosts
When you start the Smart Agent on a host that has more than one IP address (known as a multihomed
host) it can provide a powerful mechanism for bridging objects located on separate local networks. All
local networks to which the host is connected will be able to communicate with a single Smart Agent,
effectively bridging the local networks:

•

•

Working with multihomed hosts

- 224/607 - © 2024 Rocket Software

Linux

On a multi-homed Linux development host or target system, the Smart Agent dynamically configures itself to listen and broadcast on
all of the interfaces which support point-to-point connections or broadcast connections. You may explicitly specify interface settings

using the localaddr file, as described in Specifying interface usage for Smart Agents.

Code example 69 Verbose output from a Smart Agent started on a multihomed host

As shown in Code example 69, the output shows the address, subnet mask, and broadcast address for
each interface in the machine.

Linux

This output should match the results from the command ifconfig -a . For VxWorks targets, this output should match the

results from the C shell function call ifShow .

Specifying interface usage for Smart Agents

Use of the LOCAL_ADDR_FILE For Multi-Homed hosts

It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to use on your
multihomed host in the localaddr file. The localaddr file should have a separate line for each interface
that contains the host’s IP address, subnet mask, and broadcast address. By default, VisiBroker RT for
C++ searches for the localaddr file in the VBROKER_ADM directory. You can override this location by
setting the OSAGENT_LOCAL_FILE environment variable to point to this file. Lines in this file that begin with
a # character are treated as comments and are ignored. Code example 70 shows the contents of the
localaddr file for the multi-homed host listed above.

Code example 70 Contents of an example localaddr file

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255
...

Note

Specifying interface usage for Smart Agents

- 225/607 - © 2024 Rocket Software

Linux

Though the Smart Agent can automatically configure itself on a multihomed host running UNIX, you can use the localaddr
file to explicitly specify the interfaces that your host contains. You can display all the available interface values for your host by
using the following command:

Output from this command appears similar to the following:

Use of the OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks
Targets

This is applicable on VxWorks Target systems only.

You can specify multiple network interface information in the OSAGENT_LOCAL_TABLE table. The
OSAGENT_LOCAL_TABLE is a customer defined table which contains a list of the network interfaces that the
osagent is to use. Each entry in this table should contain the IP address, subnet mask, and broadcast
address for a single interface.

The include file vosagent.h provides a typedef for the structure to use when declaring your own
OSAGENT_LOCAL_TABLE . Additionally this header file provides an example of how to declare and use your
own OSAGENT_LOCAL_TABLE when starting the osagent.

Code example 71 Specifying an OSAGENT_LOCAL_TABLE on VxWorks Target System

entries of format <address> <subnet_mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

prompt> ifconfig -a

lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
 inet 127.0.0.1 netmask ff000000
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255
le1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
 inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Note

Use of the OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks Targets

- 226/607 - © 2024 Rocket Software

Using point-to-point communications
VisiBroker RT for C++ provides you with three different mechanisms for circumventing the use of UDP
broadcast messages for locating Smart Agents. When a Smart Agent is located with any of these
alternate approaches, that Smart Agent will be used for all subsequent interactions. If a Smart Agent
cannot be located using any of these alternate approaches, the ORB will revert to using the broadcast
message scheme to locate a Smart Agent.

#include “vosagent.h”
...
struct OSAGENT_LOCAL_ENTRY {

char ip_address[INET_ADDR_LEN];
char subnet_mask[INET_ADDR_LEN];
char broadcast_address[INET_ADDR_LEN];

};

// --
// Sample OSAGENT_LOCAL_TABLE
OSAGENT_LOCAL_ENTRY my_osagent_local_table[] =
{

{"224.192.128.56","255.255.255.0","224.192.128.255"},
{"196.192.86.99","255.255.255.0","196.192.86.99"},
{NULL}

}

// Then when starting the osagent specify the address of your
// OSAGENT_LOCAL_TABLE when calling startOsagent

startOsagent(210, // Osagent task priority
0, // verbose = 0
21000, // port=21000 (default 14000)
100, // VisLogger task priority
my_osagent_local_table, // pointer to your

// osagent_local_table
NULL); // pointer to your osagent_addr_table

...

Using point-to-point communications

- 227/607 - © 2024 Rocket Software

Specifying a host as a run-time parameter
Code example 70 shows how you can specify the IP address where a Smart Agent is running as a run-
time parameter for your client program or object implementation. Since specifying an IP address will
cause a point-to-point connection to be established, you can even specify an IP address of a node
located outside your local network. This mechanism takes precedence over any other node address
specification.

Code example 72 Turning Off Agent Communication via a ORB property

Specifying a host as a run-time parameter

- 228/607 - © 2024 Rocket Software

By default, vbroker.agent.addr is set to NULL .

void do_corba(void)
{

/*--*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*--*/

// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] =
{

"vbroker.agent.addr=<ip address>",
NULL

};

VISPropertyTable property_table("my_properties",
my_properties);

int default_argc = 2;
char *default_argv[] = {"ORBpropTable", "my_properties""};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);
VISUtil::freeArgv(new_argc, & new_argv);

...

Specifying a host as a run-time parameter

- 229/607 - © 2024 Rocket Software

Specifying an IP address with an environment variable
You can use the VxWorks shell to specify the IP address of a Smart Agent by setting the OSAGENT_ADDR
environment variable prior to starting your client program or object implementation. This environment
variable takes precedence if a node address is not specified as a run-time parameter.

VxWorks C shell --> putenv("OSAGENT_ADDR=199.10.9.5") --> start_corba

This requires ENV_VARS as part of VxWorks Kernel.

Specifying hosts with the agentaddr table
Your client program or object implementation can use the agentaddr table, described in Connecting
Smart Agents on different local networks, to circumvent the use of UDP broadcast message to locate a
Smart Agent. Simply create a table containing the IP addresses or fully qualified hostname of each
node where a Smart Agent is running and then specify this OSAGENT_ADDR_TABLE during ORB_init() . When
a client program or object implementation has specified an OSAGENT_ADDR_TABLE , the ORB will try each
address in the table until a Smart Agent is located. This mechanism has the lowest precedence of all the
mechanisms for specifying a host. If an OSAGENT_ADDR_TABLE is not specified, the ORB will default to using
UDP Broadcast to find a Smart Agent.

Ensuring object availability
You can provide fault tolerance for objects by starting instances of those objects on multiple nodes. If
an implementation becomes unavailable, the ORB will detect the loss of the connection between the
client program and the object implementation and will automatically contact the Smart Agent to
establish a connection with another instance of the object implementation, depending on the effective
rebind policy established by the client. See Using Quality of Service for more information on
establishing client policies.

The rebind option must be enabled if the ORB is to attempt to reconnect the client with a replica
object implementation. This is the default behavior.

Note

Caution

Specifying an IP address with an environment variable

- 230/607 - © 2024 Rocket Software

Invoking methods on stateless objects
Your client program can invoke a method on an object implementation which does not maintain state
without being concerned if a new instance of the object is being used.

Achieving fault-tolerance for objects that maintain state
Fault tolerance can also be achieved with object implementations that maintain state, but it will not be
transparent to the client program. In these cases, your client program must either use the Quality of
Service (QoS) policy VB_NOTIFY_REBIND or register an interceptor for the ORB object. For information on
using QoS, see Using Quality of Service.

When the connection to an object implementation fails and the ORB reconnects the client to a replica
object implementation, the bind() method of the bind interceptor will be invoked by the ORB. The client
must provide an implementation of this bind method to bring the state of the replica up to date.
Interceptors are described in Using Portable Interceptors.md.

Migrating objects between VisiBroker RT Systems
Object migration is the process of terminating an object implementation on one VisiBroker RT system,
and then starting it on another VisiBroker RT instance. Object migration can be used to provide load
balancing by moving objects from overloaded systems to systems that have more resources or
processing power (there is no load balancing between servers registered with different osagents.)
Object migration can also be used to keep objects available when a target has to be shutdown for
hardware or software maintenance.

The migration of objects that do not maintain state is transparent to the client program. If a client is
connected to an object implementation that has migrated, the Smart Agent will detect the loss of the
connection and transparently reconnect the client to the new object on the new VisiBroker RT
system.

Note

Invoking methods on stateless objects

- 231/607 - © 2024 Rocket Software

Migrating objects that maintain state
The migration of objects that maintain state is also possible, but it will not be transparent to a client
program that has connected before the migration process begins. In these cases, the client program
must register an interceptor for the object. When the connection to the original object is lost and the
ORB reconnects the client to the object, the interceptor’s rebind_succeeded() member function will be
invoked by the ORB. The client can implement this member function to bring the state of the object up
to date. Interceptors are described in Using Portable Interceptors.md.

Migrating instantiated objects
If the objects that you wish to migrate were created by a VisiBroker RT system instantiating the
implementation’s class, you need only start it on a new system and deactivate the object
implementation from the original system. When the original instance is deactivated, it will be
unregistered with the Smart Agent. When the new instance is started on the new system, it will register
with the Smart Agent. From that point on, client invocations will be routed to the object
implementation on the new system.

Reporting all objects and services
The Smart Finder development host command (osfind) reports on all VisiBroker RT for C++ related
objects and services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the network and
the exact target on which they are executing. The osfind command also reports on all VisiBroker RT for
C++ objects that are active on the network. You can use osfind to monitor the status of the network and
locate stray objects during the debugging phase.

The osfind command has the following syntax and can be run from any Linux development host:

osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all of the agents,
OAD’s, and implementations in your domain.

Option Description

-a Lists all Smart Agents in your domain.

-o Lists all Object Activation Daemons in your domain.

-d Prints hostnames as quad addresses.

Migrating objects that maintain state

- 232/607 - © 2024 Rocket Software

Using the Location Service

The VisiBroker RT for C++ Location Service provides enhanced object discovery that enables you to find
object instances based on particular attributes. Working with VisiBroker RT for C++ Smart Agents, the
Location Service notifies you of what objects are presently accessible on the network, and where they
reside. The Location Service is a VisiBroker RT for C++ extension to the CORBA specification and is only
useful for finding objects implemented with VisiBroker RT for C++.

The libagentsupport.o and liblocsupport.o libraries are required when building a VisiBroker RT 60
application to support use of the VisiBroker Location Service. For a description, see Step 6:
Integrating VisiBroker RT with VxWorks 7.

What is the Location Service?
The Location Service is an extension to the CORBA specification that provides general-purpose facilities
for locating object instances. The Location Service communicates directly with one Smart Agent which
maintains a catalog, which contains the list of the instances it knows about and the information it knows
about the instances. When queried by the Location Service, a Smart Agent forwards the query to the
other Smart Agents, and aggregates their replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA with the BY_INSTANCE
policy and objects that are registered as persistent on a BOA.

The following diagram illustrates this concept:

Note

Using the Location Service

- 233/607 - © 2024 Rocket Software

A server specifies an instance’s scope when it creates the instance. Only globally-scoped instances are
registered with Smart Agents.

The Location Service can make use of the information the Smart Agent keeps about each object
instance. For each object instance, the Location Service maintains information encapsulated in the
structure ObjLocation::Desc shown in IDL sample 8:

IDL sample 8 IDL for the Desc structure

The IDL for the Desc structure contains the following information:

Object reference or a handle for invoking the object.

iiop_locator interface allows access to the host name and the port of the instance’s server. This
information is only meaningful if the object is connected with IIOP, which is the only supported
protocol. Host names are returned as strings in the instance description.

Repository ID, which is the interface designation for the object instance that can be looked up in
the Interface and Implementation Repositories. If an instance satisfies multiple interfaces, the
catalog contains an entry for each interface, as if there were an instance for each interface.

Instance name or the name given to the object by its server.

Activatable flag which differentiates between instances that can be activated by an OAD, and
instances that are manually started.

Host name of the Smart Agent with which the instance is registered.

Note

structc Desc {
Object ref;
IIOP::ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;

};

typedef sequence<Desc> DescSeq;

• •

• •

• •

• •

• •

• •

What is the Location Service?

- 234/607 - © 2024 Rocket Software

The Location Service is useful for purposes such as load balancing and monitoring. Suppose that
replicas of an object are located on several VisiBroker RT 60 systems. You could deploy a bind
interceptor that maintains a cache of the VisiBroker RT 60 systems names that offer a replica and each
target’s recent load average. The interceptor updates its cache by asking the Location Service for the
systems currently offering instances of the object, and then queries the targets to obtain their load
averages. The interceptor then returns an object reference for the replica on the target with the lightest
load. See Using Portable Interceptors for more information about writing interceptors.

Location Service components
The Location Service is accessible through the Agent interface. Methods for the Agent interface can be
divided into two groups: those that query a Smart Agent for data describing instances and those that
register and unregister triggers. Triggers provide a mechanism by which clients of the Location Service
can be notified of changes to the availability of instances.

What is the Location Service agent?
The Location Service Agent is a collection of methods that enable you to discover objects on a network
of Smart Agents. You can query based on the interface’s repository ID, or based on a combination of
the interface’s repository ID and the instance name. Results of a query can be returned as either object
references or more complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent.

Instance descriptions contain the object reference, as well as the instance’s interface name, instance
name, host name and port number, and information about its state (for example, whether it is running
or can be activated).

The Location Service is provided as a separate ORB library. To use the Location Service, you must add
Location Service support to the VisiBroker RT 60 target system. Location Service support is delivered
as "add-Oon" functionality for VisiBroker RT for C++.support can be included into a VisiBroker RT 60
application by building the application with the libagentsupport library. See Step 6: Integrating
VisiBroker RT with VxWorks 7 for information on adding the libagentsupport library to your
application.

The figure below illustrates the use of interface repository IDs and instance names given the following
example IDL:

Note

Location Service components

- 235/607 - © 2024 Rocket Software

Given the example in the figure above, the following diagram visually depicts Smart Agents on a
network with references to instances of Car. In this example, there are three instances: one instance of
Kerri’s Car and two replicas of Tom’s Car:

The following sections explain how the methods provided by the Agent class can be used to query
VisiBroker RT for C++ Smart Agents for information. Each of the query methods can raise the Fail
exception, which provides a reason for the failure.

Obtaining names of all hosts running Smart Agents
Using the HostnameSeq all_agent_locations() method, you can find out which servers are hosting
VisiBroker RT for C++ Smart Agents. In the example above, this method would return the names of two
hosts: Athena and Zeus.

module Automobile {

interface Car {
//...

};

interface Sedan:Car {
//...

};

};

What is the Location Service agent?

- 236/607 - © 2024 Rocket Software

Finding all accessible interfaces
You can query the VisiBroker RT for C++ Smart Agents on a network to find out about all accessible
interfaces. To do so, you can use the RepositoryIDSeq all_repository_ids() method. In the example, this
method would return the repository IDs of two interfaces: Car and Sedan.

Earlier versions of the VisiBroker RT for C++ ORB used IDL interface names to identify interfaces, but
the Location Service uses the repository id instead. To illustrate the difference, if an interface name is
::module1::module2::interface , the equivalent repository id is IDL:module1/module2/interface:1.0 . For
the example shown above, the repository ID for Car would be IDL:Automobile/Car:1.0 , and the
repository ID for Sedan would be IDL:Automobile/Sedan:1.0 .

Obtaining references to instances of an interface
You can query VisiBroker RT for C++ Smart Agents on a network to find all available instances of a
particular interface. When performing the query, you can use either of these methods:

In the example above, a call to either method with the requestn IDL:Automobile/Car:1.0 would return
three instances of the Car interface: Tom’s Car on Athena, Tom’s Car on Zeus, and Kerri’s Car. The Tom’s
Car instance is returned twice because there are occurrences of it with two different Smart Agents.

Obtaining references to like-named instances of an interface
Using one of the following methods, you can query VisiBroker RT for C++ Smart Agents on a network to
return all occurrences of a particular instance name.

Note

Method Description

ObjSeq all_instances (in string re
pository_id)

Use this method to return object references to
instances of the interface.

DescSeq all_instance_descs (in
string repository_id)

Use this method to return an instance description
for instances of the interface.

Method Description

ObjSeq all_replica (in string reposit
ory_id , in string instance_name)

Use this method to return object references to
like-named instances of the interface.

What is the Location Service agent?

- 237/607 - © 2024 Rocket Software

In the example above, a call to either method specifying the repository ID IDL:Automobile/Sedan:1.0 and
instance name Tom’s Car would return two instances because there are occurrences of it with two
different Smart Agents.

What is a trigger?
A trigger is essentially a callback mechanism that lets you determine changes to the availability of a
specified instance. It is an asynchronous alternative to polling an Agent, and is typically used to recover
after the connection to an object has been lost. Whereas queries can be employed in many ways,
triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following table:

Both of the Agent trigger methods can raise the Fail exception, which provides a reason for the failure.

The TriggerHandler interface consists of the methods described in the following table:

Method Description

DescSeq all_replica_descs (in string
repository_id , in string
instance_name)

Use this method to return an instance
description for like-named instances of the
interface.

Method Description

void reg_trigger (in TriggerDesc desc, in Trig
gerHandler handler)

Use this method to register a
trigger handler.

void unreg_trigger (in TriggerDesc desc, in Tr
iggerHandler handler)

Use this method to unregister a
trigger handler.

Method Description

void impl_is_ready (in
Desc desc)

This method is called by the Location Service when an instance
matching the desc becomes accessible.

What is a trigger?

- 238/607 - © 2024 Rocket Software

Creating triggers
A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from the
TriggerHandlerPOA class (or the TriggerHandlerImpl class if using BOA), and implementing its
impl_is_ready() and impl_is_down() methods. To register a trigger with the Location Service, you use the
reg_trigger() method in the Agent interface. This method requires that you provide a description of the
instance you want to monitor, and the TriggerHandler object you want invoked when the availability of
the instance changes. The instance description (TriggerDesc) can contain combinations of the following
instance information: repository ID, instance name, and host name. The more instance information you
provide, the more particular your specification of the instance.

IDL sample 9 IDL for TriggerDesc

If a field in the TriggerDesc is set to the empty string (""), it is ignored. The default for each field
value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of the interface.
Looking back to our example above, a trigger for any instance of IDL:Automobile/Car:1.0 would occur
when one of the following instances becomes available or unavailable: Tom’s Car on Athena, Tom’s
Car on Zeus, or Kerri’s Car. Adding an instance name of Tom’s Car to the TriggerDesc tightens the
specification so that the trigger only occurs when the availability of one of the two Tom’s Car
instances changes. Finally, adding a host name of Athena refines the trigger further so that it only
occurs when the instance of Tom’s Car on Athena becomes available or unavailable.

Method Description

void impl_is_down (in
Desc desc)

This method is called by the Location Service when an instance
becomes unavailable.

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

};

Note

What is a trigger?

- 239/607 - © 2024 Rocket Software

Looking at only the first instance found by a trigger
Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the trigger description
becomes accessible. You may only be interested in learning when the first instance becomes accessible.
If this is the case, invoke the Agent’s unreg_trigger() method to unregister the trigger after the first
occurrence is found.

Querying an agent
This section contains two examples of using the Location Service to find instances of an interface. The
first example uses the Account interface shown in the following IDL excerpt:

IDL sample 10 Account example interface definition

Finding all instances of an interface
The following code sample uses the all_instances() method to locate all instances of the Account
interface. Notice that the Smart Agents are queried by passing LocationService to the
ORB::resolve_initial_references() method, then narrowing the object returned by that method to an
ObjLocation::Agent . Notice, as well, the format of the Account repository id—IDL:Bank/Account:1.0 .

Code example 73 Finding all instances satisfying the AccountManager interface

// Bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open (in string name);
};

};

Querying an agent

- 240/607 - © 2024 Rocket Software

void account_finder()
{

VISTRY
{

// Obtain a reference to the Location Service
CORBA::Object_var obj = orb-

\>resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" << endl;
return;

}

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);

// Query the Location Service for all implementations of
// the Account interface
ObjLocation::ObjSeq_var accountRefs;
VISIFNOT_EXCEP

accountRefs =
the_agent->all_instances("IDL:Bank/AccountManager:1.0");

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "Obtained " << accountRefs->length() << " Account objects"

<< endl;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
for (CORBA::ULong i=0; i < accountRefs->length(); i++) {

cout << "Stringified IOR for account #" << i << ":" << endl;

CORBA::String_var stringified_ior(orb-
>object_to_string(accountRefs[i]));

cout << stringified_ior << "\n" << endl;
}
VISEND_IFNOT_EXCEP

} VISCATCH (CORBA::Exception, e) {
cout << "Caught exception: " << e << endl;
return;

} VISEND_CATCH
return;

}

Finding all instances of an interface

- 241/607 - © 2024 Rocket Software

Finding everything known to Smart Agents
The following code sample shows how to find everything known to Smart Agents. It does this by
invoking the all_repository_ids() method to obtain all known interfaces. Then it invokes the
all_instances_descs() method for each interface to obtain the instance descriptions.

Code example 74 Finding everything known to a Smart Agent

Finding everything known to Smart Agents

- 242/607 - © 2024 Rocket Software

void finder()
{

VISTRY
{

CORBA::Object_var obj = orb-
>resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" << endl;
return;

}

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);
//Report all hosts running osagents
ObjLocation::HostnameSeq_var HostsRunningAgents;

VISIFNOT_EXCEP
HostsRunningAgents = the_agent->all_agent_locations();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
std::cout << "Located " << HostsRunningAgents->length() << "

Hosts running Agents" << std::endl;
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
for (CORBA::ULong k=0; k < HostsRunningAgents->length(); k++)
{

std::cout << "tHost #" << (k+1) << ": " << (const char*)
HostsRunningAgents[k] << std::endl;

}
std::cout << std::endl;

VISEND_IFNOT_EXCEP

// Findand display all Repository Ids
ObjLocation::RepositoryIdSeq_var repIds;
VISIFNOT_EXCEP

repIds = the_agent->all_repository_ids();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
std::cout << "Located" << repIds->length() << " Repository Ids"

<< std::endl;
VISEND_IFNOT_EXCEP

Finding everything known to Smart Agents

- 243/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
for (CORBA::ULong j=0; j<repIds->length(); j++)

cout << "\tRepository ID #" << (j+1) << ": " << repIds[j] <<
endl;

VISEND_IFNOT_EXCEP
// Find all Object Descriptors for each Repository Id
VISIFNOT_EXCEP
for (CORBA::ULong i=0; i < repIds->length(); i++)
{

ObjLocation::DescSeq_var descriptors = the_agent-
>all_instances_descs(repIds[i]);

VISIF_EXCEP(break;)
cout << endl;
cout << "Located " << descriptors->length() << " objectsf or "

<< (const char*) (repIds[i]) << " (Repository Id #" << (i
+ 1) << "):" << endl;

for (CORBA::ULong j=0; j < descriptors->length(); j++) {
cout << endl;
cout << (const char*) repIds[i] << " #" << (j+1) <<
":" << endl;
cout << "\tInstance Name \t= " <<

descriptors[j].instance_name << endl;
cout << "\tHost \t= " <<

descriptors[j].iiop_locator.host << endl;
cout << "\tPort \t= " <<

descriptors[j].iiop_locator.port << endl;
cout << "\tAgent Host \t= " <<

descriptors[j].agent_hostname << endl;
cout << "\tActivable \t= " << (descriptors[j].activable?

"YES":"NO") << endl;
}

}
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cout << "CORBA Exception during execution of find_all: " << e <<
endl;

}
VISEND_CATCH
return;

}

Finding everything known to Smart Agents

- 244/607 - © 2024 Rocket Software

Writing and registering a trigger handler
The following section illustrates how a trigger is implemented and registered.

Implementing and registering a trigger handler
The following code sample implements and registers a TriggerHandler . The TriggerHandlerImpl ’s
impl_is_ready() and impl_is_down() methods display the description of the instance that caused the
trigger to be invoked, and optionally unregister itself. If it unregisters itself, the method calls the
CORBA::BOA::deactivate_obj() method followed by CORBA::release() . This will remove the Trigger from
the BOA’s Active Object Map and finally call the Triggers destructor to finish cleanup of the Trigger
object instance.

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters with which it
was created. The unreg_trigger() method requires the desc parameter. The Agent parameter is
duplicated in case the reference from the main program is released.

Code example 75 Implementing a trigger handler

Writing and registering a trigger handler

- 245/607 - © 2024 Rocket Software

// Instances of this class will be called back by the Agent when the
// event for which it is registered happens.
class TriggerHandlerImpl : public _sk_ObjLocation::_sk_TriggerHandler
{

public:
TriggerHandlerImpl(ObjLocation::Agent_ptr agent, const

ObjLocation::TriggerDesc& initial_desc):
_agent(ObjLocation::Agent::_duplicate(agent)),
_initial_desc(initial_desc)

{}

void impl_is_ready(const ObjLocation::Desc& desc)
{

notification(desc, 1);
}

void impl_is_down(const ObjLocation::Desc& desc)
{

notification(desc, 0);
}

private:
ObjLocation::Agent_var _agent;
ObjLocation::TriggerDesc _initial_desc;

void notification(const ObjLocation::Desc& desc, CORBA::Boolean
isReady)

{
if (isReady) {

cout << "Implementation is ready:" << endl ;
}
else
{

cout << "Implementation is down:" << endl ;

}

cout << "\tRepository Id = " << desc.repository_id
<< endl;

cout << "\tInstance Name = " << desc.instance_name
<< endl;

cout << "\tHost Name = " << desc.iiop_locator.host
<< endl;

cout << "\tPort = " << desc.iiop_locator.port
<< endl;

cout << "\tAgent Host = " << desc.agent_hostname

Implementing and registering a trigger handler

- 246/607 - © 2024 Rocket Software

<< endl;
cout << "\tActivable = " << (desc.activable? "YES" : "NO")

<< endl;
cout << endl;
cout << "Unregister this handler and exit (y/n)? " << endl;

char prompt[256];

cin >> prompt;

if ((prompt[0] == 'y') || (prompt[0] == 'Y'))
{

VISTRY
{

agent->unreg_trigger(_initial_desc, this);
} VISCATCH(ObjLocation::Fail, e)
{

cout << "Failed to unregister trigger with reason=[" <<
(int) e.reason << "]" << endl;

return;
}
VISEND_CATCH

cout << "Deactivate and release account trigger...." <<
endl ;

VISTRY
{

boa->deactivate_obj(trig);
} VISCATCH(ObjLocation::Fail, e)
{

cout << "Failed to deactivate trigger" << endl ;
cerr << e << endl;
return;

}
VISEND_CATCH

CORBA::release(trig);
}

}
};

void account_trigger(void) {
VISTRY
{

int argc = 1;
char*argv[] = {"DO_CORBA"};

Implementing and registering a trigger handler

- 247/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
// Initialize the BOA.
boa = orb->BOA_init(argc, argv);

VISEND_IFNOT_EXCEP

CORBA::Object_ptr obj = orb->
resolve_initial_references("LocationService");

if (CORBA::is_nil(obj))
{

cout << "Unable to locate initial LocationService" << endl;
}
else
{

ObjLocation::Agent_var the_agent =
ObjLocation::Agent::_narrow(obj);

// Create the trigger descriptor to notify us about
// OSAgent changes with respect to Account objects
ObjLocation::TriggerDesc *desc = new ObjLocation::TriggerDesc;
desc->repository_id = (const char*) "IDL:Bank/AccountManager:

1.0";
desc->instance_name = (const char*)"";
desc->host_name = (const char*)"";
trig = new TriggerHandlerImpl(the_agent, *desc);
boa->obj_is_ready(trig);

VISIFNOT_EXCEP
the_agent->reg_trigger(*desc,trig);

VISEND_IFNOT_EXCEP
}

}
VISCATCH (CORBA::Exception, e)
{

cout << "account_trigger caught Exception:" << endl ;
cerr << e << endl;
return;

} VISEND_CATCH

return;
}

Implementing and registering a trigger handler

- 248/607 - © 2024 Rocket Software

Using the Naming Service

This section describes how to use the VisiBroker RT for C++ Naming Service which is a complete
implementation of the Interoperable Naming Specification document (orbos/98-10-11) from the OMG.

The following libraries are required when building a VisiBroker RT 60 application to support use of
the VisiBroker Naming Service:

libservicesupport.o

libname_c_s.o

libname.o

For a description of all the libraries provided by the VisiBroker RT for C++ product, see Step 6:
Integrating VisiBroker RT with VxWorks 7.

Overview
The Naming Service allows you to associate one or more logical names with an object reference and
store those names in a namespace. It also allows your client applications to use the Naming Service to
obtain an object reference by using the logical name assigned to that object.

The figure below shows a simplified view of the Naming Service that shows how:

An object implementation can bind a name to one of its objects within a namespace.

Client applications can then use the same namespace to resolve a name which returns an object
reference to a naming context or an object.

Note

• •

• •

• •

1. 1.

2. 2.

Using the Naming Service

- 249/607 - © 2024 Rocket Software

There are some important differences to consider between locating an object implementation using the
VisiBroker RT for C++ Naming Service as opposed to using the Smart Agent:

Smart Agent uses a flat namespace, while the Naming Service uses a hierarchical one.

An object’s interface name is defined at the time you compile your client and server applications.
Changing an interface name requires that you recompile your applications. In contrast, the
Naming Service allows object implementations to bind logical names to its objects at run-time.

An object may implement only one interface name, but the Naming Service allows you to bind
more than one logical name to a single object.

• •

• •

• •

Overview

- 250/607 - © 2024 Rocket Software

Understanding the namespace
The figure below shows how the Naming Service might be used to name objects that make up an order
entry system. This hypothetical order entry system organizes its namespace by geographic region, then
by department, and so on. The Naming Service allows you to organize the namespace in a hierarchical
structure of NamingContext objects that can be traversed to locate a particular name. For example, the
logical name NorthAmerica/ShippingDepartment/Orders could be used to locate an Order object.

Naming contexts
To implement the namespace shown in the figure above with the VisiBroker RT for C++ Naming Service,
each of the shadowed boxes would be implemented by a NamingContext object. A NamingContext object
contains a list of Name structures that have been bound to object implementations or to other
NamingContext objects. Though a logical name may be bound to a NamingContext , it is important to
realize that a NamingContext does not, by default, have a logical name associated with it nor is such a
name required.

Understanding the namespace

- 251/607 - © 2024 Rocket Software

Object implementations use a NamingContext object to bind a name to an object that they offer. Client
applications use a NamingContext to resolve a bound name to an object reference.

A NamingContextExt interface is also available which provides methods necessary for using stringified
names.

Names and NameComponent
A CosNaming::Name represents an identifier that can be bound to an object implementation or a
CosNaming::NamingContext . A Name is not simply a string of alphanumeric characters; it is a sequence of
one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind . The naming service does not interpret
or manage these strings, except to ensure that each id and kind is unique within a given
NamingContext .

The id and kind attributes are strings which uniquely identify the object to which the name is bound.
The kind member adds a descriptive quality to the name. For example, the name “Inventory.RDBMS”
has an id member of “Inventory” and a kind member of “RDBMS”.

IDL sample 11 IDL Specification for the NameComponent structure

The id and kind attributes of a NameComponent must be a character from the ISO 8859-1 (Latin-1)
character set, excluding the null character (0x00) and other non-printable characters. Note that neither
of the strings in a NameComponent can exceed 255 characters in length.

Furthermore, the Naming Service does not support NameComponent instances which use wide strings.

The id attribute of a Name cannot be an empty string, however the kind attribute can be.

module CosNaming
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

};

Note

Names and NameComponent

- 252/607 - © 2024 Rocket Software

Name resolution
Your client applications use the NamingContext::resolve method to obtain an object reference, given a
logical Name . Because a Name consists of one or more NameComponent objects, the resolution process
requires that all of the NameComponent structures that make up the Name be traversed.

Stringified names
Because the representation of CosNaming::Name is not in a form that is readable or convenient for
exchange, a stringfied name has been defined to resolve this problem. A stringified name is a one-to-
one mapping between a string and a CosNaming::Name . If two CosNaming::Name objects are equal, then
their stringified representations must also be equal. In a stringified name, a forward slash “/” serves as
a name component separator; a period “.” serves as the id and kind attributes separator; and a
backslash “\” serves as an escape character. By convention, a NameComponent with an empty kind attribute
does not use a period (for example, “Order”).

Code example 76 Stringified name example

In the following examples, NameComponent structures are given in their stringified representations.

Simple and complex names
A simple name, such as “Billing”, has only a single NameComponent and is always resolved relative to the
target naming context. A simple name may be bound to an object implementation or to a
NamingContext .

A complex name, such as “NorthAmerican/ShippingDepartment/Inventory”, consists of a sequence of
three NameComponent structures. If a complex name consisting of n NameComponent objects has been bound
to an object implementation, then the first (n–1) NameComponent objects in the sequence must each
resolve to a NamingContext , and the last NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext , each NameComponent structure in the sequence must refer to a
NamingContext .

"Inprise.Company/Engineering.Department/Printer.Resource"

Note

Name resolution

- 253/607 - © 2024 Rocket Software

Code example 77 shows a complex name, consisting of three components and bound to a CORBA
object. This name corresponds to the stringfied name, “NorthAmerica/SalesDepartment/Order”. When
resolved within the top-most naming context, the first two components of this complex name resolve to
NamingContext objects, while the last component resolves to an object implementation with the logical
name “Order”.

Code example 77 Example of a complex name bound to an ORB object

Running the Naming Service
The VisiBroker RT for C++ Naming Service is comprised of a set of libraries, header files and sample
applications, which are delivered as part of the base VisiBroker RT distribution.

The Naming Service is a CORBA service which provides a set of interfaces (that is, APIs) to support:

Creation of Naming Context Servants

A Naming Context Servant is created and then activated on the user's POA, to create a Naming
Context object reference.

Registration of a Naming Context Object as the "NameService" root context

Interfaces for Binding Names to Objects

Interfaces for Iterating through a naming tree

...
// Name stringifies to “NorthAmerica/SalesDepartment/Order”
CosNaming::Name_var continentName =

rootNamingContext->to_name("NorthAmerica");
CosNaming::NamingContext_var continentContext =

rootNamingContext->bind_new_context(continentName);
CosNaming::Name_var departmentName =

continentContext->to_name("SalesDepartment");
CosNaming::NamingContext_var departmentContext =

rootNamingContext->bind_new_context(departmentName);
CosNaming::Name_var objectName =

departmentContext->to_name("Order");
departmentContext->rebind(objectName,

myPOA->servant_to_reference(managerServant));
...

• •

• •

• •

• •

Running the Naming Service

- 254/607 - © 2024 Rocket Software

The process of installing, configuring, and running the Naming Service is described below. Once you
have created a Naming Tree, you may browse its contents by using the VisiBroker RT for C++ Console.
For more details, see Naming Services.

The VisiBroker RT Console has been deprecated with this release; it is not included within the
distribution, but can be obtained by contacting the Rocket Support team.

Integrating the Naming Service into your application
The steps required to integrate the Naming Service with your VisiBroker RT application are very similiar
to the steps for integrating the VisiBroker ORB libraries. See Step 6: Integrating VisiBroker RT with
VxWorks 7 for details on the process to follow when adding additional libraries to your VisiBroker RT
application.

VisiBroker RT Naming Service libraries
The VisiBroker RT for C++ Naming Service consists of the following libraries:

Note

Library Description Dependencies

libname_
c_s.o

This library provides the interfaces for the clients
which intend to ONLY use the VisiBroker RT for C+
+ Naming Service. If one of your VisiBroker RT
nodes intends to start a Naming Service factory it
must include both this library and libname.o
(described below).

liborb.o and libs
ervicessupport.o

or
liborb_compact.o

and libservicesup
port.o

Integrating the Naming Service into your application

- 255/607 - © 2024 Rocket Software

Compiling and linking programs

C++ applications that use the Naming Service need to include the generated file CosNaming_c.hh .

C++ applications that start a Naming Service need to include the following files:

CosNaming_c.hh

CosNaming.hh

NamingLib.h

Sample programs
Several example programs that illustrate the use of the Naming Service are provided with VisiBroker RT
for C++. They illustrate the new INS features that are now available with the Naming Service and can be
found in the <VBRT_install>/examples/vbroker_kernel/ins directory. In addition, a Bank Naming example
that illustrates basic usage of the Naming Service can be found in the <VBRT_install>/examples/
vbroker_kernel/basic/bank_naming directory.

Before running the example programs, you must first start the naming service as described in Starting
the Naming Service. This will automatically create the initial "root context".

If no naming context has been created, a CORBA::NO_IMPLEMENT exception will be raised when the client
attempts to issue a CosNaming::NamingContext::_bind .

Library Description Dependencies

libname.o This library provides the interfaces for creating
and starting a VisiBroker RT for C++ Naming
Service Cos Extended Factory Server. Inclusion of
this library also requires the inclusion of the client
interface library libname_c_s.o

liborb.o , libserv
icesupport.o and
libname_c_s.o

or
liborb_compact.o ,
libservicesupport.
o and
libname_c_s.o

• •

• •

• •

• •

• •

Warning

Compiling and linking programs

- 256/607 - © 2024 Rocket Software

Starting the Naming Service
Starting a VisiBroker RT for C++ Naming Service involves performing the following steps:

Create a Naming Service Servant

Activate that Servant on your Application POA to Establish the "Initial Naming Service Context"
CORBA Object.

Register the "Initial Naming Service Context" CORBA Object with the VisiBroker ORB as the
"NameService" service.

These steps are demonstrated as part of the VisiBroker Sample application <VBRT_install>/examples/
vbroker_kernel/basic/bank_naming . The file start_namingservice.cpp shows how to start a VisiBroker
Naming Service.

Code example 78 Starting a VisiBroker Naming Service on an Application POA

• •

• •

• •

Starting the Naming Service

- 257/607 - © 2024 Rocket Software

....
void naming_service(char* objectKey, CORBA::Boolean debug,

char * ORB_options_string)
{

// -----------------------------
// Initalize the ORB
// -----------------------------
PortableServer::POA_var application_POA;

VISTRY
{

int default_argc = 2;
char *default_argv[] ={"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv,

default_argv, default_argc,
ORB_options_string);

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

// -----------------------------
// Create an application POA
// -----------------------------
CORBA::Object_var obj;
PortableServer::POA_var root_POA;
PortableServer::POAManager_var POA_mgr;

VISIFNOT_EXCEP
// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
root_POA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Create our POA manager from the root POA Manager.
POA_mgr = root_POA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create POA policies.
CORBA::PolicyList policies;
policies.length(2);

VISIFNOT_EXCEP

Starting the Naming Service

- 258/607 - © 2024 Rocket Software

policies[(CORBA::ULong)0] =
root_POA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong) 1] =

root_POA->create_id_assignment_policy(
PortableServer::USER_ID);

VISEND_IFNOT_EXCEP

// Create a application poa.
// exceptions: AdapterAlreadyExist Invalid Policy
// Thread Policy: ORB_CTRL_MODEL
// Lifespan Policy: PERSISTENT
// Object Id Uniqueness Policy: UNIQUE_ID
// Id Assignment Policy: USER_ID
// Server Retention Policy: RETAIN
// Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
// Implicit Activation Policy NO_IMPLICIT_ACTIVATION

VISIFNOT_EXCEP
application_POA = root_POA->create_POA(

"application_POA",POA_mgr, policies);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the Market POA
POA_mgr->activate();

VISEND_IFNOT_EXCEP

//
// Create and start Name Service
//
PortableServer::ObjectId_var namingContextId;
POA_CosNaming::NamingContext* namingContextServant;

// Create a namingContext servant.
namingContextServant =

NamingLib::create_RootContextNamingServant(objectKey,
application_POA);

VISIFNOT_EXCEP

// Create an object Id for naming context servant.
namingContextId =

PortableServer::string_to_ObjectId(objectKey);

Starting the Naming Service

- 259/607 - © 2024 Rocket Software

VISEND_IFNOT_EXCEP

CosNaming::NamingContext_var root_context;

// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy
VISIFNOT_EXCEP

application_POA->activate_object_with_id(
namingContextId, namingContextServant);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
obj = application_POA->id_to_reference(namingContextId);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
root_context = CosNaming::NamingContext::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::String_var str;
VISIFNOT_EXCEP

str = orb->object_to_string(obj);
VISEND_IFNOT_EXCEP

cout << "\n\nInitial NamingContext Registered\n" << str << endl;
VISIFNOT_EXCEP

// Register a namingContext servant with URL Locator.
SupportServices::instance()->

register_service_object(objectKey, obj);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << "exception is " << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Starting the Naming Service

- 260/607 - © 2024 Rocket Software

Bootstrapping a Naming Service
There are three ways to start a client application so that it can obtain an initial object reference to a
specified Naming Service. You can use either of the following two options when calling ORB_init from
your Naming Service Client application:

ORBInitRef

ORBDefaultInitRef

Calling resolve_initial_references
The new Naming Service provides a simple mechanism by which the resolve_initial_references method
can be configured to return a common naming context. You use the resolve_initial_references method
to return the root context of the Naming Server to which the client program has connected.

Three simple examples will illustrate how to use these options. Suppose there are three VisiBroker RT
for C++ Naming Services running on the host TestHost : ns1 , ns2 , and ns3 . There are also three server
applications: sr1 , sr2 , sr3 , each running on a different port (20001 , 20002 , and 20003) on the host
TestHost . Server sr1 binds itself in ns1 , sr2 in ns2 , and sr3 in ns3 . Additionally, sr3 has a naming tree
hierarchy of <NorthAmerica/ShippingDepartment/Inventory> .

Code example 79 Code snippet showing how to obtain the root naming context

Using -ORBInitRef
You can use either the corbaloc or corbaname URL naming schemes to specify which VisiBroker RT for
C++ Naming Service you want to bootstrap.

Using a corbaloc URL
If you want to bootstrap into Naming Service ns2 by using the corbaloc locator, then you should start
your client application and obtain the root context of ns2 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated in code example 80.

• •

• •

...
CORBA::ORB_ptr orb = CORBA::ORB_init(argv, argc, NULL);
CORBA::Object_var rootObj =

orb->resolve_initial_references(“NameService”);
...

Bootstrapping a Naming Service

- 261/607 - © 2024 Rocket Software

Code example 80 Boot-strapping to the Naming Service using a corbaloc URL

Using -ORBInitRef

- 262/607 - © 2024 Rocket Software

...
void do_corba(char * ORB_options_string)
{

char *nameServiceLocator_URL =
"NameService=corbaloc::TestHost:20002/ns2";

// OR
// char *nameServiceLocator_URL =
// "NameService=corbaloc:iiiop:TestHost:20002/ns2";

int default_argc = 2;
char *default_argv[] = {""-ORBInitRef",nameServiceLocator};

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/* -- */
/* Call ORB_init, obtain the Root POA, and bootstrap to */
/* Name Service initial root context. */
/* -- */
VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(new_argc, new_argv);
VISIFNOT_EXCEP

// Get a reference to the Naming Service root context
CORBA::Object_var obj =

orb->resolve_initial_references("NameService");
CORBA::String_var str =

orb->object_to_string(obj);
CosNaming::NamingContext_var rootContext =

CosNaming::NamingContext::_narrow(obj);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return;

}
VISEND_CATCH
return;
}

Using -ORBInitRef

- 263/607 - © 2024 Rocket Software

This example can only work if there is a Naming Service Object implementation running on host
TestHost at port 20002 .

Using a corbaname URL
Bootstrapping into a Naming Service using the corbaname locator is similar to the method used to
bootstrap using a corbaloc URL. Simply use the corbaname URL in place of the corbloc URL as the -
ORBInit argument. Calling resolve_initial_references on an ORB reference will provide the root context
of the requested Naming Server, as long as a Naming Service is running at the requested URL. The
following example illustrates this:

Code example 81 BootStrapping to the Naming Service Using corbaname URL

Note

Using -ORBInitRef

- 264/607 - © 2024 Rocket Software

...
void do_corba(char * ORB_options_string)
{

char *nameServiceLocator_URL =
"NameService=corbaname:TestHost:20003#NorthAmerica/ShippingDepartment";

// OR
// char *nameServiceLocator_URL =
// "NameService=corbaname:iiiop:TestHost:20003#NorthAmerica/

ShippingDepartment";

int default_argc = 2;
char *default_argv[] ={""-ORBInitRef",nameServiceLocator_URL};

char **new_argv;
int new_argc =

VISUtil::stringToArgv(&new_argv, default_argv, default_argc,
ORB_options_string);

/*--*/
/* Call ORB_init, obtain the Root POA, and bootstrap to */
/* Name Service initial root context.*/
/*--*/
VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(new_argc, new_argv);

VISIFNOT_EXCEP
// Get a reference to the Naming Service root_context
CORBA::Object_var obj =

orb->resolve_initial_references("NameService");
CORBA::String_var str = orb->object_to_string(obj);
CosNaming::NamingContext_var rootContext =

CosNaming::NamingContext::_narrow(obj);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl; return;
}
VISEND_CATCH
return;

}

Using -ORBInitRef

- 265/607 - © 2024 Rocket Software

This example can only work if there is a Naming Service Object implementation running on host
TestHost at port 20003 .

-ORBDefaultInitRef
You can use either a corbaloc or corbaname URL to specify which VisiBroker RT for C++ Naming Service
you want to bootstrap.

Using -ORBDefaultInitRef with a corbaloc URL
If you want to bootstrap into ns2 , then start your client program as:

Code example 82 BootStrapping to the Naming Service Using -ORBDefaultInitRef with the corbaloc URL

Note

-ORBDefaultInitRef

- 266/607 - © 2024 Rocket Software

Using -ORBDefaultInitRef with corbaname
The combination of -ORBDefaultInitRef and corbaname works differently from what is expected. If -
ORBDefaultInitRef is specified, a backslash and the stringified object key NameService is always appended
to the corbaname . For example, if the URL is corbaname://TestHost:20002 then, by specifying -
ORBDefaultInitRef , resolve_initial_references will result in a new URL: corbaname://TestHost:20002/
NameService .

...
void do_corba()
{

char *nameServiceLocator =
"NameService=corbaloc://TestHost:20002/";

int default_argc = 2;
char *default_argv[] = {"-ORBDefaultInitRef",nameServiceLocator};

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init, obtain the Root POA, and bootstrap to Name*/
/* Service initial root context. */
/*--*/
VISTRY
{

// Initialize the ORB.
orb = CORBA::ORB_init(argc, argv);

VISIFNOT_EXCEP
// Get a reference to the Naming Service root_context
CosNaming::NamingContext root_context =

CosNaming::NamingContext::_narrow(
orb->resolve_initial_references("NameService"));

...

Using -ORBDefaultInitRef with a corbaloc URL

- 267/607 - © 2024 Rocket Software

NamingContext
This object is used to contain and manipulate a list of names that are bound to ORB objects or to other
NamingContext objects. Client applications use this interface to resolve or list all of the names within
that context. Object implementations use this object to bind names to object implementations or to
bind a name to a NamingContext object.

The following sample shows the IDL specification for the NamingContext .

IDL sample 12 Specification for the NamingContext interface

NamingContext

- 268/607 - © 2024 Rocket Software

NamingContextExt
The NamingContextExt interface, which extends NamingContext , provides the operations required to use
stringified names and URLs.

IDL sample 13 Specification for the NamingContextExt interface

module CosNaming {
interface NamingContext {

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

};
};

NamingContextExt

- 269/607 - © 2024 Rocket Software

Default naming contexts
A client application can specify a default naming context, which is the naming context that the
application will consider to be its root context. Note that the default naming context is the root only in
relation to this client application and, in fact, it may be contained by another context.

Obtaining the default context
The ORB method resolve_initial_references can be used by a client application to obtain the default
naming context. The default naming context must have been specified by passing the -ORBInitRef
command-line argument when the client application was started. Code example 79 shows how a C++
client application could invoke this method.

module CosNaming {
interface NamingContextExt : NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
};

Default naming contexts

- 270/607 - © 2024 Rocket Software

Binding a name in C++
The 'bind' example uses two simple interfaces, shown in IDL sample 14, which offer two methods
Bank::Account::balance and Bank::AccountManager::open . This definition is found in the Bank.idl file.

IDL sample 14 IDL specification for the Bank::Account and Bank::AccountManager interfaces

The naming_server.cpp file for the .../examples/basic/bank_naming example contains the server-side code,
which creates an AccountManager CORBA object and binds a name to the object.

Code example 83 bank_naming/naming_server.cpp , object server binding a name to an ORB object

module Bank {
interface Account {

float balance();
};
interface AccountManager {

Account open(in string name);
};

};

Binding a name in C++

- 271/607 - © 2024 Rocket Software

#include <vxWorks.h>
#include "CosNaming_c.hh"
#include "bankImpl.h"

extern CORBA::ORB_var orb;
extern PortableServer::POA_var rootPOA;
extern CosNaming::NamingContext_var rootContext;

...

void bank_server()
{

VISTRY {
CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
// Create myPOA with the right policies
myPOA = rootPOA->create_POA(

"bank_agent_poa", poa_manager, policies);
VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
// Decide on the ID for the servant
managerId =

PortableServer::string_to_ObjectId("BankManager");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the servant with the ID on myPOA

Binding a name in C++

- 272/607 - © 2024 Rocket Software

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the POA Manager
poa_manager->activate();

VISEND_IFNOT_EXCEP

CORBA::Object_var reference;

VISIFNOT_EXCEP
reference = myPOA->servant_to_reference(managerServant);

VISEND_IFNOT_EXCEP

// v v v v v v v
VISIFNOT_EXCEP

// Associate the bank manager with the name at the root context
CosNaming::Name name;
name.length(1);

name[0].id = (const char *) "BankManager";
name[0].kind = (const char *) "";
rootContext->rebind(name, reference);

VISEND_IFNOT_EXCEP
// ^ ^ ^ ^ ^ ^ ^

cout << reference << " is ready" << endl;
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

} VISEND_CATCH

return;
}

Binding a name in C++

- 273/607 - © 2024 Rocket Software

Resolving a name in C++
The following code sample shows the client program that uses the Naming Service to resolve a Name
Binding to an Object Reference.

Code example 84 bank_naming/client.C file for resolving an ORB object by name

Resolving a name in C++

- 274/607 - © 2024 Rocket Software

#include <vxWorks.h>
#include "CosNaming_c.hh"
#include "bank_c.hh"

extern CosNaming::NamingContext_var rootContext;

....

void bank_client(void)
{

VISTRY {

// Locate an account manager through the Naming Service
CosNaming::Name name;
name.length(1);
name[0].id = (const char *) "BankManager";
name[0].kind = (const char *) "";
Bank::AccountManager_var manager =

Bank::AccountManager::_narrow(rootContext->resolve(name));

// Set the account name
const char* account_name = "Jack B. Quick";
Bank::Account_var account;
VISIFNOT_EXCEP

// Request the account manager to open a named account
account = manager->open(account_name);

VISEND_IFNOT_EXCEP

CORBA::Float balance;
VISIFNOT_EXCEP

// Get the balance of the account
balance = account->balance();

VISEND_IFNOT_EXCEP

// Print out the balance
cout << "The balance in " << account_name << "'s account is $"

<< balance << endl;
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Resolving a name in C++

- 275/607 - © 2024 Rocket Software

Using the Event Service

This section describes the VisiBroker RT for C++ Event Service.

The following libraries are required when building a VisiBroker RT application to support use of the
VisiBroker Event Service:

libservicesupport.a

libevchn_c_s.a

libevchn.a

For a description of all the libraries provided by the VisiBroker RT for C++ product, see Step 6:
Integrating VisiBroker RT with VxWorks 7.

Overview
The Event Service package provides a facility that decouples the communication between objects. It
provides a supplier-consumer communication model that allows multiple supplier objects to send data
asynchronously to multiple consumer objects through an event channel. The supplier-consumer
communication model allows an object to communicate an important change in state, such as a disk
running out of free space, to any other objects that might be interested in such an event.

Note

• •

• •

• •

Using the Event Service

- 276/607 - © 2024 Rocket Software

The figure above shows three supplier objects communicating through an event channel with two
consumer objects. The flow of data into the event channel is handled by the supplier objects, while the
flow of data out of the event channel is handled by the consumer objects. If the three suppliers shown
each send one message every second, then each consumer will receive three messages every second
and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data communicated
between suppliers and consumers are represented by the Any class, allowing any CORBA type to be
passed in a type safe manner. Supplier and consumer objects communicate through the event channel
using standard CORBA requests.

Proxy consumers and suppliers
Consumers and suppliers are completely de-coupled from one another through the use of proxy
objects. Instead of directly interacting with each other, they obtain a proxy object from the EventChannel
and communicate with that. Supplier objects obtain a consumer proxy and consumer objects obtain a
supplier proxy. The EventChannel facilitates the data transfer between consumer and supplier proxy
objects. The figure below shows how one supplier can distribute data to multiple consumers.

Proxy consumers and suppliers

- 277/607 - © 2024 Rocket Software

The event channel is shown above as a separate process, but it may also be implemented as part of
the supplier object’s process. See Starting the Event Service for more information.

OMG Common Object Services Specification
The VisiBroker RT for C++ Event Service implementation conforms to the OMG Common Object Services
Specification, with the exception of the following two items:

The VisiBroker RT for C++ Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker RT for C++ Event Service.

The VisiBroker RT for C++ Event Service offers no confirmation of the delivery of data to either the
event channel or to consumer applications. TCP/IP is used to implement the communication
between consumers, suppliers and the event channel and this provides reliable delivery of data to
both the channel and the consumer. However, this does not guarantee that all of the data that is
sent will actually processed by the receiver.

Communication models
The event service provides both a pull and push communication model for suppliers and consumers. In
the push model, supplier objects control the flow of data by pushing it to consumers. In the pull model,
consumer objects control the flow of data by pulling data from the supplier.

The EventChannel insulates suppliers and consumers from having to know which model is being used
by other objects on the channel. This means that a pull supplier can provide data to a push consumer
and a push supplier can provide data to a pull consumer. The figure below shows a push model:

Note

• •

• •

OMG Common Object Services Specification

- 278/607 - © 2024 Rocket Software

The event channel is shown above as a separate process, but it may also be implemented as part of
the supplier object’s process. See Starting the Event Service for more information.

Push model
The push model is the more common of the two communication models. An example use of the push
model is a supplier that monitors available free space on a disk and notifies interested consumers
when the disk is filling up. The push supplier sends data to its ProxyPushConsumer in response to events
that it is monitoring.

The PushConsumer ’s push method is invoked by the EventChannel upon the ProxyPushSupplier retrieving
data from the EventChannel. The EventChannel facilitates the transfer of data from the ProxyPushSupplier
to the ProxyPushConsumer .

The figure above shows a push supplier and its corresponding ProxyPushConsumer object. It also shows
three push consumers and their respective ProxyPushSupplier objects.

Note

Push model

- 279/607 - © 2024 Rocket Software

Pull model
In the pull model, the event channel regularly pulls data from a supplier object, puts the data in a
queue, and makes it available to be pulled by a consumer object. An example of a pull consumer would
be one or more network monitors that periodically poll a network router for statistics.

The pull supplier implements a "pull" method which is invoked by the ProxyPullConsumer . The
ProxyPullConsumer spends most of its time in an event loop invoking the pull supplier’s "pull" method.
The pull consumer requests data from the ProxyPullSupplier when it is ready for more data. The
EventChannel pulls data from the supplier to a queue and makes it available to the ProxyPullSupplier .

The figure below shows a pull supplier and its corresponding ProxyPullConsumer object. It also shows
three pull consumers and their respective ProxyPullSupplier objects.

The event channel is shown above as a separate process, but it may also be implemented as part of
the supplier object’s process.

Note

Pull model

- 280/607 - © 2024 Rocket Software

Using event channels
When an EventChannel is first created, it has no suppliers or consumers. A supplier or consumer
connects to and uses an event channel by following these steps:

Connect to the EventChannel .

Obtain an administrative object from the channel and use it to obtain a proxy object.

Connect to the proxy object.

Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being connected to is a
supplier or a consumer, and on the communication model being used.

The following table shows the appropriate methods for suppliers:

This table shows the methods for consumers:

1. 1.

2. 2.

3. 3.

4. 4.

Steps Push supplier Pull Supplier

Bind to the
Event Channel.

CosEventChannelAdmin::Eve
ntChannel::
_narrow(orb::resolve_init
ial_
references(“EventService”)
)

CosEventChannelAdmin::Even
tChannel::
_narrow(orb::resolve_initi
al_
references(“EventService”))

Get a Supplier
Admin.

EventChannel::for_supplie
rs()

EventChannel::for_suppliers
()

Get a consumer
proxy.

SupplierAdmin::obtain_pus
h_consumer()

SupplierAdmin::obtain_pull_
consumer()

Add the supplier
to the Event
Channel.

ProxyPushConsumer::
connect_push_supplier()

ProxyPullConsumer::
connect_pull_supplier()

Data transfer ProxyPushConsumer::push() Implements pull() and try_pu
ll()

Using event channels

- 281/607 - © 2024 Rocket Software

Example push supplier and consumer
This section describes the example push supplier and consumer applications. When executed, the
supplier application prompts the user to enter data and then pushes the data to the consumer
application. The consumer application receives the data and writes it to the screen.

The push supplier application is implemented in the factoryPushSupplier.cpp file and the push consumer
is implemented in the factoryPushConsumer.cpp file. These files can be found in the
<VBRT_install/examples/vbroker_kernel/events directory on your system.

Steps Push consumer Pull Consumer

Bind to the Event
Channel.

CosEventChannelAdmin::Even
tChannel::
_narrow(orb::resolve_initi
al_
references(“EventService”))

CosEventChannelAdmin::Eve
ntChannel::
_narrow(orb::resolve_init
ial_
references“EventService”)
)

Get a Consumer
Admin.

EventChannel::for_consumers
()

EventChannel::for_consume
rs()

Obtain a supplier
proxy.

ConsumerAdmin::obtain_push_
supplier()

ConsumerAdmin::obtain_pul
l_supplier()

Add the
consumer to the
Event Channel.

ProxyPushSupplier::
connect_push_consumer()

ProxyPushSupplier::
connect_pull_consumer()

Data transfer Implements push() ProxyPushSupplier::pull()
and try_pull()

Example push supplier and consumer

- 282/607 - © 2024 Rocket Software

Deriving a PushSupplier class
The first step in implementing a supplier is to derive our own PushModel class from the PushSupplier
interface, as shown in the following code sample.

Code example 85 PushSupplier interface

This example shows the PushModel class, implemented in C++. The disconnect_push_supplier method is
called by the EventChannel to disconnect the supplier when the channel is being destroyed. This
implementation simply prints out a message and exits. If the PushModel object were persistent, this
method might also call deactivate_object to deactivate the object.

Code example 86 PushModel class

module CosEventComm {
interface PushSupplier {

void disconnect_push_supplier();
};

};

Deriving a PushSupplier class

- 283/607 - © 2024 Rocket Software

Implementing the PushSupplier
The Push Supplier performs the following:

Binds to the EventChannelFactory .

Does a lookup by name for the desired EventChannel .

Creates a PushSupplier .

Connects the PushSupplier to the EventChannel .

Goes into a loop to push data to the EventChannel .

Code example 87 Complete implementation for a sample push supplier

// PushModel.C

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

class PushModel : public POA_CosEventComm::PushSupplier, public VISThread {
public:

void disconnect_push_supplier() {
cout << "Model::disconnect_push_supplier()" << endl;
VISTRY {

PortableServer::ObjectId_var objId =
PortableServer::string_to_ObjectId("PushModel");

_myPOA->deactivate_object(objId);
}
VISCATCH(const CORBA::Exception, e) {

cout << e << endl;
}
VISEND_CATCH

}
};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Deriving a PushSupplier class

- 284/607 - © 2024 Rocket Software

// factorypushSupplier.C
#include <vxWorks.h>
#include "CosEventComm_s.hh"
#include "ChannelLib.h"

/*--*/
/* Forward Declarations*/
/*--*/
extern "C" intsysClkRateGet (void);

/*--*/
/* Export Variable Declarations*/
/*--*/
extern CORBA::ORB_var orb;
extern PortableServer::POA_var ec_POA;

class PushSupplierImpl : public POA_CosEventComm::PushSupplier
{
public:

void disconnect_push_supplier()
{

cout << "disconnect_push_supplier()" << endl;
_alive = 0;

}

PushSupplierImpl() :
POA_CosEventComm::PushSupplier() { _alive = 1; }

CORBA::Boolean Alive() { return _alive; }

private:
CORBA::Boolean _alive;

};

static void factorypushSupplier(char * name, char* factoryname);

void start_pushSupplier(char* channelName, char* factName)
{

char * taskName = "PUSHSUP";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,

Deriving a PushSupplier class

- 285/607 - © 2024 Rocket Software

stackSize,
(FUNCPTR)factorypushSupplier,
(int)channelName,
(int)factName,
0,0,0,0,0,0,0,0);

}

void factorypushSupplier(char* name, char* factoryname)
{

CosEventChannelAdmin::EventChannelFactory_var factory;

VISTRY
{

// Get the Channel Id from user's supplied name.
PortableServer::ObjectId_var factId =

PortableServer::string_to_ObjectId(factoryname);

// Bind to Event Factory by giving the full POA name
// and the Object ID..
factory = CosEventChannelAdmin::EventChannelFactory::

_bind("/ef_POA", factId);

CosEventChannelAdmin::EventChannel_var channel;

VISIFNOT_EXCEP
// Bind to the Event Channel
channel = factory->lookup_by_name(name);

VISEND_IFNOT_EXCEP

CosEventChannelAdmin::SupplierAdmin_var for_supplier;
CosEventChannelAdmin::ProxyPushConsumer_var

proxyPushConsumer;

VISIFNOT_EXCEP
// Obtain Supplier Adminstrator
for_supplier = channel->for_suppliers();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Obtain push_consumer proxy
proxyPushConsumer = for_supplier->obtain_push_consumer();
VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var supplierId;
CosEventComm::PushSupplier_var pushSupplierObject;
PushSupplierImpl* pushSupplier = new PushSupplierImpl();

Deriving a PushSupplier class

- 286/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
// Create a object Id for Supplier servant.
supplierId =

PortableServer::string_to_ObjectId("mypushSupplier");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy
ec_POA->activate_object_with_id(supplierId, pushSupplier);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
pushSupplierObject = CosEventComm::PushSupplier::

_narrow(ec_POA->id_to_reference(supplierId));
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Connect my push Supplier to the proxy push Consumer
proxyPushConsumer->

connect_push_supplier(pushSupplierObject);
VISEND_IFNOT_EXCEP

char string[1024];
CORBA::Any any;

while(pushSupplier->Alive())
{

cout << "(Type 'q' to quit)-> " << flush;
cin >> string;

if(!strcmp(string,"q"))
{

// Disconnect all suppliers and
// consumer and destroy channel
channel->destroy();

} else {
any <<= (const char *)string;

}

VISTRY
{

proxyPushConsumer->push(any);
}
VISCATCH(CosEventComm::Disconnected, e)
{

Deriving a PushSupplier class

- 287/607 - © 2024 Rocket Software

Deriving a PushConsumer class
The following code sample shows the complete implementation of the Push Consumer class which is
derived from the PushConsumer interface, as shown in Code example 88.

Code example 88 PushConsumer interface

The push method receives an Any type and attempts to convert it to a string and print it. The
disconnect_push_supplier method is called by the Event Channel to disconnect the consumer when the
channel is destroying itself.

cerr << "Disconnected" << endl;
break;

}
VISEND_CATCH;

if (!strcmp(string,"q")) { break; }
}

}
VISCATCH(CORBA::Exception, err)
{

cerr << "Error: " << err << endl << flush;
taskSuspend(0);

}
VISEND_CATCH
return;

}

module CosEventComm {
exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

Deriving a PushConsumer class

- 288/607 - © 2024 Rocket Software

Implementing the PushConsumer
Just like the PushSupplier , the PushConsumer needs to acquire a handle to the EventChannelFactory , find
the named EventChannel , and connect a PushConsumer to the EventChannel . The factoryPushConsumer
sample application performs the following:

Binds to the EventChannelFactory .

Does a lookup by name for the desired EventChannel .

Creates a PushConsumer .

Connects the PushConsumer to the EventChannel

Code example 89 Complete implementation of a sample push consumer

1. 1.

2. 2.

3. 3.

4. 4.

Implementing the PushConsumer

- 289/607 - © 2024 Rocket Software

// factorypushConsumer.C
#include <vxWorks.h>

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

/*--*/
/* Forward Declarations */
/*--*/
extern "C" int sysClkRateGet (void);

/*--*/
/* Export Variable Declarations */
/*--*/
extern CORBA::ORB_var orb;
extern PortableServer::POA_var ec_POA;

class PushConsumerImpl : public POA_CosEventComm::PushConsumer
{
public:

void push(const CORBA::Any& any)
{

char* string;
if(any >>= string)
{

cout << string << endl;
}
else
{

cout << "Non string: " << any << endl;
}

}

void disconnect_push_consumer()
{

cout << "disconnect_push_consumer()" << endl;
}

private:
};

static void factorypushConsumer(char * name, char* factoryname);

void start_pushConsumer(char* channelName, char* factName)
{

char * taskName = "PUSHCONS";

Implementing the PushConsumer

- 290/607 - © 2024 Rocket Software

int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)factorypushConsumer,
(int)channelName,
(int)factName,
0,0,0,0,0,0,0,0);

}
void factorypushConsumer(char* name, char* factoryname)
{

CosEventChannelAdmin::EventChannelFactory_var factory;
VISTRY
{

// Get the Channel Id from user's supplied name.
PortableServer::ObjectId_var factId =

PortableServer::string_to_ObjectId(factoryname);

// Bind to Event Factory by giving the full POA name
// and the Object ID..
factory = CosEventChannelAdmin::EventChannelFactory::_bind

("/ ef_POA", factId);

CosEventChannelAdmin::EventChannel_var channel;
VISIFNOT_EXCEP

channel = factory->lookup_by_name(name);
VISEND_IFNOT_EXCEP

CosEventChannelAdmin::ConsumerAdmin_var for_consumer;
CosEventChannelAdmin::ProxyPushSupplier_var

proxyPushSupplier;
VISIFNOT_EXCEP

//obtain Consumer Admin
for_consumer = channel->for_consumers();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
proxyPushSupplier = for_consumer->obtain_push_supplier();

VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var consumerId;
CosEventComm::PushConsumer_var pushConsumerObject;
PushConsumerImpl* pushConsumer = new PushConsumerImpl();

Implementing the PushConsumer

- 291/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
// Create a object Id for Supplier servant.
consumerId =

PortableServer::string_to_ObjectId("mypushConsumer");
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Activate the servant with the ID on Event Channel POA.
// exceptions: ServantAlreadyActive, ObjectAlreadyActive,
// and WrongPolicy
ec_POA->activate_object_with_id(consumerId, pushConsumer);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
pushConsumerObject = CosEventComm::PushConsumer::

_narrow(ec_POA->id_to_reference(consumerId));
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
//connect to push Consumer
proxyPushSupplier->connect_push_consumer(

pushConsumerObject);
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, err)
{

cerr << "Error: " << err << endl << flush;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Implementing the PushConsumer

- 292/607 - © 2024 Rocket Software

Starting the Event Service
The VisiBroker RT for C++ Event Service is comprised of a set of libraries, header files and sample
applications, which are delivered as part of the base VisiBroker distribution.

The Event Service is a CORBA application which provides a set of interfaces (APIs) to support:

Creation of Named Event Channels.

Creation of suppliers and consumers and "connecting" them over a specified EventChannel .

Management of the EventChannel .

Management of EventChannel s through an EventChannelFactory interface.

Installing the Event Service
The Event Service is installed automatically when you install VisiBroker RT for C++.

Integrating the Event Service into your application
The steps required to integrate the Event Service into your VisiBroker RT application are very similiar to
the steps for integrating the VisiBroker ORB libraries. See Step 6: Integrating VisiBroker RT with
VxWorks 7 for details on the process to follow when adding additional libraries to your VisiBroker RT
application.

VisiBroker Event Service libraries
The VisiBroker RT for C++ Event Service consist of the following libraries:

1. 1.

2. 2.

3. 3.

4. 4.

Library Description Dependencies

libevchn_
c_s.o

This library provides the interfaces for the clients
which intend ONLY to use an already existing
VisiBroker RT for C++ Event Service channel and/or
factory. If a one of your VisiBroker RT 60 nodes
intends to start an Event Service channel and/or
factory it must include both this library as well as
the library libevchn.o (described below)

liborb.o o and l
ibservicessupport
.o

or
liborb_compact.o

and libservicesu
pport.o

Starting the Event Service

- 293/607 - © 2024 Rocket Software

VisiBroker Event Service “munched” libraries
Alternatively “munched” versions of the Event Service libraries are also delivered as part of the
VisiBroker RT for C++ Event Service distribution. These munched versions are made available for those
users who prefer to dynamically load the Event Service libraries using the VxWorks C shell:

Setting the queue length
In some environments, consumer applications may run slower than supplier applications. The
maxQueueLength parameter prevents out-of-memory conditions by limiting the number of outstanding
messages that will be held for each consumer that cannot keep up with the rate of messages from the
supplier.

If a supplier generates 10 messages per second and a consumer can only process one message per
second, the queue will quickly fill up. Messages in the queue have a fixed maximum length and if an
attempt is made to add a message to a queue that is full, the channel will remove the oldest message in
the queue to make room for the new message.

Each consumer has a separate queue, so a slow consumer may miss messages while another, faster
consumer may not lose any. The consumer message queue length can be configured on a per
EventChannel basis. This means that all consumers for a given channel will have separate but equal size
queues.

If maxQueueLength is not specified or if an invalid number is specified, a default queue length of 100 is
used.

Code example 91 Sample use of setting the Queue Length

Library Description Dependencies

libevchn.
o

This library provides the interfaces for creating and
starting VisiBroker RT for C++ Event Service
channels and/or factories.

Inclusion of this library also requires the inclusion
of the client interface library libevchn_c_s.o .

liborb.o o and l
ibservicessupport
.o

or
liborb_compact.o ,
libservicesupport
.o and libevchn_
c_s.o

--> ld < libservicesupport_munched.o
--> ld < libevchn_c_s_munched.o
--> ld < libevchn_munched.o

Setting the queue length

- 294/607 - © 2024 Rocket Software

Compiling and linking programs
C++ applications that use the event service need to include the following generated files:

Interface reference
The remainder of this section provides reference information on all of the Event Service interfaces.

EventChannel
The EventChannel provides the administrative operations for adding suppliers and consumers to the
channel and for destroying the channel.

This method returns a ConsumerAdmin object that can be used to add consumers to this EventChannel .

This method returns a SupplierAdmin object that can be used to add suppliers to this EventChannel .

This method destroys this EventChannel .

myChannel = myfactory->create_by_name(
"MyChannel",
150 // Queue Length

);

#include "CosEventComm_s.hh"
#include "CosEventChannelAdmin_c.hh"

ConsumerAdmin for_consumers();

SupplierAdmin for_suppliers();

void destroy();

Compiling and linking programs

- 295/607 - © 2024 Rocket Software

ConsumerAdmin
This interface is used by consumer applications to obtain a reference to a proxy supplier object. This is
the second step in connecting a consumer application to an EventChannel .

Code example 92 ConsumerAdmin interface

The obtain_push_supplier method is invoked if the calling consumer application is implemented using
the push model. If the application is implemented using the pull model, the obtain_pull_supplier
method should be used.

The returned reference is used to invoke either the connect_push_consumer or the connect_pull_consumer
method.

SupplierAdmin
This interface is used by supplier applications to obtain a reference to the proxy consumer object. This
is the second step in connecting a supplier application to an EventChannel .

Code example 93 SupplierAdmin interface

The obtain_push_consumer method is invoked if the supplier application is implemented using the push
model. If the application is implemented using the pull model, the obtain_pull_consumer method should
be used.

The returned reference is used to invoke the either the connect_push_supplier or the
connect_pull_supplier method.

module CosEventChannelAdmin {
interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};
};

module CosEventChannelAdmin {
interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};
};

ConsumerAdmin

- 296/607 - © 2024 Rocket Software

ProxyPullConsumer
This interface is used by a pull supplier application and provides the connect_pull_supplier method for
connecting the supplier's PullSupplier -derived object to the EventChannel . An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a PullSupplier .

Code example 94 ProxyPullConsumer interface

ProxyPushConsumer
This interface is used by a push supplier application and provides the connect_push_supplier method,
used for connecting the supplier's PushSupplier -derived object to the EventChannel . An AlreadyConnected
exception is raised if ProxyConsumer is already connected to a PullSupplier .

Code example 95 ProxyPushConsumer interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullConsumer : CosEventComm::PullConsumer {

void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)

raises(AlreadyConnected);
};

};

ProxyPullConsumer

- 297/607 - © 2024 Rocket Software

ProxyPullSupplier
This interface is used by a pull consumer application and provides the connect_pull_consumer method,
used for connecting the consumer's PullConsumer -derived object to the EventChannel . An
AlreadyConnected exception is raised if ProxyConsumer is already connected to a PullConsumer .

Code example 96 ProxyPullSupplier interface

ProxyPushSupplier
This interface is used by a push consumer application and provides the connect_push_consumer method,
used for connecting the consumer's PushConsumer -derived object to the EventChannel . An
AlreadyConnected exception is raised if ProxyConsumer is already connected to a PullSupplier .

Code example 97 ProxyPushSupplier interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushConsumer : CosEventComm::PushConsumer {

void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)

raises(AlreadyConnected);
};

};

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullSupplier : CosEventComm::PullSupplier {

void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)

raises(AlreadyConnected);
};

};

ProxyPullSupplier

- 298/607 - © 2024 Rocket Software

PullConsumer
This interface is used to derive consumer objects that use the pull model of communication. The pull
method is called by a consumer whenever it wants data from the supplier. A Disconnected exception will
be raised if the supplier has disconnected.

The disconnect_push_consumer method is used to deactivate this consumer if the channel is destroyed.

Code example 98 PullConsumer interface

The only method that must be implemented in the derived classes of PullConsumer is
disconnect_pull_consumer , which is used to disconnect the PullConsumer from the EventChannel . For
instance, in the PullModel example, the PullSupplier uses it to disconnect the pull consumer.

PushConsumer
This interface is used to derive consumer objects that use the push model of communication. The push
method is used by a supplier whenever it has data for the consumer. It raises a Disconnected exception
if the consumer has already been disconnected.

Code example 99 PushConsumer interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushSupplier : CosEventComm::PushSupplier {

void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)

raises(AlreadyConnected);
};

};

module CosEventComm {
exception Disconnected {};
interface PullConsumer {

void disconnect_pull_consumer();
};

};

PullConsumer

- 299/607 - © 2024 Rocket Software

The PushConsumer implements the push(in any data) method. This method is called by the
ProxyPushSupplier to deliver data to the consumer until the PushSupplier is explicitly disconnected from
the PushConsumer by a call to disconnect_push_supplier on the ProxyPushSupplier object.

PullSupplier
This interface is used to derive supplier objects that use the pull model of communication.

Code example 100 PullSupplier interface

The PullConsumer pulls data from a PullSupplier . Once connected to a ProxyPullSupplier , PullConsumer
can pull() or try_pull() on the ProxyPullSupplier object.

try_pull() is for asynchronous pull (returns immediately, even if the data is not yet available) and
pull() is for synchronous pull (returns when the data is available).

PullConsumer calls disconnect_pull_supplier() on ProxyPullServer when the consumer wants to
disconnect from the ProxyPullSupplier . The pull() and try_pull() methods return CORBA::Any objects.
In the example, the returned Any object contains a numbered string that contains the value "Hello" .

module CosEventComm {
exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

module CosEventComm
{

exception Disconnected{};
interface PullSupplier {

any pull() raises(Disconnected);
any try_pull() raises(Disconnected);
void disconnect_pull_supplier();

};
};

PullSupplier

- 300/607 - © 2024 Rocket Software

PullSupplier methods

This method blocks until there is data available from the supplier. The data is returned an Any type. If the consumer has disconnected,

this method raises a Disconnected exception.

This non-blocking method attempts to retrieve data from the supplier. If data is available, has_event is
set to CORBA::TRUE and the data is returned as an Any type. If there is no data available, has_event is set
to CORBA::FALSE and the return value will be NULL .

This method deactivates this pull server if the channel is destroyed.

PushSupplier
This interface is used to derive supplier objects that use the push model of communication. The
disconnect_push_supplier method is used by the EventChannel to disconnect supplier when it is
destroyed.

Code example 101 PushSupplier interface

PushSupplier should be implemented so that it constantly "pushes" data to the consumer. In the
PushModel example, once a PushModel object (a PushSupplier -derived object) is created, it starts a new
Thread that keeps calling push(CORBA.Any) on the ProxyPushConsumer at intervals. The pushed data is an
Any with a message string (numbered Hello string) inserted.

`any` **`pull();`**

`any` **`try_pull(out boolean has_event);`**

`void` **`disconnect_pull_supplier();`**

module CosEventComm {
exception Disconnected();
interface PushSupplier {

void disconnect_push_supplier();
};

};

PullSupplier methods

- 301/607 - © 2024 Rocket Software

The only method that must be implemented in the derived classes of PushSupplier is
disconnect_pull_consumer , which is used to disconnect the PullConsumer from the EventChannel . For
instance, in the PushView example, the PushConsumer uses it to disconnect the ProxyPushSupplier .

PushSupplier

- 302/607 - © 2024 Rocket Software

Real-Time CORBA Extensions

VisiBroker RT for C++ supports a number of Real-Time CORBA extensions, as defined in the Real-Time
CORBA 1.0 Specification. This section describes these extensions and how to apply them in application
code.

Overview
VisiBroker RT for C++ provides the following Real-Time CORBA extensions:

Real-Time CORBA Priority

A platform-independent priority scheme, that is used to control the priority of threads related to
the VisiBroker RT application. Specifying priorities in terms of the Real-Time CORBA priority
scheme, instead of the priority scheme of the particular RTOS, allows applications to be developed
that schedule real-time activities consistently across machines running different RTOSs and even
non-Real-Time Operating Systems. It also aids the porting and/or extension of applications to
different Operating Systems at a later date.

Priority Mappings

The means by which the Real-Time CORBA Priority scheme is ‘mapped’ onto the priority scheme of
the underlying RTOS. The user may install a Priority Mapping, to control the way the priorities are
mapped, or use the default mapping that is provided by the ORB.

Threadpools

Real-Time CORBA entities that allow an application to control the threads used by the ORB to
execute CORBA invocations.

Real-Time Object Adapters

Enhanced Portable Object Adapters (POAs), that work with Threadpools and have a number of
configurable Real-Time CORBA properties.

Real-Time CORBA Current interface

An extension of the CORBA::Current interface, that allows Real-Time CORBA priority values to be
assigned to application threads.

Real-Time CORBA Priority Models

Two alternate models for deciding the priority at which CORBA invocations are executed.

Real-Time CORBA Mutex API

• •

• •

• •

• •

• •

• •

• •

Real-Time CORBA Extensions

- 303/607 - © 2024 Rocket Software

An IDL-defined mutex interface, that gives applications access to the same mutex implementation
as that used internally by the ORB. This guarantees consistent priority inheritance behavior, as
well as improving application portability.

Real-Time ORB

Used to manage the creation and destruction of other Real-Time CORBA entities, such as
Threadpools and Mutexes.

Control of Internal ORB Thread Priorities

Mechanisms to allow range limitation and explicit control of the priorities of all additional threads
used internally within the ORB.

These features are explained in the sections that follow.

Using the Real-Time CORBA Extensions
Applications that want to make use of the Real-Time CORBA extensions must include the C++ header file
rtcorba.h , that is provided in the VisiBroker include directory.

Many of the Real-Time CORBA features have interfaces that are defined in IDL. The IDL for these
features is specified in a new RTCORBA module. This IDL is available for inspection in the file RTCORBA.idl ,
which can be found in the idl directory of the VisiBroker installation.

However, there is no need to compile the IDL in RTCORBA.idl to make use of the Real-Time CORBA
features. Applications need only to include the rtcorba.h header file that is provided with the other
VisiBroker header files.

This is because all of the interfaces in the module are specified as ‘locality constrained’. That is, their
object references cannot be passed off-node or used to invoke operations on instances remotely. All
manipulation of RealTime CORBA interfaces must be performed locally, as is the case with other CORBA
entities, such as CORBA::ORB and PortableServer::POA .

• •

• •

Using the Real-Time CORBA Extensions

- 304/607 - © 2024 Rocket Software

Real-Time CORBA ORB
The Real-Time CORBA extensions include a Real-Time ORB interface, which is used to manage other
Real-Time CORBA entities. The interface is named RTCORBA::RTORB , and has the following definition:

Code example 102 Real-Time CORBA ORB IDL : interface RTCORBA::RTORB.

The operations shown in the IDL are described below, in the sections Threadpools and Real-Time CORBA
Mutex API.

The Real-Time ORB does not need to be explicitly initialized - it is initialized implicitly as part of the
regular CORBA::ORB_init call. Any Real-Time ORB initialization arguments are passed in to the call to
CORBA::ORB_init , along with non-Real-Time arguments. If any Real-Time initialization argument is invalid,
the ORB_init call will fail, and a system exception will be thrown.

module RTCORBA {

// locality constrained interface
interface RTORB {

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool(
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(
in ThreadpoolId threadpool,
in unsigned long seconds)

raises (InvalidThreadpool);
};

};

Real-Time CORBA ORB

- 305/607 - © 2024 Rocket Software

To use the Real-Time ORB operations, the application must have a reference to the RTCORBA::RTORB
instance. This reference can be obtained any time after the call to ORB_init , and is obtained by calling
the resolve_initial_references operation on CORBA::ORB , with the object id RTORB as the parameter.
Because resolve_initial_references returns the reference as a CORBA::Object_ptr , it must then be
narrowed to a RTCORBA::RTORB_ptr before it can be used.

The code example below shows how to obtain the RTCORBA::RTORB reference. Similar code can be found
in the Real-Time CORBA examples included with the VisiBroker release : threadpool , priority_models ,
and rtmutex .

Code example 103 Obtaining a reference for the Real-Time ORB via resolve_initial_references

Real-Time CORBA ORB

- 306/607 - © 2024 Rocket Software

#include "corba.h"
#include "rtcorba.h"

// First initialize the ORB
CORBA::ORB_ptr orb;
VISTRY
{

orb = ORB_init(argc, argv);
}
VISCATCH(CORBA::Exception, e)
{

cerr << “Exception initializing ORB” << endl << e << endl;
// handle error here

}

VISEND_CATCH

// Then obtain the RTORB reference
CORBA::Object_var ref;
// Note use of _var, so ref will be automatically released
VISTRY
{

ref = orb->resolve_initial_references(“RTORB”);
}
VISCATCH
{

cerr << “Exception obtaining RTORB reference” << endl
<< e << endl;

// handle error here
}
VISEND_CATCH

// Finally, narrow the RTORB reference
RTCORBA::RTORB_ptr rtorb;
VISTRY
{

rtorb = RTCORBA::RTORB::_narrow(ref);
// ref is no longer needed. Will be automatically released
// as is a _var

}
VISCATCH(CORBA::Exception, e)
{

cerr << “Error narrowing RTORB reference” << endl
<< e << endl;

// Handle error here

Real-Time CORBA ORB

- 307/607 - © 2024 Rocket Software

Real-Time Object Adapters
In Real-Time CORBA, all Object Adapters are Real-Time Object Adapters. This means that all Object
Adapters are aware of priorities and handle CORBA invocations according to rules defined by Real-Time
CORBA. It is necessary for all Object Adapters on a node to be Real-Time; if some Object Adapters in the
CORBA application were non-Real-Time, their operation would interfere with the behavior of the Real-
Time Object Adapters (because threads associated with all Object Adapters must be scheduled together
by the OS).

As all Object Adapters are Real-Time, the normal Portable Object Adapter (POA) interface is used to
manage them.

Real-Time Object Adapters are created in the normal way, through a call to create_POA . Configuration of
the extra, Real-Time properties is achieved through the passing of new Real-Time policies in the policy
list parameter. An example of POA creation specifying one such new policy (and its associated value) is
shown below:.

Code example 104 Configuration of a Real-Time Policy at time of POA creation

}
VISEND_CATCH

Real-Time Object Adapters

- 308/607 - © 2024 Rocket Software

The Real-Time policies that can be configured at the time of POA creation are concerned with the
Priority Model that the POA supports and which Threadpool it will be associated with.

The configuration of these properties is described in the sections Threadpools and Real-Time CORBA
Mutex API.

If any of these Real-Time properties is not configured by the application at the time of POA creation, the
ORB will initialize that property with a default value. The default Priority Model behavior is for the POA
to support the Server Declared Priority Model, and the default Threadpool behavior is for the POA to be
associated with the General Threadpool. These defaults are explained in the two sections on Priority
Models and Threadpools.

// Create Real-Time CORBA Priority Model Policy
// (Already obtained RTORB reference)
RTCORBA::PriorityModelPolicy_ptr priority_model_policy =

rtorb->create_priority_model_policy(
RTCORBA::SERVER_DECLARED, 25);

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

Real-Time Object Adapters

- 309/607 - © 2024 Rocket Software

Real-Time CORBA Priority
Real-Time CORBA defines a universal, platform independent priority scheme called Real-Time CORBA
Priority. It allows Real-Time CORBA applications to make prioritized CORBA invocations in a consistent
fashion between nodes running different Operating Systems. Even if all nodes in the existing system
are running the same Operating System, its use aids the configuration of priorities in the system, and
will improve application portability and simplify future extension to a mixed OS environment.

For consistency and portability, Real-Time CORBA applications are obliged to use Real-Time CORBA
Priority to express the priorities in the (CORBA part of the) application, even if all nodes in a system use
the same OS, and hence the same priority scheme.

The RTCORBA::Priority type is used to represent Real-Time CORBA Priority:

A signed short is used in order to accommodate the Java language mapping. However, only values in
the range 0 (minPriority) to 32767 (maxPriority) are valid.

Numerically higher RTCORBA::Priority values are defined to be of higher priority. This is the reverse
of the priority scheme used by VxWorks, where 0 is the highest priority.

In practice, an application does not need to use the entire range of valid RTCORBA::Priority values (0 to
32767). A smaller range, that suits the needs of the application, can be defined as the only admissible
range. This is achieved through control of the Priority Mapping. Priority Mappings are described in the
next section.

By default, VisiBroker RT for C++ installs a Priority Mapping that only allows RTCORBA::Priority values in
the range 0 to 31. (The POSIX threading range of priorities). See the next section for details.

module RTCORBA {
typedef short Priority;
const Priority minPriority = 0;
const Priority maxPriority = 32767;

};

Note

Real-Time CORBA Priority

- 310/607 - © 2024 Rocket Software

Priority Mappings
A given Real-Time Operating System has a particular priority ‘scheme’: the range and direction of
priority values that it uses. The VxWorks priority scheme is priorities in the range 0 to 255, ranging from
255 as the lowest priority to 0 as the highest priority. In Real-Time CORBA, this is referred to as the
Native priority scheme of VxWorks, and the VxWorks priority values are referred to as Native Priority
values.

As the Real-Time CORBA application will describe its priorities in terms of RTCORBA::Priority values, and
the OS works in terms of Native Priority values, a mapping must be defined between these two priority
schemes. The mapping is used by the ORB, to obtain the Native Priority corresponding to a given
RTCORBA::Priority value, and vice versa, as is required. This is done, for example, when an application
specifies that it wants a Threadpool to have threads that are created with a particular RTCORBA::Priority ,
and the ORB needs to know what Native Priority to tell the OS to use when it actually creates the
threads.

The Priority Mapping may also be used directly by the application. But this should only occur in special
circumstances. This is discussed further in section Using Native Priorities in VisiBroker Application Code.

The ORB comes with a default Priority Mapping, which is sufficient for experimenting with the Real-Time
CORBA features and may be sufficient for many Real-Time applications (since it is based on the POSIX
priority scheme). Therefore, when first becoming familiar with the Real-Time features of VisiBroker RT
for C++, it may be appropriate to skip the rest of this section, and learn about the rest of the Real-Time
CORBA features (beginning in the section Threadpools), before returning to this section to understand
the details of Priority Mappings and the reasons for installing one that is different from the default.

Priority Mapping Types
To support Priority Mappings, a RTCORBA::NativePriority type and RTCORBA::PriorityMapping type are
defined :

RTCORBA::NativePriority values must be integers in the range -32768 to +32767. However, for a particular
RTOS, the valid range will be a subrange of this range. For VxWorks, the valid range is 0 to 255.

module RTCORBA {
typedef short NativePriority;
native PriorityMapping

};

Priority Mappings

- 311/607 - © 2024 Rocket Software

The RTCORBA::PriorityMapping type is defined as an IDL native interface. This means that the interface is
defined directly in each implementation language, rather than being defined in IDL and mapped
automatically to each language according to the rules of the particular CORBA language mapping. This
is done for reasons of efficiency.

The C++ mapping of the RTCORBA::PriorityMapping interface is:

The methods that define the behavior of a particular Priority Mapping are to_native , to_CORBA and
max_priority . Their purpose is as follows:

to_native

This method takes a RTCORBA::Priority value from the corba_priority parameter and either maps it to a

RTCORBA::NativePriority value or fails to map it. If the value is mapped, the resulting Native Priority value is stored

in the location referenced by the parameter native_priority (which is a C++ reference parameter) and a true value is returned to

indicate that the mapping was successful. If the value is not mapped, the contents of the native_priority parameter are

not altered, and a false value is returned to indicate that the mapping operation failed.

to_CORBA

The converse of to_native , this method takes a RTCORBA::NativePriority value from the

native_priority parameter, and either maps it to a RTCORBA::Priority value or fails to map it. If the value is

mapped, the resulting RTCORBA::Priority value is stored in the location referenced by the corba_priority
parameter (which is a C++ reference parameter) and a true value is returned to indicate that the mapping was successful. If the

value is not mapped, the contents of the corba_priority parameter are not altered, and a false value is returned to

indicate that the mapping operation failed.

//C++
class PriorityMapping {
public:

virtual CORBA::Boolean to_native(
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority);

virtual CORBA::Boolean to_CORBA(
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority);

virtual RTCORBA::Priority max_priority();

PriorityMapping();
virtual ~PriorityMapping() {}
static RTCORBA::PriorityMapping * instance();

};

Priority Mapping Types

- 312/607 - © 2024 Rocket Software

max_priority

This method just returns the highest RTCORBA::Priority value that is valid in this mapping. The ORB needs to be

explicitly told the highest value as there is no efficient way for it to determine it by examining the behavior of the to_native
and to_CORBA methods given different input values.

The implementation of these methods must conform to certain rules, that are described below.

Rules for Priority Mappings
Any Priority Mapping that is installed (including the default Priority Mapping) must conform to the
following rules:

The to_native and to_CORBA methods should be able to handle all values of their input parameter,
in the range -32768 to +32767.

to_native must definitely fail to map values outside the range 0 to 32767, and may fail to map
values within that range as well. (For example the default Priority Mapping fails to map all values
outside the range 0 to 31).

to_CORBA must definitely fail to map values outside the range of the Native Priority scheme and
may fail to map values within that range as well. (The default Priority Mapping chooses to only
map from VxWorks Native Priorities in the range 100 to 131).

Lower RTCORBA::Priority values should always map to/from lower importance Native Priority
values, and higher to higher. Note that in the case of a VxWorks based operating system, this
means mapping numerically lower RTCORBA::Priority values to/from numerically higher Native
Priorities. This follows the convention used by the majority of Real Time Operations Systems.
VxWorks is at odds with this convention, in making 0 the highest importance priority. The reason
for following the convention is to maintain consistency with Real-Time CORBA applications
developed on other RTOSs. Otherwise future porting and interworking with other Real-Time
applications will be greatly complicated

RTCORBA::Priority 0 should always be mapped, and always be mapped to the lowest importance
Native Priority value in the range of Native Priority values that is mapped to/ from. (The default
Priority Mapping maps RTCORBA::Priority 0 to VxWorks Priority 131, which is the lowest
importance priority in the default mapping).

max_priority must return the highest RTCORBA::Priority value that is mapped by the mapping.
(That is, the highest value for which a Native Priority value is returned).

The following are not mandated, but will often be the case, unless there is special reason to do
otherwise:

• •

• •

• •

• •

• •

• •

Rules for Priority Mappings

- 313/607 - © 2024 Rocket Software

to_native and to_CORBA will usually return the same value (or fail to map) every time they are
called with the same input value.

to_native and to_CORBA will usually be reverse mappings of one another.

The ranges of RTCORBA::Priority and Native Priority values that are mapped will usually each be a
single contiguous range of priority values.

Default Priority Mapping
VisiBroker RT for C++ provides a default Priority Mapping. This is the Priority Mapping that will be used
unless a different one is written by the application developer and installed using the process described
below, in the section Replacing the Default Priority Mapping.

Only one Priority Mapping may be installed at any one time on a given VisiBroker RT system. The act
of installing one Priority Mapping automatically uninstalls the previously installed Priority Mapping
(which will usually be the default Priority Mapping).

The default Priority Mapping has the following characteristics:

Valid RTCORBA::Priority range is 0 to 31 only. This follows the POSIX threading model. All priorities
outside of this range are invalid, which means an exception will be thrown if an attempt is made
to use them.

The valid RTCORBA::Priority values are mapped one-to-one onto a 32 priority sub-range of the
VxWorks Native Priority range. Specifically, they are mapped onto the Native Priority range 100 to
131.

The valid RTCORBA::Priority values are mapped onto the Native Priority range in such a way that
RTCORBA::Priority value 0 corresponds to the lowest-importance Native Priority in the sub-range
used, and RTCORBA::Priority 31 corresponds to the highest-importance Native Priority in the sub-
range used. Specifically:

RTCORBA::Priority 0 maps to VxWorks Native Priority 131.

RTCORBA::Priority 31 maps to VxWorks Native Priority 100.

The default Priority Mapping is defined within the ORB, hence the source code for it is not included in
the VisiBroker RT release. The source code for the mapping is shown here, however, to show exactly
how this mapping behaves,

Code example 105 The default Priority Mapping implementation

• •

• •

• •

Note

• •

• •

• •

• •

• •

Default Priority Mapping

- 314/607 - © 2024 Rocket Software

// VisiBroker for C++ for VxWorks Default Priority Mapping
CORBA::Boolean VISDefaultPriorityMapping::to_native(

RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority)

{
if ((corba_priority < 0) || (corba_priority > 31))
{

return FALSE;
}
else
{

// 0 -> 131, 31 -> 100
native_priority = 131 - corba_priority;
return TRUE;

}
}

// Default ’to_corba’ mapping CORBA::Boolean
VISDefaultPriorityMapping::to_CORBA(

RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority)

{
if ((native_priority < 100) || (native_priority > 131))
{

return FALSE;
}
else
{

// 131 -> 0, 100 -> 31
corba_priority = 131 - native_priority;
return TRUE;

}
}

// Default max method : returns the max RTCORBA::Priority
// supported by the default priority mapping
RTCORBA::Priority VISDefaultPriorityMapping::max_priority()
{

return 31;
}

Default Priority Mapping

- 315/607 - © 2024 Rocket Software

Replacing the Default Priority Mapping

Only one Priority Mapping may be installed at any one time on a particular machine. The act of
installing one Priority Mapping automatically uninstalls the previously installed Priority Mapping
(which will usually be the default Priority Mapping).

The application may wish to replace the default Priority Mapping on some or all nodes in the system.
Reasons for doing this include:

To 'shift' the range of Native Priority values that are mapped to/from higher or lower in the overall
Native Priority scheme. For example, to take the default Priority Mapping’s range of Native Priority
100 to 131, and replace it with the range 50 to 81 (higher importance) or 200 to 231 (lower
importance).

To have more or fewer RTCORBA::Priority values in the range of valid (i.e. mapped) values. For
example, to only map RTCORBA::Priority values in the range 0 to 8 or to map values in the range 0
to 128.

To have more or fewer Native Priority values in the range of valid (i.e. mapped) values. For
example, to map to/from Native Priority values in the range 128 to 256.

The relationship between the ranges of RTCORBA::Priority and Native Priority values that are valid in the
mapping will determine whether the mapping is a one-to-one mapping or not. The mapping does not
have to be a one-to-one mapping, but this may be convenient. The default Priority Mapping is a one-to-
one mapping.

Installed Priority Mappings should follow the convention (also used in the default Priority Mapping)
of making the RTCORBA::Priority 0 have the lowest importance. On VxWorks, this means ensuring
that RTCORBA::Priority 0 maps to the numerically largest VxWorks Native Priority value (of the
subrange that is being mapped to). The reason for doing this is to maintain consistency with Real-
Time CORBA applications developed on other RTOSs. Otherwise, future porting and interworking
with other Real-Time applications will be greatly complicated.

A new Priority Mapping is installed by defining a new class, which must inherit from the class
TCORBA::PriorityMapping , and creating one static instance of it in the application. When the static
instance is initialized (during the execution of static constructors) the base RTCORBA::PriorityMapping
class’ constructor will register the new mapping with the ORB.

Note

• •

• •

• •

Note

Replacing the Default Priority Mapping

- 316/607 - © 2024 Rocket Software

For an example of a writing and installing a new Priority Mapping, look at the files mapping.h and
mapping.C in the threadpool example included in the <VBRT_install>/examples directory under the
VisiBroker installation. Note the single instance of the new class that is created in global scope in
mapping.C . When the resulting mapping.o is loaded onto a VxWorks target, and static constructor
initialization takes place, it is the initialization of this instance that installs the mapping.

To see the effect of installing the mapping, compare the behavior of loading and running the corba_init
and corba_init_mapping executables. corba_init_mapping has mapping.o linked in, corba_init does not.

Using Native Priorities in VisiBroker Application Code
Although applications are obliged to use Real-Time CORBA Priority to reason about the priority of
different parts of their CORBA application (and the priority of CORBA invocations between parts of the
application), there are cases in which the application will need to deal in terms of Native Priority. For
example, to configure some sub-system outside of the CORBA application, that only knows about the
Native Priority scheme, or to use some OS call directly, that takes a (Native) priority value as a
parameter.

Hence, it may be necessary to translate between Real-Time CORBA and Native Priority in the
application. To allow this, VisiBroker RT for C++ offers a convenience method, that returns a pointer to
the currently installed Priority Mapping. The method is the static instance method on the class
RTCORBA::PriorityMapping .

Using this, the application can call the Priority Mapping’s methods directly, but is always guaranteed to
be working with the installed mapping. This allows the code to continue to work if the mapping is
changed.

Code example 106 An example of using the installed Priority Mapping from application code

Using Native Priorities in VisiBroker Application Code

- 317/607 - © 2024 Rocket Software

Threadpools
VisiBroker RT for C++ uses Threadpools to manage the threads of execution on the server-side of the
ORB. Threadpools offer the following features:

Pre-allocation of threads.

This helps guarantee Real-Time system behavior, by allowing the application programmer to
ensure that there are enough thread resources to satisfy a certain number of concurrent
invocations, and also helps reduce latency and increase predictability, by avoiding the destruction
and recreation of threads between invocations.

Partitioning of threads.

Having multiple Threadpools, associated with different Object Adapters allows one part of the
system to be isolated from the thread usage of another, possibly lower priority, part of the
application system. This can again be used to help achieve Real-Time behavior of the system as a
whole.

Bounding of thread usage.

A Threadpool can be used to set a maximum limit on the number of threads that a POA or set of
POAs may use. In systems where the total number of threads that may be used is constrained,
this can be used in conjunction with Threadpool partitioning to avoid thread starvation in a critical
part of the system.

RTCORBA::Priority corba_priority;

// Priority Mapping methods return boolean flag, rather than
// throwing exceptions
if(!RTCORBA::PriorityMapping::instance()->to_CORBA(

100, corba_priority))
{

// Handle failure to map native priority to RT CORBA priority
}

// Use corba_priority value here...

• •

• •

• •

Threadpools

- 318/607 - © 2024 Rocket Software

Threadpool API
Threadpools are managed using the following operations of the RTCORBA::RTORB interface:

These operations are described in the sections that follow. Examples of Threadpool creation and their
association with POAs can be found in the threadpool example included with the VisiBroker installation.

Threadpool Creation and Configuration
A Threadpool is created by invoking the create_threadpool operation on the Real-Time ORB. The
arguments to create_threadpool have the following significance:

stacksize

The stack size, in bytes, that each thread created for the Threadpool should have.

static_threads

The number of threads that will be created and assigned to the pool at the time of Threadpool creation. These threads will not be
destroyed until the Threadpool itself is destroyed. After they have been used to execute a CORBA invocation, they are returned to the
Threadpool, and await another invocation to execute.

module RTCORBA {
typedef unsigned long ThreadpoolId;

// locality constrained object
interface RTORB {

exception InvalidThreadpool {};

ThreadpoolId create_threadpool(
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(
in ThreadpoolIdthreadpool,
in unsigned long seconds)

raises (InvalidThreadpool);
};

};

Threadpool API

- 319/607 - © 2024 Rocket Software

dynamic_threads

The number of threads that may be created dynamically, to execute CORBA invocations received when all the static threads are
currently in use. The number may be zero, in which case no threads may be dynamically created after Threadpool creation. (In this
case, the number of concurrently executing invocations is limited by the number of static threads).

default_priority

The RTCORBA::Priority at which idle threads should remain while in the pool waiting for a CORBA invocation to execute.

The priority at which the invocation will be executed depends on the Real-Time CORBA Priority Model in use. See the section Real-
Time CORBA Priority Models for details. This parameter determines the priority of the threads when they are not handling
invocations.

allow_request_buffering , max_buffered_requests , and max_request_buffer_size

These arguments support the Request Buffering feature from the RealTime CORBA specification, that allows for invocation requests
to be queued once the static and dynamic thread limits of a Threadpool have been reached. This feature is not currently supported
in VisiBroker RT for C++, and the value of these arguments is ignored.

If dynamic_threads is greater than zero, so that threads may be created dynamically, the threads are not
immediately destroyed after they have completed executing the CORBA invocation that they were
created to handle. They are returned to the Threadpool, in the same way that static threads are.
However, dynamic threads that remain idle in the Threadpool may eventually be destroyed during
garbage collection that occurs from time to time.

The amount of time a dynamically created thread must remain idle in a Threadpool before it is
destroyed may be set using the threadpool_idle_time operation of RTCORBA::RTORB . If the idle time is not
set using this operation, it defaults to 300 seconds.

If successful, create_threadpool returns an identifier for the new Threadpool. The identifier is of type
RTCORBA::ThreadpoolId (an unsigned long), and is subsequently used to refer to that Threadpool.

Association of an Object Adapter with a Threadpool
Every POA created using VisiBroker RT for C++ is associated with a Threadpool. Each Threadpool, on the
other hand, may be associated with any number of POAs. By configuring multiple POAs to use the
same or different Threadpools, the application designer can control the use of threads by different sets
of CORBA Objects.

Which Threadpool a POA is associated with is determined by passing the

RTCORBA::ThreadpoolId of the desired Threadpool into the create_POA operation as the value of a
RTCORBA::ThreadpoolPolicy policy.

Code example 107 Associating a POA with a Threadpool at time of POA initialization

Association of an Object Adapter with a Threadpool

- 320/607 - © 2024 Rocket Software

The create_POA fails if any part of the Real-Time CORBA configuration is invalid. For example, if the
ThreadpoolId is not for a currently existing Threadpool, a CORBA::BAD_PARAM system exception will be
thrown.

// Obtain RTORB reference
CORBA::Object_var objref =

orb->resolve_initial_references("RTORB");
RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

// Create a Threadpool
RTCORBA::ThreadpoolId tpool_id =

rtorb->create_threadpool(30000, // stacksize
5, // num static threads
0, // num dynamic threads
20, // default RT CORBA priority
0, 0, 0);

// Create Threadpool Policy object for use in POA initialization
RTCORBA::ThreadpoolPolicy_ptr tpool_policy =

rtorb->create_threadpool_policy(tpool_id);

// Create Policy List for POA initialization
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = tpool_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

Association of an Object Adapter with a Threadpool

- 321/607 - © 2024 Rocket Software

The General Threadpool
If a Threadpool is not specified at POA creation time, as described in the previous section, then the new
POA that is created is associated with a special Threadpool, called the General Threadpool.

The General Threadpool does not have to be created by a call to RTCORBA::RTORB ’s create_threadpool
operation. Instead, the General Threadpool is created automatically by the ORB the first time it is
required. That is, it is created the first time create_POA is called without specifying a Threadpool. Hence,
if all POAs are created specifying application-created Threadpools, the General Threadpool will not be
created.

The General Threadpool will be created with the following configuration:

stacksize = 30000

static_threads = 0

dynamic_threads = 1000

default_priority = 0

max_thread_idle_time = 300

If this configuration is not appropriate for the application, the General Threadpool should not be used,
and the application should explicitly associate each POA with an appropriately configured Threadpool at
POA creation time.

Threadpool Destruction
A Threadpool may be destroyed by passing its ThreadpoolId as the argument to a call to
RTCORBA::RTORB::destroy_threadpool :

• •

• •

• •

• •

• •

The General Threadpool

- 322/607 - © 2024 Rocket Software

All POAs that have been associated with a particular Threadpool (i.e. that had this Threadpool specified
as the Threadpool to use, at the time of POA creation) must have been destroyed before the
destroy_threadpool operation will succeed.

If POAs still exist that are associated with the Threadpool, the call fails and a system exception is
thrown.

Real-Time CORBA Current
Real-Time CORBA defines a Real-Time CORBA Current interface to provide access to the CORBA priority
of a thread.

Code example 108 The RTCORBA::Current interface

A Real-Time CORBA Priority may be associated with the current thread, by setting the base_priority
attribute of the RTCORBA::Current object. This has two effects:

// Threadpool id obtained previously

// Get RT ORB reference
CORBA::Object_var objref =

orb->resolve_initial_references("RTORB");

RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(objref);

VISTRY
{

rtorb->destroy_threadpool(pool_id);
}
VISCATCH(CORBA::Exception, e)
{

// handle error here
}
VISEND_CATCH

module RTCORBA
{

interface Current : CORBA::Current {
attribute Priority base_priority;

};
};

Real-Time CORBA Current

- 323/607 - © 2024 Rocket Software

The Native Priority of the current thread will immediately be set to the value mapped from the
Real-Time CORBA Priority value given as the parameter to the set attribute operation. Thus setting
this attribute has the effect of controlling the priority of CORBA application threads.

The Real-Time CORBA Priority value is stored, for use with any CORBA invocations made from that
thread. The value is only relevant when making invocations on CORBA Objects that were created
from POAs that are configured to support the 'Client Priority Propagation' Priority Model. See
Real-Time CORBA Priority Models.

The priority value stays in effect (for both of the above purposes) until a new value is set. The current
value can also be read, using the corresponding get attribute operation.

A CORBA::BAD_PARAM system exception will be thrown by the set attribute operation if an attempt is made
to set a priority outside of the valid 0 to 32767 range. A CORBA::DATA_CONVERSION exception will be thrown
if an attempt is made to set a priority that is in the 0 to 32767 range, but outside of the range supported
by the currently installed Priority Mapping.

A CORBA::INITIALIZE system exception will be thrown if an attempt is made to get the priority value from
a thread that has not yet had a RealTime CORBA Priority value set on it. (The Native Priority of the
current thread is not just mapped to a Real-Time CORBA Priority and returned).

To use the RTCORBA::Current object, a reference to it must be obtained. This is achieved by calling the
CORBA::ORB operation resolve_initial_references with the parameter RTCurrent , as in the following
example.

Code example 109 Obtaining the reference of RTCORBA::Current

• •

• •

Real-Time CORBA Current

- 324/607 - © 2024 Rocket Software

Note that the RTCORBA::Current reference only needs to be obtained once. The same variable may be
used by different threads, and will behave as if it is private to each of them (setting and getting their
thread-specific priority value). This behavior is inherited from the base CORBA::Current object.

// ORB previously initialized CORBA::ORB_ptr orb;

// Obtain the RTCORBA::Current reference
CORBA::Object_var ref;
// Note use of _ptr. The reference will be autoatically released

VISTRY
{

ref = orb->resolve_initial_references(“RTCurrent”);
}
VISCATCH
{

// handle error here
}
VISEND_CATCH

// Narrow the RTCORBA::Current reference
RTCORBA::Current_ptr rtcurrent;
VISTRY
{

rtcurrent = RTCORBA::Current::_narrow(ref);
// ref is no longer needed. Will be automatically released
// as is a _var

}
VISCATCH(CORBA::Exception, e)
{

// handle error here
}
VISEND_CATCH

Real-Time CORBA Current

- 325/607 - © 2024 Rocket Software

Real-Time CORBA Priority Models
Real-Time CORBA supports two models for the coordination of priorities across a system. These two
models provide two alternate answers to the question: where does the priority at which the CORBA
invocation is executed come from? They are:

Client Propagated Priority Model

In this model, the Real-Time CORBA Priority associated with a client CORBA application thread
(using RTCORBA ::Current`), is also used as the priority on the server-side of the invocation. The
thread that executes the invocation (which is taken from a Threadpool) runs at a Native Priority
that is mapped from the Real-Time CORBA priority set on the client side prior to making the
invocation.

Server Declared Priority Model

In this model the Real-Time CORBA Priority associated with a client CORBA application thread only
affects the priority on the client-side of the invocation. The priority that the invocation is handled
at on the server-side is determined by the configuration of the CORBA Object and the POA that
created it.

Which Priority Model is used is a server-side issue, configured at the POA level. All CORBA Objects
created from the same POA will have their invocations processed according to the Priority Model the
POA is configured with.

The Priority Model is selected at POA initialization time, by including a RTCORBA::PriorityModelPolicy
instance in the Policy List passed as a parameter to create_POA . The Policy is configured with one or
other of the two values:

RTCORBA::CLIENT_PROPAGATED

To select the Client Priority Propagation Model.

RTCORBA::SERVER_DECLARED

To select the Server Declared Model.

In either case, a RTCORBA::Priority value is also specified as part of the Policy. The two models use this
priority value differently:

In the Client Priority Propagation Model, the value is the priority at which to execute invocations
from clients that did not set a priority prior to making the invocation. This will include clients from
non-Real-Time ORBs (including non-Real-Time ORBs from other vendors), and also invocations
from threads that have not yet set a priority value using RTCORBA::Current .

• •

• •

• •

• •

• •

Real-Time CORBA Priority Models

- 326/607 - © 2024 Rocket Software

In the Server Declared Model, the value is the priority at which invocations will be executed,
unless a different priority is set at the Object level. See the section below for details on the setting
of the priority at the Object level.

The Server Declared Model is the default model. If a POA is initialized without specifying which model to
use, it will be configured to use the Server Declared Model. However, in this case there is a subtle
difference in behavior; because a priority has not been specified, the invocations run at the default
priority of the Threadpool that the POA is associated with. The default priority is a configurable property
of Threadpools. It is the priority that threads remain at when idle in the pool. See the section on
Threadpools for details.

The following code demonstrates the setting of the Priority Model Policy at the time of POA creation. In
this case, the Client Priority Propagation Model is selected, with a default priority of 7 (for invocations
from non-Real-Time Clients).

Code example 110 Configuration of Real-Time Priority Model Policy at POA creation

• •

Real-Time CORBA Priority Models

- 327/607 - © 2024 Rocket Software

See the priority_models example included with the VisiBroker installation for further examples of
configuring the two different Priority Models.

Client Model Backwards Compatability with VisiBroker 3.2.2
VisiBroker RT for C++ 3.2.2 was implemented before the Real-Time CORBA Specification was finalized.
As a consequence, it uses a non-standard value for the ServiceId of the Service Context used to
propagate the client thread's Real-Time CORBA Priority from the client to the server.

By default, the current version of VisiBroker RT for C++ sends only the standard ServiceId value. Setting
the property vbroker.orb.clientModel.backCompat to true causes two Service Contexts to be sent:

One with the standard Service ID

One with the old 322 Service ID

// Create Real-Time CORBA Priority Model Policy
// (Already obtained RTORB reference)
RTCORBA::PriorityModelPolicy_ptr priority_model_policy =

rtorb->create_priority_model_policy(
RTCORBA::CLIENT_PROPAGATED, 7);

// Create Policy List containing this RT CORBA Policy
// (Include any required non-Real-Time policies in the same list)
CORBA::PolicyList policies;
policies.length(1);
policies[0] = priority_model_policy;

// Create POA, using the Policy List
// (Associate POA with the Root POA's POA manager, if none other)
// (Already obtained Root POA reference)
PortableServer::POAManager_var poa_manager =

rootPOA->the_POAManager();
VISTRY
{

poa = rootPOA->create_POA("myPOA", poa_manager, policies);
}
VISCATCH(CORBA::Exception, e)
{

// handle exceptions here
}
VISEND_CATCH

• •

• •

Client Model Backwards Compatability with VisiBroker 3.2.2

- 328/607 - © 2024 Rocket Software

This allows a current version VisiBroker RT client to propagate Real-Time CORBA Priority values to a
VisiBroker RT 3.2.2 server.

Current version VisiBroker RT for C++ servers always accept Real-Time CORBA Priority values from
VisiBroker 3.2.2 clients, whether this property is true or false.

Setting Priority at the Object Level
When the Server Declared Model is selected a priority value is supplied to determine the priority at
which invocations will be executed on the serverside of the ORB. This priority value is used when
handling invocations on behalf of any CORBA Object created by that POA.

However, this scope of control of priority is too coarse for some applications. To remedy this, Real-Time
CORBA allows the priority that invocations will be executed at in the Server Declared model to be
overridden on a per-Object basis.

The priority to run invocations at may be overridden for a given object by using either the operation
activate_object_with_priority or activate_object_with_id_and_priority to activate the object in question.
These operations work in the same way as activate_object and activate_object_with_id , but take a Real-
Time CORBA Priority value as an additional parameter.

These operations are specified as part of the VisiBroker Extended POA interface, PortableServerExt::POA ,
which is accessed by narrowing a POA object reference using the static C++ method
PortableServerExt::POA::_narrow .

For an example of setting the priority on a per-Object basis, see the file model_server.C in the
priority_models example included with VisiBroker.

Real-Time CORBA Mutex API
VisiBroker RT for C++ implements the following Real-Time CORBA Mutex interface:

Note

Setting Priority at the Object Level

- 329/607 - © 2024 Rocket Software

A new RTCORBA::Mutex object is obtained using the create_mutex operation of RTCORBA::RTORB . A Mutex
object has two states: locked and unlocked. Mutex objects are created in the unlocked state. When the
Mutex object is in the unlocked state the first thread to call the lock() operation will cause the Mutex
object to change to the locked state.

Subsequent threads that call the lock() operation while the Mutex object is still in the locked state will
block until the owner thread unlocks it by calling the unlock() operation.

The try_lock() operation works like the lock() operation except that if it does not get the lock within
max_wait time it returns FALSE. If the try_lock() operation does get the lock within the max_wait time
period it returns TRUE.

The mutex returned by create_mutex must have the same priority inheritance properties as those used
by the ORB to protect resources. If a Real-Time CORBA implementation offers a choice of priority
inheritance protocols, or offers a protocol that requires configuration, the selection or configuration will
be controlled through an implementation specific interface.

#include “timebase.idl”
module RTCORBA {

// locality constrained interface
interface Mutex {

void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately

};
interface RTORB {

...
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);
...

};
};

Real-Time CORBA Mutex API

- 330/607 - © 2024 Rocket Software

Control of Internal ORB Thread Priorities
VisiBroker RT for C++ allows the application to control the priority of the threads that the ORB creates
for internal use.

The internal ORB threads are:

VISLogger threads

These are the threads that VisiBroker Logger Forwarders run on. One Logger Forwarder thread is created at ORB initialization
time.The thread name is ‘VISLogger’. Other instances will be created if more Loggers are created by the application. The additional

Logger Forwarder threads have task names of the form VISLogger<n> , where <n> is an index number that starts from

one and corresponds to the order in which the Loggers were created.

DSUser thread

A single DSUser thread is created the first time the ORB attempts to communicate with the OS Agent. This will usually happen the

first time either activate_object or a _bind method is called. This thread manages all communication between the ORB and the

OS Agent. The task name is VISDSUser .

Listener threads

Listener Threads will be created as part of the initialization of a Server Engine. (This occurs during POA initialization, whenever a
POA wishes to use a Server Engine that has not been yet been used). These threads wait for incoming CORBA invocations to be

received from network connections. Listener Threads for IIOP communication have task names of the form VISLis<n> ,

where <n> is an index number that starts from zero and indicates the order in which the listeners were created.

Garbage Collection thread

A single instance of this is created the first time a Threadpool is created. This will occur either when the application explicitly creates
a Threadpool, or the first time the application creates a POA without specifying a Threadpool (in which case the General Threadpool

will be created so that it can be used). Garbage Collection Threads have task names of the form VISGC<n> , where <n>
corresponds to the Threadpool Id of the threadpool they are associated with.

If the application does not configure the priority of these threads they all default to running at the
highest RTCORBA::Priority in the installed priority mapping. That is the priority that is returned by the
Priority Mapping’s max_priority method. Hence, with the Default Priority Mapping installed, they will all
run at RTCORBA::Priority 31 , which maps to VxWorks Native Priority 100 .

There are two ways of configuring the priority of the different types of internal ORB threads:

Collectively, by setting a range limit on ORB internal threads. All the above types of thread will all
then run at the maximum priority in the specified range.

On a per-type basis (and in some cases a per-instance basis), through VisiBroker properties.

• •

• •

Control of Internal ORB Thread Priorities

- 331/607 - © 2024 Rocket Software

Limiting the Internal ORB Thread Priority Range
A range limit is set on internal ORB threads by passing the following argument to ORB_init:

-ORBRTPriorityRange is given as one argument, and the two values are given together in another
argument, separated by a comma. For example:

The two values give the minimum RTCORBA::Priority followed by the maximum RTCORBA::Priority value
that internal ORB threads are permitted to run at. If this argument is given, the VisiBroker internal ORB
threads will default to running at the maximum priority that is specified.

If the range is invalid for some reason the ORB_init call fails and throws a CORBA system exception. If
the range is invalid because one or both of the values is not a valid RTCORBA::Priority value, or because
min is greater than max, then a CORBA::BAD_PARAM exception is thrown. If the range is invalid because one
or both of the values is outside of the range supported by the installed Priority Mapping, then a
CORBA::DATA_CONVERSION exception is thrown.

Configuring Individual Internal ORB Thread Priorities
The priority of different types (and in one case, different instances) of internal ORB threads may be
controlled by specifying values for certain of VisiBroker properties.

In all cases, the priority value is specified as a Real-Time CORBA Priority value. The value must be a valid
priority under the installed Priority Mapping:

vbroker.logger.default.thread.priority

Sets the default priority for Logger Forwarder threads. Must be set no later than the first time that CORBA::ORB_init is called. Note
that the priority of Logger Forwarder Threads can be set on a per-instance basis using the

VISLogger::forwarder_priority() method. See VisiBroker Logging for details.

--ORBRTPriorityRange <min>,<max>

// Prepare arguments for ORB_init
int argc = 3;
char * argv[] = { “app_name”, “-ORBRTPriorityRange”, “10,17” };

// Initialize ORB
CORBA::ORB_ptr = ORB_init(argc, argv);

Limiting the Internal ORB Thread Priority Range

- 332/607 - © 2024 Rocket Software

vbroker.se.default.socket.listener.priority

Sets the default priority that Listener threads will run at. Can be changed at any time. The current value at the time of Server Engine
creation (which occurs during POA creation) is the value used for any new Listeners that are created. Can be overridden, using the
next property.

vbroker.se.<SE name>.scm.<SCM name>.listener.priority

Where <*SE name*> is the name of a Server Engine and <*SCM name*> is the name of a Server Connection Manger.

Sets the priority of the Listener thread associated with a specific SCM in a specific Server Engine. Can be set at any time prior to the
creation of that Server Engine (which occurs during the creation of the first POA that uses that Server Engine).

vbroker.dsuser.thread.priority

Sets the priority at which the ORB’s DSUser thread will run. Must be set no later than the first time that the ORB attempts to

communicate with an OSAgent (which is typically when a POA is created, an object is activated or a call to a _bind method is

made).

vbroker.garbageCollect.thread.priority

Sets the priority of all Garbage Collection threads. Can be changed at any time. The current value at the time of Threadpool creation
is the value used.

Protocol Configuration Policies
Real-Time CORBA uses two Policy types, based on a common protocol configuration framework, to
enable the selection of protocols on the server and client side of the ORB.

ServerProtocolPolicy
The ServerProtocolPolicy policy type is used to select communication protocols on the server-side of
VisiBroker RT for C++ applications.

IDL sample 15 Server Protocol Policy IDL

Protocol Configuration Policies

- 333/607 - © 2024 Rocket Software

An instance of the ServerProtocolPolicy is created with the RTORB::create_server_protocol_policy()
operation. The attribute of the policy is initialized with the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified. The order of the Protocols in the
ProtocolList indicates the order of preference for the use of the different protocols. Information
regarding the protocols is placed into IORs in that order, and the client will take that order as the default
order of preference for choice of protocol to bind to the object.

The type of protocol is indicated by an IOP::ProfileId , which is an unsigned long. This means that a
protocol is defined as a specific pairing of an ORB protocol (such as GIOP) and a transport protocol
(such as TCP). Hence IIOP would be selected, rather than GIOP plus TCP being selected separately. IIOP
in particular is represented by the value TAG_INTERNET_IIOP (defined as value '0').

A Protocol type contains a ProfileId plus two ProtocolProperties1 , one each for the ORB protocol and
the transport protocol.

VisiBroker RT for C++ does not use the Protocol Properties as a means of configuring protocols used by
the ORB; instead Protocol Properties are configured via VisiBroker Properties. See Server Engines and
SCM Configuration for details.

Code example 111 Using the ServerProtocolPolicy to create a ProtocolList

// IDL
module RTCORBA {
 // Locality Constrained interface
 interface ProtocolProperties {};
 struct Protocol {
 IOP::ProfileId protocol_type;
 ProtocolProperties orb_protocol_properties;
 ProtocolProperties transport_protocol_properties;
 };
 typedef sequence <Protocol> ProtocolList;
 // Server Protocol Policy
 const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 1236;
 // locality constrained interface
 interface ServerProtocolPolicy : CORBA::Policy {
 readonly attribute ProtocolList protocols;
 };
 interface RTORB {
 ...
 ServerProtocolPolicy create_server_protocol_policy(
 in ProtocolList protocols
);
 };
};

ServerProtocolPolicy

- 334/607 - © 2024 Rocket Software

//poa_server_engine_policy_bankImpl.h

...
void bank_server()
{

VISTRY
{

CORBA::Object_var obj;

VISIFNOT_EXCEP
// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
rootPOA_extended = PortableServerExt::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create the policies
CORBA::StringSequence engines;
CORBA::PolicyList policies;
VISIFNOT_EXCEP

policies.length(4);
policies[(CORBA::ULong)0] =

rootPOA_extended->create_lifespan_policy(
PortableServer::PERSISTENT);

policies[(CORBA::ULong)1] =
rootPOA_extended->create_id_assignment_policy(

PortableServer::USER_ID);

// Define the policies for the POA, Server Engine,
// and Server Connection Manager. engines.length(1);
engines[0] = CORBA::string_dup("myServerEngine");

policies[(CORBA::ULong)2] =
rootPOA_extended->create_server_engine_policy(engines);

VISEND_IFNOT_EXCEP

// Define the RTCORBA Protocol List used in the
// ServerProtocolPolicy
RTCORBA::ProtocolList protocols;

VISIFNOT_EXCEP
protocols.length(2);
// MQ example transport
protocols[0].protocol_type = 0x48454900;

ServerProtocolPolicy

- 335/607 - © 2024 Rocket Software

Scope of ServerProtocolPolicy
By default the POA will use all the protocols specified within all the Server Engines that are associated
with that POA. Applying a ServerProtocolPolicy to the creation of a POA subsets and controls the order
of these protocols. Hence, if no ServerProtocolPolicy is given at POA creation, the POA will use all the
available protocols.

Only one ServerProtocolPolicy should be included in a given PolicyList , and including more than one
will result in a CORBA::INV_POLICY system exception being raised.

// IIOP (=TCP/IP)
protocols[1].protocol_type = IOP::TAG_INTERNET_IOP;

VISEND_IFNOT_EXCEP

RTCORBA::RTORB_var rORB;
VISIFNOT_EXCEP

CORBA::Object_var resolved =
orb->resolve_initial_references("RTORB");

rORB = RTCORBA::RTORB::_narrow(resolved);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)3] =

rORB->create_server_protocol_policy(protocols);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var manager;

VISIFNOT_EXCEP
manager = rootPOA_extended->the_POAManager();

VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
// Create our POA with our policies
myPOA = rootPOA_extended->create_POA(

"bank_mq_transport_poa", manager, policies);
...

ServerProtocolPolicy

- 336/607 - © 2024 Rocket Software

ClientProtocolPolicy
The ClientProtocolPolicy policy type is used to configure the selection of communication protocols on
the client-side of VisiBroker RT for C++ applications. It is defined in terms of the same
RTCORBA::ProtocolProperties type as the ServerProtocolPolicy :

IDL sample 16 Client Protocol Policy IDL

An instance of the ClientProtocolPolicy is created with the RTORB::create_client_protocol_policy()
operation. The attribute of the policy is initialized with the parameter of the same name.

The ClientProtocolPolicy indicates the protocols that may be used to make a connection to the specified
object, in order of preference. If the ORB fails to make a connection because none of the protocols is
available on the client ORB, a CORBA::INV_POLICY system exception is raised. If one or more of the
protocols is available, but the ORB still fails to make a connection a CORBA::COMM_FAILURE system
exception is raised. Otherwise the ORB will use the first protocol in the list that can successfully connect.

If no ClientProtocolPolicy is provided, then the protocol selection is made by the ORB based on the
target object’s available protocols, as described in its IOR, and the protocols supported by the client
ORB.

// IDL
module RTCORBA {

// Locality Constrained interface
interface ProtocolProperties {};
struct Protocol {

IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};
typedef sequence <Protocol> ProtocolList;
// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 1237;

// locality constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
interface RTORB {
...
ClientProtocolPolicy create_client_protocol_policy(

in ProtocolList protocols);
};

ClientProtocolPolicy

- 337/607 - © 2024 Rocket Software

The ClientProtocolPolicy is applied on the client-side, at the time of connection establishment to an
Object Reference.

Code example 112 Using the ClientProtocolPolicy to create a ProtocolList

ClientProtocolPolicy

- 338/607 - © 2024 Rocket Software

#include "corba.h"
#include "rtcorba.h"

// First initialize the ORB
CORBA::ORB_ptr orb;
VISTRY
{

orb = ORB_init(argc, argv);
}
VISCATCH(CORBA::Exception, e)
{

cerr << “Exception initializing ORB” << endl << e << endl;
// handle error here

}
VISEND_CATCH

// Then obtain the RTORB reference
CORBA::Object_var ref;
// Note use of _var, so ref will be automatically released
VISTRY
{

ref = orb->resolve_initial_references(“RTORB”);
}
VISCATCH
{

cerr << “Exception obtaining RTORB reference” << endl
<< e << endl;

// handle error here
}
VISEND_CATCH

// Then obtain the RTORB reference
CORBA::Object_var ref;
// Note use of _var, so ref will be automatically released
VISTRY
{

ref = orb->resolve_initial_references(“RTORB”);
}
VISCATCH
{

cerr << “Exception obtaining RTORB reference” << endl
<< e << endl;

// handle error here
}
VISEND_CATCH

ClientProtocolPolicy

- 339/607 - © 2024 Rocket Software

// Finally, narrow the RTORB reference
RTCORBA::RTORB_ptr rtorb;
VISTRY
{

rtorb = RTCORBA::RTORB::_narrow(ref);
// ref is no longer needed. Will be automatically released
// as is a _var

}

VISCATCH(CORBA::Exception, e)
{

cerr << “Error narrowing RTORB reference” << endl
<< e << endl;

// Handle error here
}
VISEND_CATCH

ClientProtocolPolicy

- 340/607 - © 2024 Rocket Software

Listening and Dispatch Configuration

This section describes the listening and dispatch mechanism of VisiBrokerRT for C++, how it may be
configured, and reasons why it may need to be configured.

Overview
The listening and dispatch mechanism is the part of the server-side of VisiBroker RT for C++ that is
responsible for detecting new connections and requests from clients (listening) and, whenever a
request is received, obtaining a thread for the request to be executed on (dispatching).

The following sections describe the entities involved in the listening and dispatch mechanism, how they
may be configured and reasons for configuring them.

When to Configure Listening and Dispatching
Reasons to configure the listening and dispatch properties of VisiBroker RT for C++ include:

To make objects reachable at a particular ("well known") host and port.

To make objects reachable via multiple network interfaces.

To make different sets of objects reachable via different network interfaces.

To use one or more pluggable protocols.

To control the maximum number of client connections that a server will support.

Listening and Dispatch Architecture
The POA is the primary entity used to configure application objects on the server-side of a VisiBroker RT
for C++ application. But other entities are used to configure the following server-side properties:

Which communication protocols objects may be contacted via

What (and how many) protocol endpoints (address and port, for IP networking) objects may be
contacted via

What (and how many) threads are available to execute calls to those objects

• •

• •

• •

• •

• •

• •

• •

• •

Listening and Dispatch Configuration

- 341/607 - © 2024 Rocket Software

Garbage collection characteristics for idle connections and threads

Protocol endpoints (address and port, for IP networking) are represented in VisiBroker RT for C++ by
entities called Server Connection Managers (SCMs). SCMs are contained within entities called Server
Engines (SEs). POAs are associated with Server Engines, and hence (indirectly) with SCMs. Which Server
Engines a POA is associated with can be specified through a Server Engine policy at the time of POA
creation.

A given POA may be associated with any number of Server Engines, and each Server Engine may be
associated with any number of POAs. The figure below shows the relationships between POAs, Server
Engines and Server Connection Managers.

The dispatching properties of VisiBroker RT for C++ (which and how many threads can be used to
execute client requests) are governed by Threadpools. Every POA is associated with exactly one
Threadpool, and one Threadpool may be associated with any number of POAs. It is actually the SCMs
which interact with Threadpools, at the time of dispatching a client request. The relationship between
SCMs and Threadpools is described in Interaction of an SCM and Threadpool during Dispatch.
VisiBroker Threadpools conform to the Real-Time CORBA specification. For details of how to create and
configure Threadpools, and associate them with POAs, see Threadpools.

Interaction of an SCM and Threadpool during Dispatch
The diagrams below illustrate the way that an SCM and a Threadpool interact, to perform the dispatch
function. The diagrams start from the point after the SCM and Threadpool are initialized. Initialization
of Server Engines and SCMs, and their association with POAs and Threadpools are discussed in later
sections.

• •

Interaction of an SCM and Threadpool during Dispatch

- 342/607 - © 2024 Rocket Software

The figure above shows a scenario in which a SCM (contained within a Server Engine) has been
initialized, and is ready to handle requests from CORBA clients. The SCM is associated with a Threadpool
that contains three "Worker" threads. The SCM"s Listener thread is shown. This is an additional ORB
thread, outside of the Threadpool, that performs the SCM"s listening and dispatch functions - waiting
for new connections and requests from clients. Two client CORBA applications are also shown, running
on different nodes.

Interaction of an SCM and Threadpool during Dispatch

- 343/607 - © 2024 Rocket Software

In the figure above, Client application #1 makes a request on a CORBA object that belongs to a POA
that is associated (via a Server Engine) with this SCM. As this is the first request from the node that the
client is running on, a connection must first be established. The client application"s ORB initiates the
establishment of a connection to the protocol endpoint (host and port number, for IP networking)
associated with this SCM. On the server-side, the connection establishment is detected and handled by
the SCM"s Listener thread.

Once a connection has been established, the client application's ORB sends the client's request. The
incoming request is detected by the SCM's Listener thread, which assigns the request to a Worker
thread. That Worker thread is removed from the Threadpool and executes the request in the context of
the appropriate POA and object implementation. Upon completion of the processing of the request, the
Worker thread returns to the Threadpool.

Interaction of an SCM and Threadpool during Dispatch

- 344/607 - © 2024 Rocket Software

The figure above shows the situation when the following additional events have occurred:

Client application #1 has made a second request via this SCM (to either the same or another
object that belongs to a POA associated with this SCM). The second request has been made before
the first request from that client has finished being processed by Worker thread 1.

• •

Interaction of an SCM and Threadpool during Dispatch

- 345/607 - © 2024 Rocket Software

Client application #2 has also made a request on an object that belongs to a POA associated with
this SCM.

By default, the second request from Client application #1 is sent over the connection that was
established to send the first request. This is because by default VisiBroker RT for C++ shares
connections between all clients and objects on the same pair of nodes, in order to conserve Operating
System resources. However, this behavior may be overridden. For details, see Connection Management.

The request from Client application #2 is sent over a new connection, because this is the first request
made from the node that Client application #2 resides on.

Because the second request from Client application #1 was made before the first request had finished
being executed and Worker thread 1 had not yet been returned to the Threadpool, a second Worker
thread was taken from the pool to execute this request. Similarly, because neither of these requests had
finished and returned its Worker thread to the Threadpool before the request from Client application #2
was dispatched, a third Worker thread was taken from the Threadpool to execute that request.

What would happen if a fourth request is received before any of the three current requests finishes
executing depends on the configuration of the Threadpool. Either the fourth request will have to wait
for a Worker thread to be returned to the Threadpool (if the Threadpool is configured to not
dynamically grow beyond three Worket threads), or an extra Worker thread will be created to handle
the new request. For details of the Threadpool configuration options, see the section Threadpool
Creation and Configuration.

Server Engines and SCM Configuration
Server Engines and the SCMs within them are configured by specifying a number of VisiBroker
properties. The properties that can be specified are described in the following sub-sections. For
information on how to set properties, see Setting Properties.

Required Server Engine and SCM Properties
The following Server Engine properties must be specified before a Server Engine may be associated
with a POA:

vbroker.se.<Server_Engine_name>.host

Specifies the host (hostname or dot-notation IP address) that the SCMs contained within this Server Engine will use. This property
can be used to select a particular network interface on a machine with multiple network interfaces.

• •

Server Engines and SCM Configuration

- 346/607 - © 2024 Rocket Software

vbroker.se.<Server_Engine_name>.scms

Specifies a list (comma or space separated) of the names of the SCMs that this Server Engine will contain.

The following property must be specified for each SCM named in the .scms property:

vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.type

Identifies the listener type to be used for this SCM. This corresponds to the protocol to be used. Supported values for VisiBroker RT

for C++ are IIOP and the name of any protocol plugged in through the Pluggable Protocol Interface.

On some platforms, VisiBroker also supports a "LIOP" local IPC protocol. This is not supported
by VisiBroker RT for C++ for VxWorks.

SCM names only have to be unique within the scope of the Server Engine they are contained by.
Hence the following is valid:

vbroker.se.SE1.scms=iiop1 vbroker.se.SE2.scms=iiop1

In this case, there are two Server Engines (named "SE1" and "SE2"), each containing an SCM
named "iiop1". The SCM instances are not shared between Server Engines, and even though
some of them have the same name, they are unique and must be configured separately.

Optional Server Engine Properties
In addition to the above required properties, the following property may be optionally specifed for a
Server Engine:

vbroker.se.<server_engine_name>.proxyHost

This property allows a host (hostname or IP address) to be specified in IORs that is different to the actual host address that the SCM is

listening on. The .host value determines the address that the SCM will actually listen on. If no .proxyHost value is

specified, the .host value is also used in the IORs generated for objects belonging to POAs that are associated with this SCM. If

a .proxyHost value is specified, that value will be used instead.

This property could be used in conjunction with a firewall, or in any other situation where a proxy is required to be contacted rather
than contacting the object directly.

Note that both the .host and .proxyHost properties are only for use with the IIOP protocol. If a different
protocol is plugged in (via the Pluggable Protocol Interface), the implementation of the plugged in
protocol must offer its own properties (at the SCM level) to support configuration of endpoint
addressing information.

Notes

• •

• •

Optional Server Engine Properties

- 347/607 - © 2024 Rocket Software

Optional SCM Properties
A number of additional properties may be specified for any of the SCMs specified within a Server
Engine.

vbroker.se.<Server_Engine_name>.scm.<SCM_name>.connectionMax

This property defines the maximum number of concurrent, incoming connections allowed. The default value is '0', meaning an
unlimited number of connections.

vbroker.se.<Server_Engine_name>.scm.<SCM_name>.connectionMaxIdle

This property defines the maximum number of seconds a connection may be idle before it is shut down. The default value is '0',
meaning there is no timeout.

vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.port

This property defines the listening port that this SCM will use. The default value is '0', meaning that the system will assign the port
number.

vbroker.se.<Server_Engine_name>.scm.<SCM_name>.listener.proxy Port

This property specifies a proxy port number to use with the .proxyHost property. The default value, '0', means that the true

port number (assigned via the .port property or by the system) will be used in IORs, rather than a proxy value.

As with the .host and .proxyHost properties, .port and .proxyPort are only for use with the IIOP
protocol. If a different protocol is plugged in (via the Pluggable Protocol Interface), the
implementation of the plugged in protocol must offer its own properties (at the SCM level) to
support configuration of endpoint addressing information.

Server Engine and SCM Creation
A Server Engine (and all the SCMs it is specified as containing) is created automatically by VisiBroker the
first time a POA is created that is associated with that Server Engine.

The following sections describe how to associate a POA with particular Server Engines, and the default
behavior that occurs if Server Engines are not specified for a particular POA.

Note

Optional SCM Properties

- 348/607 - © 2024 Rocket Software

Associating a POA with Server Engines
A POA must be associated with one or more Server Engines. Which Server Engines a POA is to be
associated with can be specified at the time of POA creation, by including a ServerEnginePolicy in the
policy list passed in to the create_POA call.

If a ServerEnginePolicy is not specifed at the time of POA creation, the ORB determines which Server
Engines the POA will be associated with. See the section Default Server Engines for details. Each Server
Engine (and the SCMs it contains) is created automatically by VisiBroker the first time a POA is created
that is associated with that Server Engine.

If the creation or initialization of a Server Engine (or any of the SCMs it contains) fails for any reason, the
create_POA call will fail with a CORBA::INITIALIZE system exception.

VisiBroker will also log a warning level (level 2) log message explaining the reason for the failure.

The following code sample shows an example of specifying which Server Engines a POA will be
associated with. In this case, the POA is associated with two Server Engines, called mySE1 and mySE2 .

Code example 113 Specifying association with particular Server Engines at time of POA creation

Associating a POA with Server Engines

- 349/607 - © 2024 Rocket Software

Default Server Engines
If a ServerEnginePolicy is not specified at the time of POA creation, VisiBroker determines which Server
Engines the POA will be associated with.

VisiBroker RT for C++ will associate a POA with a Server Engine named se_iiop_tp<n> , where <n> is the
Id of the Threadpool that that POA is to be associated with. For details about Real-Time CORBA
Threadpools and Threadpool Ids, see [Threadpools](Real-Time CORBA Extensions.

The Server Engine will have the following property values automatically set for it:

// Create sequence of Server Engine names
// (The ServerEnginePolicy requires a sequence, even if only one
// Server Engine is being specified)
CORBA::StringSequence_var engines = new CORBA::StringSequence(2);

engines->length(2);
engines[0] = CORBA::string_dup("mySE1");
engines[1] = CORBA::string_dup("mySE2");

// Place string sequence into an Any
CORBA::Any_var seAny(new CORBA::Any);
seAny <<= engines;

// Create ServerEnginePolicy
CORBA::PolicyList_var policies = new CORBA::PolicyList(1);
policies->length(1);
policies[0] = orb->create_policy(

PortableServerExt::SERVER_ENGINE_POLICY_TYPE, seAny);

// Create POA using policy
PortableServer::POAManager_var manager =

rootPOA->the_POAManager();
PortableServer::POA_var myPOA =

rootPOA->create_POA("my_poa", manager, policies);

Default Server Engines

- 350/607 - © 2024 Rocket Software

That is, it will be configured to support IIOP only, and to use a default configuration including a host
and port assigned by the system.

If the POA using the Server Engine has not been explicitly associated with a particular Threadpool, it will
default to using the General Threadpool, which has a Threadpool Id of '0'. In this case the Server Engine
name is se_iiop_tp0 .

Restriction on POA/Server Engine Relationship
Each POA is associated with exactly one Threadpool. Each Server Engine must be associated with exactly
one Threadpool as well. A Server Engine becomes associated with the same Threadpool as the first POA
that it is associated with.

There is one restriction on this relationship - It is not possible to associate POAs that use different
Threadpools with the same Server Engine.

The first association between a POA and a particular Server Engine will always succeed (because at that
time, the Server Engine is created and associated with that POAs Threadpool). But subsequent attempts
to associate other POAs with the same Server Engine will fail if the other POAs do not use the same
Threadpool as the first POA.

In the case that an association cannot be made between a particular POA and an existing Server Engine,
the call to create_POA will fail with a CORBA::INV_POLICY system exception, and a warning level (level 2)
message will be logged.

Code Example
The code below demonstrates the steps involved in configuring a Server Engine and associating it with
a POA. The example stops at the point at which the POA has been created, and is ready to have objects
activated on it. A similar code example, based on the VisiBroker bank example, can be found in the
VisiBroker RT for C++ sample application located in <VBRT_INSTALL>/examples/vbroker_kernel/poa/
server_engine_policy .

A Property Table is used to specify the properties required. For more information on Property Tables,
see Setting Properties.

vbroker.se.se_iiop_tp\<n\>.scms=scm_iiop_tp\<n\>
vbroker.se.se_iiop_tp\<n\>.host=null
vbroker.se.se_iiop_tp\<n\>.scms.scm_iiop_tp\<n\>.listener.type=IIOP

Restriction on POA/Server Engine Relationship

- 351/607 - © 2024 Rocket Software

Code example 114 Creating a property table for a server engine (corba_init.C)

Code Example

- 352/607 - © 2024 Rocket Software

...
void do_corba(char * ORB_options_string)
{
#if defined(BUILD_SERVER)

// VISPropertyTable defining VisiBroker Properties required for
// Server Engine configuration. Note that the array of property
// strings and the VISPropertyTable object can be destructed
// any time after the ORB_init that uses them.

// Get the property manager; notice the value returned
// is not placed into a 'var' type.
const char * my_properties[] = {

"vbroker.se.myServerEngine.scms=scm1",
"vbroker.se.myServerEngine.host=null",

// Define two manager property values
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMax=100",
"vbroker.se.myServerEngine.scm.scm1.manager.connectionMaxIdle=300",

// Define three listener property values
"vbroker.se.myServerEngine.scm.scm1.listener.type=IIOP",
"vbroker.se.myServerEngine.scm.scm1.listener.port=1042",
"vbroker.se.myServerEngine.scm.scm1.listener.proxyPort=0",

// Define dispatcher property value
"vbroker.se.myServerEngine.scm.scm1.dispatcher.coolingTime=3",
NULL

};

VISPropertyTable property_table("my_properties", my_properties);

cout << "Initialize the server" << endl;
int default_argc = 4;

char *default_argv[] = {"-ORBagentport", OSAGENT_PORT,
"-ORBpropTable", "my_properties"};

#else
cout << "Initialize the client" << endl;
int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};

#endif

char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

Code Example

- 353/607 - © 2024 Rocket Software

Code example 115 Creating a POA with a specific server engine (server.C)

default_argc, ORB_options_string);

/*--*/
/* Call ORB_init */
/*--*/
VISTRY
{

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

return;
}

Code Example

- 354/607 - © 2024 Rocket Software

...
void bank_server()
{

VISTRY
{

CORBA::Object_var obj;

// get a reference to the root POA
obj = orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA_extended = PortableServerExt::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Create the policies
CORBA::StringSequence engines;
CORBA::PolicyList policies;

// Define the policies for the POA, Server Engine,
// and Server Connection Manager.
engines.length(1);
engines[0] = CORBA::string_dup("myServerEngine");

policies.length(3);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] = rootPOA_extended->
create_lifespan_policy(PortableServer::PERSISTENT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)1] = rootPOA_extended->

create_id_assignment_policy(PortableServer::USER_ID);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
policies[(CORBA::ULong)2] = rootPOA_extended->

create_server_engine_policy(engines);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var manager;
VISIFNOT_EXCEP

manager = rootPOA_extended->the_POAManager();
VISEND_IFNOT_EXCEP

PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

Code Example

- 355/607 - © 2024 Rocket Software

// Create our POA with our policies
myPOA = rootPOA_extended->

create_POA("bank_se_policy_poa", manager, policies);
VISEND_IFNOT_EXCEP

// Ready to activate objects on the new POA.
// The objects will be contactable via myServerEngine

...
}

Code Example

- 356/607 - © 2024 Rocket Software

Connection Management

This section describes the connection management facilities available in VisiBroker RT for C++.

VisiBroker Default Connection Behavior of VisiBroker RT
By default, VisiBroker RT for C++’s connection management minimizes the number of client connections
to the server. All client requests from one node to objects on another node are multiplexed over the
same connection, even if they originate from different threads.

Additionally, released client connections are recycled for subsequent reconnects to the same server,
eliminating the need for clients to incur the overhead of establishing a new connection to the server.

In the scenario shown below, a client application is bound to two objects on one node. Communication
from the client shares a common connection to the server, even though the targets are two different
objects.

The figure below shows a multi-threaded client that has several threads bound to an object on the same
remote node. The invocations from all threads are serviced by the same connection.

Connection Management

- 357/607 - © 2024 Rocket Software

Overriding the Default Behavior with _clone()
VisiBroker RT for C++ provides a _clone() operation that can be called by the application to establish a
new, separate connection to an object on a remote node.

The _clone() operation is defined for CORBA::Object and for all generated IDL interface types.

Code example 116 _clone() operation is available for CORBA::Object and all specific IDL interfaces

In the figure below, two threads have called _bind() (or obtained a reference to the object on the
remote node by some other means) and hence experience the default behavior of sharing a connection
to the remote node. The third thread has called _clone() , and its requests are serviced via a separate
connection.

Connections are not tied to particular threads. Once a connection has been created by one thread it
can be shared by any number of threads, by sharing or duplicating the same instance of the object
reference.

class CORBA {
class Object {

...
static CORBA::Object_ptr _clone(CORBA::Object_ptr obj);
...

};
};

// Generated for IDL interface Account
class Account : public virtual CORBA::Object {

...
static Account_ptr _clone(Account_ptr obj);
...

};

Note

Overriding the Default Behavior with _clone()

- 358/607 - © 2024 Rocket Software

Limiting the Number of Connections

Limiting Connections on the Server-Side
The maximum number of concurrent connections that VisiBroker will accept on the server-side can be
configured as part of the configuration of the listening and dispatch mechanism. See Optional SCM
Properties.

The least recently used connections will be recycled when the maximum is reached, ensuring resource
conservation.

Limiting Connections on the Client-Side
The maximum number of concurrent connections that VisiBroker will establish on the client-side can be
configured as part of the configuration of the client connection properties. See the VisiBroker RT for C++
Reference Guide. The least recently used connections will be recycled when the maximum is reached,
conserving system resources.

Limiting the Number of Connections

- 359/607 - © 2024 Rocket Software

Bidirectional Communication

This section explains how to establish bidirectional connections in VisiBroker RT for C++ without using
the Gatekeeper. Note that Gatekeeper is not included with the VisiBroker RT distribution. If you have
VisiBroker 8.5, information about bidirectional communications using Gatekeeper can be found in the
VisiBroker GateKeeper Guide.

Before enabling bidirectional IIOP, read about Security considerations.

Using bidirectional IIOP
Most clients and servers that exchange information via the Internet are typically protected by corporate
firewalls. In systems where requests are initiated only by the clients, the presence of firewalls is usually
transparent to the clients. However, there are cases where clients need information asynchronously,
that is, information must arrive that is not in response to a request. Client-side firewalls prevent servers
from initiating connections back to clients.

Therefore, if a client is to receive asynchronous information, it usually requires additional configuration.

In earlier versions of GIOP and VisiBroker, the only way to make it possible for a server to send
asynchronous information to a client was to use a client-side Gatekeeper to handle the callbacks from
the server.

If you use bidirectional IIOP, rather than having servers open separate connections to clients when
asynchronous information needs to be transmitted back to clients (these would be rejected by client-
side firewalls anyway), servers use the client-initiated connections to transmit information to clients.
The CORBA specification also adds a new policy to portably control this feature.

Because bidirectional IIOP allows callbacks to be set up without a Gatekeeper, it greatly facilitates
deployment of clients.

Note

Bidirectional Communication

- 360/607 - © 2024 Rocket Software

Bidirectional ORB properties
Three properties provide bidirectional support:

vbroker.orb.enableBiDir property
The vbroker.orb.enableBiDir property can be used on both the server and the client to enable
bidirectional communication. This property allows you to change an existing unidirectional application
into a bidirectional one without changing any code. The vbroker.orb.enableBiDir property may be set to
the following values:

vbroker.se.\<sename>.scm.\<scmname>.manager.exportBiDir
property

The vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property is a client-side property. By default,
it is not set to anything by the VisiBroker ORB. Setting it to true enables creation of a bidirectional
callback POA on the specified server engine. Setting it to false disables creation of a bidirectional POA
on the specified server engine.

vbroker.orb.enableBiDir=client|server|both|none
vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir=true|false
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir=true|false

Value bDescription

client Enables bidirectional IIOP for all POAs and for all outgoing connections. This
setting is equivalent to creating all POAs with a setting of the BiDirectional policy
to both and setting the policy override for the BiDirectional policy to both on the
VisiBroker ORB level. Furthermore, all created SCMs will permit bidirectional
connections, as if the exportBiDir property had been set to true for every SCM.

server Causes the server to accept and use connections that are bidirectional. This is
equivalent to setting the importBiDir property on all SCMs to true.

both Sets the property to both client and server.

none Disables bidirectional GIOP altogether. This is the default value.

Bidirectional ORB properties

- 361/607 - © 2024 Rocket Software

vbroker.se.\<sename>.scm.\<scmname>.manager.importBiDir
property

The vbroker.se.<sename>.scm.<scmname>.manager.importBiDir property is a server-side property. By default,
it is not set to anything by the VisiBroker ORB. Setting it to true allows the server-side to reuse the
connection already established by the client for sending requests to the client. Setting it to false
prevents reuse of connections in this fashion.

These properties are evaluated only once, when the SCMs are created. In all cases, the exportBiDir
and importBiDir properties on the SCMs govern the enableBiDir property. In other words, if both
properties are set to conflicting values, the SCM-specific properties will take effect. This allows you to
set the enableBiDir property globally and specifically turn off BiDir in individual SCMs.

About the examples
Examples demonstrating use of this feature are located in subdirectories of examples/bidir-iiop in the
VisiBroker installation directory. All the examples are based on a simple stock quote callback
application:

The client creates a CORBA object that processes stock quote updates.

The client sends the object reference of this CORBA object to the server.

The server invokes this callback object to periodically update stock quotes.In the sections that
follow, these examples are used to explain different aspects of the bidirectional IIOP feature.

Enabling bidirectional IIOP for existing applications
You can enable bidirectional communication in existing VisiBroker RT for C++ applications without
modifying any source code. A simple callback application that does not use Bidirectional IIOP at all is
stored in the examples/bidir-iiop/basic/ directory.

To enable bidirectional IIOP for this application, you set the vbroker.orb.enableBiDir property:

Make sure the osagent is running.

Initialize the server ORB:

Note

• •

• •

• •

1. 1.

2. 2.

vbroker.se.\<sename>.scm.\<scmname>.manager.importBiDir property

- 362/607 - © 2024 Rocket Software

-> start_corba ("-Dvbroker.orb.enableBiDir=server - Dvbroker.se.default.local.manager.enabled=false"

Initialize the client ORB:

-> start_corba ("-Dvbroker.orb.enableBiDir=client - Dvbroker.se.default.local.manager.enabled=false")

Start the Server:

-> start_bidir_server

Start the Client:

-> start_bidir_client

The existing callback application now uses bidirectional IIOP and works through a client-side firewall.

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the absence of other security
mechanisms, a malicious client may claim that its connection is bidirectional for use with any host and
port it chooses. In particular, a client may specify the host and port of security- sensitive objects not
even resident on its host. In the absence of other security mechanisms, a server that has accepted an
incoming connection has no way to discover the identity or verify the integrity of the client that initiated
the connection. Further, the server might gain access to other objects accessible through the
bidirectional connection. This is why use of a separate, bidirectional SCM for callback objects is
encouraged. If there are any doubts as to the integrity of the client, it is recommended that
bidirectional IIOP not be used.

For security reasons, a server running VisiBroker will not use bidirectional IIOP unless explicitly
configured to do so. The property vbroker.<se>.<sename>.scm.<scmname>.manager.importBiDir gives you
control of bidirectionality on a per-SCM basis. For example, you might choose to enable bidirectional
IIOP only on a server engine that uses SSL to authenticate the client, and to not make other, regular
IIOP connections available for bidirectional use. See Bidirectional ORB properties for more information
about how to do this. In addition, on the client-side, you might want to enable bidirectional connections
only to those servers that do callbacks outside of the client firewall. To establish a high degree of
security between the client and server, you should use SSL with mutual authentication (set
vbroker.security.peerAuthenticationMode to REQUIRE_AND_TRUST on both the client and server).

1.

1.

1.

Security considerations

- 363/607 - © 2024 Rocket Software

VisiBroker Pluggable Transport Interface

VisiBroker RT for C++ provides a Pluggable Transport Interface to support the use of transport protocols
besides TCP for the transmission of CORBA invocations. The Interface supports the 'plugging in' of
multiple transport protocols simultaneously, and is designed to provide a common interface that is
suitable for use with a wide variety of transport types. The interface uses CORBA standard classes
wherever possible, but is itself proprietary to VisiBroker.

The libpluggable.o library is required when building a VisiBroker RT 60 application to support use of
the VisiBroker Pluggable Transport Interface. For a description of all the libraries provided by the
VisiBroker RT for C++ product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

Pluggable Transport Interface Files
The VisiBroker Pluggable Transport Interface is delivered as a library and a supporting header file:

libpluggable.o can be found in the lib directory of the VisiBroker installation
(<VBRT_install>/lib/<CPU>/).

vptrans.h can be found in the include directory of the VisiBroker installation
(<VBRT_install>/include).

The library libpluggable.o must be linked in, in addition to the ORB library (liborb.o or
liborb_compact.o), in order to use the Pluggable Transport Interface. vptrans.h contains the declarations
of the types used in the Pluggable Transport Interface. It must be included in the files that the
developer writes to interface a given transport protocol to the ORB.

Note

• •

• •

VisiBroker Pluggable Transport Interface

- 364/607 - © 2024 Rocket Software

Transport Layer Requirements
Any transport protocol plugged in to VisiBroker via the Pluggable Transport Interface will be used by the
ORB to send and receive messages encoded using the standard GIOP protocol that is defined as part of
the CORBA specification.

GIOP makes certain assumptions about the transport layer used to exchange these messages. The
same assumptions have been used in the design of the Pluggable Transport Interface.

Therefore, the user code that interfaces a specific transport to the ORB must 'mask' any differences
between these requirements and the actual behavior of the transport.

The Pluggable Transport Interface assumes:

A reliable, bi-directional data exchange channel (connection) is used to send data point-to-point
between a single server endpoint of the transport and a single client endpoint of the transport.
Thus it is assumed that any reply message from a server may be reliably received by examining a
connection endpoint after a request was sent via that connection. (This does not preclude the
ORB from using the same connection to multiplex client requests to the same server.)

Data sent through the transport is (in principle) unlimited in size and can be viewed as a
continuous stream of bytes. All packaging of data and issues related to flow control, package
reassembly, and error handling must be hidden.

Connections can be dynamically opened and closed at the request of the client. The request to
open a connection is made on a specific endpoint, which the client obtains from the IOR
generated by the server.

Note that the connection request message is not part of the GIOP protocol, but resides in the
scope of the pluggable transport connection management and must be handled by the transport
specific code.

A server connection endpoint is described in a way that can be stored in an IOR as specified in the
CORBA specification. Such an endpoint must be unique in the transport's addressing scheme and
it must be usable at any time to contact the server. Conversion functions must be provided to
create a CDR-compliant representation of the endpoint address, so it can be used as part of a
Profile in an IOR.

• •

• •

• •

• •

Transport Layer Requirements

- 365/607 - © 2024 Rocket Software

User-Provided Code Required for a Protocol Plugin
Three main classes must be implemented by the user for each transport protocol that is to be plugged
in to the ORB via the Pluggable Transport Interface:

Connection Class

Provides the means to write and read data from the transport layer, associating the data with a
particular 'connection' between a client and a server. The use of the concept of a 'connection' does not
mean that the physical transport layer used must support connection oriented IO, however the user
code must present such a view to the Pluggable Transport Interface and provide all the related
functionality described below.

Listener Class

Represents a server-side 'endpoint' of the transport. It receives client requests to create a 'connection'
instance, handles the dynamic opening and closing of such connections, and initiates the 'dispatch' of
incoming client requests through open connections.

Profile Class

Enables the description of the server-side endpoint information of Listener instances in a way that is
'portable', meaning it can be included in an IOR as defined in the CORBA specification, and thus can
exchanged with other ORBs using GIOP or other suitable protocols.

Additionally, the Pluggable Transport Interface uses a "Factory" pattern to manage the instantiation
each of these classes. Therefore three Factory classes must be provided, each creating instances of one
of the above classes.

A transport protocol is initialized by instantiating the three Factory classes and registering them with
the ORB via the Pluggable Protocol Interface. The registration is performed by calling a static function
of the Pluggable Protocol Interface during the system initialization stage, before starting any CORBA
server or client code.

Unique Profile ID Tag
Each plugged in transport is required to have a unique 4-byte Profile ID tag, to distinguish it from other
protocols. Profile ID tags are managed by the OMG.

Rocket Software has a range of Profile ID tags registered with the OMG, and four of these tags are
available for use by protocol plugins:

0x48454901 (HEI\001)

0x48454902 (HEI\002)

0x48454903 (HEI\003)

1. 1.

2. 2.

3. 3.

• •

• •

• •

User-Provided Code Required for a Protocol Plugin

- 366/607 - © 2024 Rocket Software

0x48454904 (HEI\004)

One of these tags should be used rather than a randomly chosen value, to avoid conflict with any third-
party CORBA-based products.

Note, however, that there will still be the possibility of conflict, if the system that uses the protocol
plugin is integrated with other systems based on VisiBroker RT for C++ that happen to contain a
protocol plugin that chooses the same Profile ID tag. This could occur either when different sub-
systems developed independently within the same organization are integrated, or if the final system is
required to interoperate with another CORBA-based system developed by another organization.

If either of the above scenarios is a serious possibility, a reserved number should be obtained from the
OMG. See the OMG FAQ on CORBA tags, for details. The minimum number of tags required should be
reserved, bearing in mind that a set of tags may normally only be reserved once per year. It is
recommended that the numbers only be reserved as the developed system nears deployment.

Example Code
There are two example transports provided in the examples/pluggable directory of the VisiBroker
installation, and an example client and server program using an added transport.

The 'PROTO' transport is non-functional but contains all the necessary classes and class methods
to document the Pluggable Transport API. It compiles and can be loaded and registered with the
ORB. However, it will give errors when you try to use it to send ORB requests.

The 'MQ' transport is functional and is based on shared message queues in the target's address
space. It demonstrates in more detail how to implement a transport successfully. Although it is
functional, it is only an unsupported contribution. Do not use this code for any actual application.

The 'mq_bank' example implementsthe standard Bank example using the MQ transport layer. It
shows how to use the VisiBroker property system to add a new transport to a POA, and how to
bind the client to the server by using the stringified IOR created by the MQ transport library.

The directories contain HTML files that explain how to compile and run these examples.

• •

• •

• •

• •

Example Code

- 367/607 - © 2024 Rocket Software

http://www4.cs.fau.de/Lehre/WS00/V_OODS1/Tutorial/CORBA/ptc/99-02-01.pdf

Implementing a New Transport
The following sections describe in detail the classes that must be implemented by the user to plug-in a
new transport protocol into the ORB. Each method is described, and the PROTO and MQ examples
should be referred to, to see how they might be implemented and used.

Connection Class

Base Class
VISPTransConnection from file vptrans.h

Abstract Methods to be Implemented by Subclass

Other Required Methods

Default constructor

Destructor

void write(CORBA::Boolean _isFirst, CORBA::Boolean _isLast,
const char* _data, CORBA::ULong _offset,
CORBA::ULong _length, CORBA::ULongLong _timeout)

void read(CORBA::Boolean _isFirst, CORBA::Boolean _isLast,
char* _data, CORBA::ULong _offset,
CORBA::ULong _length, CORBA::ULongLong _timeout)

void flush()
void close()
void connect(CORBA::ULongLong _timeout)
CORBA::Long id()
CORBA::Boolean isConnected()
CORBA::Boolean isDataAvailable()
CORBA::Boolean no_callback()
CORBA::Boolean isBridgeSignalling()
CORBA::Boolean waitNextMessage(CORBA::ULong _timeout)
IOP::ProfileValue_ptr getPeerProfile()
void setupProfile(const char* prefix,

VISPTransProfileBase_ptr peer)

• •

• •

Implementing a New Transport

- 368/607 - © 2024 Rocket Software

Class Description
This class represents a single connection between a server and a client. Whenever a program reads or
writes to it, that data will be received or sent to one single peer endpoint on the remote side. When a
client wants to send a request to a server, the ORB will look for a valid connection to that server and
create one if it does not yet exist. The remote endpoint of the connection is setup using the given
Profile of the server and communicating with the Listener (see Listener Class below) on the server side.
Besides general status information, this class also must either:

Provide a method to wait for data coming through the connection, that times out after a given
number of seconds, or

Use the Pluggable Transport Bridge class to perform that function by signalling incoming data to
the Bridge when it is available.

Method Descriptions

write()

Sends data through the connection to the remote peer. It does not return any error code, but must signal transport related errors by
throwing exceptions. The arguments describe a byte array with a given length that needs to be sent. This function must either send
the complete byte array successfully, timeout, or throw an exception. By default, the timeout is not used (0 value) until the user sets
its value to something different, through the VisiBroker property system. Therefore, if this transport does not support timeouts on
read/write, it still can be used successfully. In this case the write call must block until all the data has been sent. The call arguments
also include two boolean flags that indicate whether this is the first or the last time that data is being sent through the connection.

read()

Reads data from the connection sent by the remote peer. It does not return any error code, but must signal transport related errors
by throwing exceptions. The arguments describe a byte array with a given length that needs to be filled. This function must either fill
the complete byte array successfully, timeout, or throw an exception. By default, the timeout is not used (0 value) until the user sets
its value to a different value, through the VisiBroker property system. Therefore, if this transport does not support timeouts on read/
write, it still can be used successfully. In this case the read call must block until all data has arrived. The call arguments also include
two boolean flags, that indicate whether this is the first or the last time data will be read from the connection.

flush()

If this transport buffers data, this call is used to flush them on the local side and send/receive all data immediately.

close()

Orderly close of a connection on both sides should be performed.

connect()

Communicate with the remote peers Listener instance to setup a new connection on the server side. The function does not

return any error code, but should throw exceptions if any transport layer errors occur. By default, the timeout is not used (0 value)
until the user sets it to a different value, through the VisiBroker property system. Therefore, if this transport does not support
timeouts on connect, it still can be used successfully. In this case the connect call must block until the connection is established or
has failed.

• •

• •

Connection Class

- 369/607 - © 2024 Rocket Software

id()

This method must return a unique number for each connection instance. The ID only needs to be unique for this transport. It is used
to lookup/locate a connection instance during request dispatching for this transport.

isConnected()

Should return 1 (TRUE), if the remote peer is still connected. If the connection was closed by the peer or any error condition exists

that prevents the use of this connection, it must return 0 (FALSE).

isDataAvailable()

Should return 1 (TRUE), if data is ready to be read from the connection. Otherwise, it must return 0 (FALSE).

no_callback()

Status flag signalling if a connection in this transport can be used to reverse the client/server setup and callback to a servant in the

client code. Return 0 (FALSE) if it cannot, which will cause the ORB to create a new connection for this kind of call, or 1 (TRUE) if

it can. See the GIOP-1.2 specification from the OMG for details.

isBridgeSignalling()

Flag to tell the ORB to use the bridge to wait for new incoming data with a timeout. To optimize the dispatching of requests, new
incoming data may be read from a connection that was previously used. This action must timeout to free the related thread for other

purposes. If this transport cannot support such a timeout by itself, 1 (TRUE) must be returned and the Transport Bridge Class is

used to perform the timeout logic. Otherwise, 0 (FALSE) is returned and the necessary logic should be implemented in the

following method.

waitNextMessage()

Block the calling thread until either data has arrived on this connection or the given timeout (in seconds) has expired. Return 1
(TRUE) if data is available, or 0 (FALSE) if not.

getPeerProfile()

Returns a copy of the Profile describing the peer endpoint used in this connection. The copy must be created on the heap and the
caller is responsible for releasing the used memory. The Profile does not describe the actual connection for this instance, but the

Profile of the Listener endpoint used during the connect call.

setupProfile()

This call is used to tell a newly created connection what peer it should try to connect to in later steps (when connect() is

called). The given base class should be cast to the expected subclass, if needed, and member data in the connection instance should

Connection Class

- 370/607 - © 2024 Rocket Software

be initialized from that profile. A prefix string is also passed, for property lookup, in case additional property parameters need to be
read.

Connection Factory Class

Base Class
VISPTransConnectionFactory from file vptrans.h

Abstract Methods to be Implemented by Subclass
VISPTransConnection_ptr create(const char* prefix);

Other Required Methods

Constructor

Destructor

Class Description
This class is used by the Pluggable Transport Interface to generically create a Connection instance for
this transport. It is passed to the caller as a pointer to its base class and the virtual functions are used to
interface to it.

Method Description

create()

Create a new instance and return the pointer to it. The caller is responsible for the memory used by this instance. We pass a string
prefix as parameter which can be used to read properties for a connection of this type.

Listener Class

Base Class
VISPTransListener from file vptrans.h .

• •

• •

Connection Factory Class

- 371/607 - © 2024 Rocket Software

Abstract Methods to be Implemented by Subclass

Other Required Methods
None

Class Description
This class is used by the server-side code to wait for incoming connections and requests from clients.
New connections and requests on existing connections are signalled to the ORB via the Pluggable
Transport Interfaces Bridge class (see Transport Bridge Class below).

Instances of this class are created each time a Server Engine is created that includes Server Connection
Managers (SCMs) that specify the particular transport protocol. One instance is created per SCM
instance that specifies the protocol.

When a request is received on an existing connection, the connection goes through a Dispatch Cycle.
The Dispatch Cycle starts when the connection delivers data to the transport layer. In this initial state,
the arrival of this data must be signalled to the ORB via the Bridge (see Transport Bridge Class below)
and then the Listener ignores the connection until the Dispatch process is completed (in the mean time,
the connection is said to be in the dispatch state). The connection is returned to the initial state when
the ORB makes a call to the Listeners completedData() method. During the dispatch state the ORB will
read directly from the connection until all requests are exhausted, avoiding any overhead incurred by
the Bridge-Listener communication.

In most cases, the transport layer uses blocking calls that wait for new connections. In order to handle
this situation, the Listener should be made a subclass of the class VISThread and start a separate thread
of execution that can be blocked without holding up the whole ORB. See the MQ example transport.

Method Description

setBridge()

This call establishes the link to the Pluggable Transport Bridge instance to be used by this Listener instance. The pointer it passes to
the Listener should be stored to allow upcalls to be made into ORB when necessary.

destroy()

Instructs the Listener instance to tear down its endpoint and close all related active connections.

void setBridge(VISPTransBridge* up)
IOP::ProfileValue_ptr getListenerProfile()
void completedData(CORBA::Long id)
CORBA::Boolean isDataAvailable(CORBA::Long id)
void destroy()

Listener Class

- 372/607 - © 2024 Rocket Software

getListenerProfile()

This call should return the Profile describing the Listener's endpoint on this transport. The returned Profile should be a copy on the
heap and the caller (the ORB) takes responsibility for its memory management.

isDataAvailable()

Should return 1 (TRUE), if the connection with the given id number has data ready to be read. Returns 0 (FALSE) otherwise.

Normally the call should just be forwarded to the transport layer to find out.

completedData()

Called when the ORB has completed reading a request for the given id and wants the Listener to once again signal (via the Bridge)
any new incoming request.

Constructor()

A string prefix can be passed to the constructor to enable the reading of transport specific properties. To support this, the string used
in the Listener Factory method needs to be passed.

Listener Factory Class

Base Class
VISPTransListenerFactory from file vptrans.h

Abstract Methods to be Implemented by Subclass
VISPTransListener_ptr create(const char* propPrefix)

Other Required Methods

Constructor

Destructor

Class Description
This class allows the Pluggable Transport library to provide Listener classes to the ORB when needed. It
should create an instance of this transport's Listener and return a pointer to it (as its base class type).
The ORB will use the virtual functions to perform 'down calls' into the created instance.

• •

• •

Listener Factory Class

- 373/607 - © 2024 Rocket Software

Method Description

create()

Make a new instance of this class (optionally passing along the given string prefix). Return a pointer to it. The caller takes over
management of this instance.

Profile Class

Base Class
VISPTransProfileBase from file vptrans.h

Abstract Methods to be Implemented by Subclass

Other Required Methods

Default constructor

Destructor

static _downcast method accepting IOP::ProfileValue_ptr as argument

virtual void* _safe_downcast(const VISValueInfo &info) const

Recommended methods

Constructor with const IOP::TaggedProfile& argument

Accessor and Mutator methods for any member data

Class Description
This class provides the functionality to convert between a transport specific endpoint description and an
IOP based IOR that can be exchanged with other CORBA implementations. It is also used during the
process of binding a client to a server, by passing a ProfileValue to a 'parsing' function that has to
return TRUE or FALSE, depending on whether an IOR usable for this transport was found inside of it.

IOP::ProfileId tag()
IOP::TaggedProfile* toTaggedProfile()
IOP::ProfileValue_ptr copy()
CORBA::Boolean matchesTemplate(IOP::ProfileValue_ptr body)

• •

• •

• •

• •

• •

• •

Profile Class

- 374/607 - © 2024 Rocket Software

An instance of this class is frequently passed to functions via a pointer to its base class type. In order to
support safe run-time downcasting with any C++ compiler, a _downcast function must be provided that
can test if the cast is legal or not. See the MQ example code for an example.

Method Description

tag()

Return the unique tag value for this Profile (see note above).

toTaggedProfile()

Return a tagged (stringified) Profile instance created with the values read from this instance's member data.

copy()

Make an exact copy on the free store and return a pointer to it. It is good coding practice to use the copy constructor inside of this
function.

matchesTemplate()

Return 1 (TRUE) if there is an IOR in the given data, that can be used to connect through this transport. Otherwise return 0
(FALSE).

static _downcast()

Function to downcast a base class pointer to an instance of this Profile class.

_safe_downcast()

Virtual method called by ORB during downcast, to check type info data.

Profile Factory Class

Base class
VISPTransProfileFactory from file vptrans.h

Abstract Methods to be Implemented by Subclass

Other Required Methods

IOP::ProfileValue_ptr create(const IOP::TaggedProfile& profile)
CORBA::ULong hash(VISPTransProfileBase_ptr prof)
IOP::ProfileId getTag()

Profile Factory Class

- 375/607 - © 2024 Rocket Software

Constructor

Recommended Methods
None.

Class description
This class is used to create a new generic C++ Profile object, to represent an IOR Profile in memory. It
will return a pointer to the new Profile instance, cast to the base type IOP::ProfileValue_ptr .

Method description

create()

Read the tagged IOR and create a Profile describing a Listener endpoint.

hash()

Support the optimized storage of profiles in a hashed lookup table by calculating a hash number for the given instance. Return 0 if

you do not provide hash values.

getTag()

Return the unique Profile Id tag for the type of Profile created by this factory.

Classes Provided by the Interface
Two additional classes are provided by the Pluggable Transport Interface, that user-provided transport
plugin code will make calls to.

Transport Bridge Class

Class name
VISPTransBridge in file vptrans.h

•

Classes Provided by the Interface

- 376/607 - © 2024 Rocket Software

Provided Methods

Class Description
Generic interface between the transport classes and the ORB. It provides methods to signal various
events occuring in the transport layer.

Method Description

addInput()

Send a connection request to the ORB through the bridge, by passing a pointer to the Connection instance representing the newly

established connection. The returned flag signals whether the ORB has accepted the new connection (returns 1 (TRUE)) or refused

it (returns 0 (FALSE)). The latter might happen due to resource constraints or due to a restriction on connections (set up through

the property system).

signalDataAvailable()

Passes to the ORB the connection id of a connection that just got new data from the transport layer. This will start the dispatch cycle
for incoming requests.

closedByPeer()

Tell the ORB that the connection with the given id was closed by the remote peer.

Transport Registrar Class

Class Name
VISPTransRegistrar in file vptrans.h

CORBA::Boolean addInput(VISPTransConnection_ptr con)
void signalDataAvailable(CORBA::Long conId)
void closedByPeer(CORBA::Long conId)

Transport Registrar Class

- 377/607 - © 2024 Rocket Software

Provided Methods

Class Description
This class must be used to register a new transport with the ORB. The string given during registration is
used as identifier of this transport and must be unique in the scope of that ORB. It will also be used in
the prefix string of properties related to this transport.

Method Description

addTransport()

Register the transport identifier string and the three Factory instances used to create specific classes for this transport. This method
is static and can therefore be called at any time during the initialization of the ORB.

Creating a Loadable Library
After compiling all classes described above, you have to link this code to the ORB library before you
start any server or client.

Create an object file linking all transport-specific object code and the Pluggable Transport library code.

You must link this file with ORB into the kernel to plug in the new transport.

static void addTransport(const char* protocolName,
VISPTransConnectionFactory* connFac,
VISPTransListenerFactory* listFac,
VISPTransProfileFactory* profFac)

Creating a Loadable Library

- 378/607 - © 2024 Rocket Software

Using Portable Interceptors

This section provides an overview of Portable Interceptors. It discusses several Portable Interceptor
examples and including the advanced features of Portable Interceptor factories.

For a complete description of Portable Interceptor, refer to the OMG Final Adopted Specification, ptc/
2001-04-03, Portable Interceptors.

Overview
The VisiBroker RT for C++ ORB provides a set of interfaces known as interceptors which provide a
framework for plugging-in additional ORB behavior such as security, transactions, or logging. These
interceptor interfaces are based on a callback mechanism. For example, using the interceptors, you can
be notified of communications between clients and servers, and modify these communications if you
wish, effectively altering the behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code. Because you can see the
messages being sent between clients and servers, you can determine exactly how the ORB is processing
requests.

If you are building a more sophisticated application such as a monitoring tool or security layer,
interceptors give you the information and control you need to enable these lower-level applications. For
example, you could develop an application that monitors the activity of various servers and performs
load balancing.

Using Portable Interceptors

- 379/607 - © 2024 Rocket Software

There are two types of interceptors supported by the VisiBroker ORB; they are Portable Interceptors and
VisiBroker Interceptors. Portable Interceptors are OMG standardized feature that allows writing of
portable code as interceptors, which can be used with different ORB vendors. VisiBroker Interceptors
are specific for VisiBroker RT for C++. See Using VisiBroker Interceptors for more information on
VisiBroker Interceptors.

There are two kinds of Portable Interceptors defined by OMG specification:

Request Interceptors can enable the VisiBroker ORB services to transfer context information
between clients and servers. Request Interceptors are further divided into Client Request
Interceptors and Server Request Interceptors.

An IOR interceptor is used to enable a VisiBroker ORB service to add information in an IOR
describing the server's or object's ORB-servicerelated capabilities. For example, a security service
(like SSL) can add its tagged component into the IOR so that clients recognizing that component
can establish the connection with the server based on the information in the component.

For more details on Portable Interceptors, see the VisiBroker RT for C++ Programmer's Reference.

For more details on using both Portable Interceptors and VisiBroker Interceptors, see Using VisiBroker
Interceptors.

Portable Interceptor and Information interfaces
All Portable Interceptors implement one of the following base interceptor API classes which are defined
and implemented by the VisiBroker ORB:

Request Interceptor:

ClientRequestInterceptor

ServerRequestInterceptor

IORInterceptor

All the interceptor classes listed above are derived from a common class: Interceptor. This Interceptor
class has defined common methods that are available to its inherited classes.

The Interceptor class:

• •

• •

• •

• •

• •

• •

Portable Interceptor and Information interfaces

- 380/607 - © 2024 Rocket Software

Request Interceptor
A request interceptor is used to intercept flow of a request/reply sequence at specific interception
points so that services can transfer context information between clients and servers. For each
interception point, the VisiBroker ORB gives an object through which the Interceptor can access
request information. There are two kinds of Request Interceptor and their respective request
information interfaces:

ClientRequestInterceptor and ClientRequestInfo

ServerRequestInterceptor and ServerRequestInfo

For more information on Request Interceptors, see the VisiBroker Programmer's Reference.

class PortableInterceptor::Interceptor
{

virtual char* name() = 0;
virtual void destroy() = 0;

}

• •

• •

Request Interceptor

- 381/607 - © 2024 Rocket Software

ClientRequestInterceptor
ClientRequestInterceptor has its interception points implemented on the client-side. There are five
interception points defined in ClientRequestInterceptor by OMG as shown in the table below:

For more information on each interception point, see the VisiBroker RT for C++ Programmer's Reference.

ClientRequestInterceptor class

The client-side rules are listed below:

The starting interception points are: send_request and send_poll . On any given request/reply
sequence, one and only one of these interception points is called.

Interception
points

Description

send_request Lets a client-side Interceptor query a request and modify the service
context before the request is sent to the server.

send_poll Lets a client-side Interceptor query a request during a Time-Independent
Invocation (TII) polling get reply sequence.
Note that TII is not implemented in the VisiBroker ORB. As a result, the s
end_poll() interception point will never be invoked.

receive_reply Lets a client-side Interceptor query the reply information after it is
returned from the server and before the client gains control.

receive_exce
ption

Lets a client-side Interceptor query the exception's information, when an
exception occurs, before the exception is sent to the client

receive_other Lets a client-side Interceptor query the information which is available
when a request result other than normal reply or an exception is received.

class _VISEXPORT ClientRequestInterceptor :
public virtual Interceptor

{
public:

virtual void send_request(ClientRequestInfo_ptr _ri) = 0;
virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;
virtual void receive_reply(ClientRequestInfo_ptr _ri) = 0;
virtual void receive_exception(ClientRequestInfo_ptr _ri) = 0;
virtual void receive_other(ClientRequestInfo_ptr _ri) = 0;

};

• •

Request Interceptor

- 382/607 - © 2024 Rocket Software

The ending interception points are: receive_reply , receive_exception and receive_other .

There is no intermediate interception point.

An ending interception point is called if and only if send_request or send_poll runs successfully.

A receive_exception is called with the system exception BAD_INV_ORDER with a minor code of 4 (ORB
has shutdown) if a request is canceled because of ORB shutdown.

A receive_exception is called with the system exception TRANSIENT with a minor code of 3 if a
request is canceled for any other reason.

ServerRequestInterceptor
ServerRequestInterceptor has its interception points implemented on the server-side. There are five
interception points defined in ServerRequestInterceptor . The table below shows the
ServerRequestInterceptor Interception points:

For more detail on each interception point, see the VisiBroker RT for C++ Programmer's Reference.

• •

• •

• •

• •

• •

Successful
invocations

send_request is followed by receive_reply - a start point is
followed by an end point.

Retries send_request is followed by receive_other - a start point is
followed by an end point.

Interception points Description

receive_request_s
ervice_contexts

lets a server-side Interceptor get its service context information from
the incoming request and transfer it to PortableInterceptor::C
urrent 's slot.

receive_request lets a server-side Interceptor query request information after all
information, including operation parameters, is available.

send_reply lets a server-side Interceptor query reply information and modify the
reply service context after the target operation has been invoked
and before the reply is returned to the client.

send_exception lets a server-side Interceptor query the exception's information and
modify the reply service context, when an exception occurs, before
the exception is sent to the client.

send_other lets a server-side Interceptor query the information which is
available when a request result other than normal reply or an
exception is received.

Request Interceptor

- 383/607 - © 2024 Rocket Software

ServerRequestInterceptor class

The server-side rules are listed as below:

The starting interception point is: receive_request_service_contexts . This interception point is called
on any given request/reply sequence.

The ending interception points are: send_reply , send_exception and send_other . On any given
request/reply sequence, one and only one of these interception points is called.

The intermediate interception point is receive_request . It is called after
receive_request_service_contexts and before an ending interception point.

On an exception, receive_request may not be called.

An ending interception point is called if and only if send_request or send_poll runs successfully.

A send_exception is called with the system exception BAD_INV_ORDER with a minor code of 4 (ORB
has shutdown) if a request is canceled because of ORB shutdown.

A send_exception is called with the system exception TRANSIENT with a minor code of 3 if a request
is canceled for any other reason.

Successful invocations
The order of interception points: receive_request_service_contexts , receive_request , send_reply - a start
point is followed by an intermediate point which is followed by an end point.

class _VISEXPORT ServerRequestInterceptor:
public virtual Interceptor

{
public:

virtual void receive_request_service_contexts(
ServerRequestInfo_ptr _ri) = 0;

virtual void receive_request(ServerRequestInfo_ptr _ri) = 0;
virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;
virtual void send_exception(ServerRequestInfo_ptr _ri) = 0;
virtual void send_other(ServerRequestInfo_ptr _ri) = 0;

};

• •

• •

• •

• •

• •

• •

• •

Request Interceptor

- 384/607 - © 2024 Rocket Software

IOR Interceptor

IORInterceptor
IORInterceptors give applications the ability to add information describing the server's or object's ORB
service related capabilities to object references to enable the VisiBroker ORB service implementation in
the client to function properly. This is done by calling the interception point, establish_components. An
instance of IORInfo is passed to the interception point. For more information on IORInfo , see the
VisiBroker RT for C++ Programmer's Reference.

IORInterceptor class

Portable Interceptor Current
The PortableInterceptor::Current object (hereafter referred to as PICurrent) is a table of slots that can
be used by Portable Interceptors to transfer thread context information to request context. Use of
PICurrent may not be required. However, if a client's thread context information is required at
interception point, PICurrent can be used to transfer this information.

PICurrent is obtained through a call to:

class _VISEXPORT IORInterceptor : public virtual Interceptor
{
public:

virtual void establish_components(IORInfo_ptr _info) = 0;
virtual void components_established(IORInfo_ptr _info) = 0;
virtual void adapter_manager_state_changed(

CORBA::Long _id,
CORBA::Short _state) = 0;

virtual void adapter_state_changed(
const ObjectReferenceTemplateSeq& _templates,
CORBA::Short _state) = 0;

};

IOR Interceptor

- 385/607 - © 2024 Rocket Software

PortableInterceptor::Current class

Codec
The Codec provides a mechanism for interceptors to transfer components between their IDL data types
and their CDR encapsulation representations. A Codec is obtained from CodecFactory (see
CodecFactory).

Codec class

class _VISEXPORT Current :
public virtual CORBA::Current, public virtual CORBA_Object

{
public:

virtual CORBA::Any* get_slot(CORBA::ULong _id);
virtual void set_slot(CORBA::ULong _id, const CORBA::Any& _data);

};

Codec

- 386/607 - © 2024 Rocket Software

CodecFactory
This class is used to create a Codec object by specifying the encoding format, the major and minor
versions. CodecFactory can be obtained a call to:

ORB-\>resolve_initial_references("CodecFactory")

CodecFactory class

class _VISEXPORT Codec
{
public:

virtual CORBA::OctetSequence* encode(
const CORBA::Any& _data) = 0;

virtual CORBA::Any* decode(
const CORBA::OctetSequence& _data) = 0;

virtual CORBA::OctetSequence* encode_value(
const CORBA::Any&_data) = 0;

virtual CORBA::Any* decode_value(
const CORBA::OctetSequence&_data,
CORBA::TypeCode_ptr _tc) = 0;

};

CodecFactory

- 387/607 - © 2024 Rocket Software

Creating a Portable Interceptor
The generic steps to create a Portable Interceptor are:

The Interceptor must be inherited from one of the following Interceptor interfaces:

ClientRequestInterceptor

ServerRequestInterceptor

IORInterceptor

The Interceptor implements one or more interception points that are available to the Interceptor

The Interceptor can be named or anonymous. All names must be unique among all Interceptors
of the same type. However, any number of anonymous Interceptors can be registered with the
VisiBroker ORB.

Example 17 Example of Creating a PortableInterceptor in C++

class _VISEXPORT CodecFactory
{
public:

virtual Codec_ptr create_codec(const Encoding& _enc) = 0;
};

• •

• •

• •

• •

• •

• •

Creating a Portable Interceptor

- 388/607 - © 2024 Rocket Software

Registering Portable Interceptors
Portable Interceptors must be registered with the VisiBroker ORB before they can be used. To register a
Portable Interceptor, an ORBInitializer object must be implemented and registered. Portable
Interceptors are instantiated and registered during ORB initialization by registering an associated
ORBInitializer object which implements its pre_init() or post_init() method, or both. The VisiBroker
ORB will call each registered ORBInitializer with an ORBInitInfo object during the initializing process.

#include "PortableInterceptor_c.hh"

class SampleClientRequestInterceptor :
public PortableInterceptor::ClientRequestInterceptor

{
char * name() {

return "SampleClientRequestInterceptor";
}
void send_request(ClientRequestInfo_ptr _ri) {

....... // actual interceptor code here
}
void send_request(ClientRequestInfo_ptr _ri) {

....... // actual interceptor code here
}
void receive_reply(ClientRequestInfo_ptr _ri) {

....... // actual interceptor code here
}
void receive_exception(ClientRequestInfo_ptr _ri) {

....... // actual interceptor code here
}
void receive_other(ClientRequestInfo_ptr _ri) {

....... // actual interceptor code here
}

};

Registering Portable Interceptors

- 389/607 - © 2024 Rocket Software

ORBInitializer class

ORBInitInfo class

class _VISEXPORT ORBInitializer
{
public:

virtual void pre_init(ORBInitInfo_ptr _info) = 0;
virtual void post_init(ORBInitInfo_ptr _info) = 0;

};

class _VISEXPORT ORBInitInfo
{
public:

virtual CORBA::StringSequence* arguments() = 0;
virtual char* orb_id() = 0;
virtual IOP::CodecFactory_ptr codec_factory() = 0;
virtual void register_initial_reference(

const char* _id, CORBA::Object_ptr _obj) = 0;
virtual CORBA::Object_ptr resolve_initial_references(

const char* _id) = 0;
virtual void add_client_request_interceptor(

ClientRequestInterceptor_ptr _interceptor) = 0;
virtual void add_server_request_interceptor(

ServerRequestInterceptor_ptr _interceptor) = 0;
virtual void add_ior_interceptor(

IORInterceptor_ptr _interceptor) = 0;
virtual CORBA::ULong allocate_slot_id() = 0;
virtual void register_policy_factory(

CORBA::ULong _type,
PolicyFactory_ptr _policy_factory) = 0;

};

Registering Portable Interceptors

- 390/607 - © 2024 Rocket Software

Registering an ORBInitializer
To register a ORBInitializer , a global method register_orb_initializer is provided. Each service that
implements Interceptors provides an instance of ORBInitializer . To use a service, an application:

Calls register_orb_initializer() with the service's ORBInitializer ; and makes an instantiating
ORB_Init() call with a new ORB identifier to produce a new ORB. During ORB.init() , these ORB
properties which begin with org.omg.PortableInterceptor.ORBInitializerClass will be collected.

The portion of each property will be collected.

An object shall be instantiated with the string as its class name.

The pre_init() and post_init() methods will be called on that object.

If there is any exception, the ORB will ignore them and proceed.

To avoid name collisions, the reverse DNS name convention is recommended. For example, if
company ABC has two initializers, it could define the following properties:

The register_orb_initializer method is defined in the PortableInterceptor module as:

Example
A client-side monitoring tool written by company ABC may have the following ORBInitializer
implementation:

Code example 117 Example of Registering ORBInitializer in C++

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Note

org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit1
org.omg.PortableInterceptor.ORBInitializerClass.com.abc.ORBInit2

class _VISEXPORT PortableInterceptor {
static void register_orb_initializer(ORBInitializer *init);

};

Registering an ORBInitializer

- 391/607 - © 2024 Rocket Software

VisiBroker Edition Extensions to Portable Interceptors

POA scoped Server Request Interceptors
Portable Interceptors specified by OMG are scoped globally. VisiBroker Edition has defined "POA scoped
Server Request Interceptor", a public extension to the Portable Interceptors, by adding a new module
call PortableInterceptorExt . This new module holds a local interface, IORInfoExt , which is inherited from
PortableInterceptor::IORInfo and has additional methods to install POA scoped server request
interceptor.

#include "PortableInterceptor_c.hh"

class MonitoringService :
public PortableInterceptor::ORBInitializer

{
void pre_init(ORBInitInfo_ptr _info)
{

// instantiate the service's Interceptor.
Interceptor* interceptor = new MonitoringInterceptor();
// register the Monitoring's Interceptor.
_info->add_client_request_interceptor(interceptor);

}

void post_init(ORBInitInfo_ptr _info)
{

// This init point is not needed.
}

};

MonitoringService * monitoring_service = new MonitoringService();
PortableInterceptor::register_orb_initializer(monitoring_service);

VisiBroker Edition Extensions to Portable Interceptors

- 392/607 - © 2024 Rocket Software

IORInfoExt class

Limitations of VisiBroker Edition Portable Interceptors
Implementation

The following are limitations of the Portable Interceptor implementation in VisiBroker for C++:

ClientRequestInfo

arguments() , result() , exceptions() , contexts() , and operation_contexts() are only available for DII
invocations.

operation_context(): not available, CORBA::NO_RESOURCES thrown.

received_exception(): available only if typecode info is available (e.g. IDL is compiled with -
typecode_info and linked into program), otherwise CORBA::UNKNOWN is always returned.

ServerRequestInfo

arguments() , result() , are only available for DSI invocations.

exceptions() , contexts() , operation_context(): not available, CORBA::NO_RESOURCES thrown.

sending_exception(): available only if typecode info is available (e.g. IDL is compiled with -
typecode_info and linked into program), otherwise CORBA::UNKNOWN is always returned.

#include "PortableInterceptorExt_c.hh"

class IORInfoExt : public PortableInterceptor::IORInfo
{
public:

virtual void add_server_request_interceptor(
ServerRequestInterceptor_ptr _interceptor) = 0;

virtual char* full_poa_name();
};

• •

• •

• •

• •

• •

• •

Limitations of VisiBroker Edition Portable Interceptors Implementation

- 393/607 - © 2024 Rocket Software

Examples
This section discusses how applications are actually written to make use of Portable Interceptors and
how each request interceptor is implemented. Each example consists of a set of client and server
applications and their respective interceptors written in C++. For more information on the definition of
each interface, see the VisiBroker Programmer's Reference. It is also advisable that developers who want
to make use of Portable Interceptor read the chapter on Portable Interceptors in the latest CORBA
specification.

Example Code
Below is the list of examples that can be found in the directory, <VBRT_install>/examples/vbroker_kernel/
pi . Each example is being associated with a directory name to better illustrate the objective of that
example.

The following sections provide a detailed description of the example of client_server and an
explanation of the example, the compilation procedure, and their execution or deployment.

Example: client_server

Objective of example
This example demonstrates how easy a Portable Interceptor can be added into an existing CORBA
application without altering any code. The Portable Interceptor can be added to any application, both
client and server-side, through executing the related application again, together with the specified
options or properties which can be configured during run-time.

The client and server application used is similar to the one found in <VBRT_install>/examples/
vbroker_kernel/basic/bank_agent on your Linux development host.

The entire example was taken out and Portable Interceptors added during run-time configuration. The
reason to do so is to provide developers, who are familiar with VisiBroker's Interceptor, a fast way of
coding between VisiBroker's Interceptors and OMG specific Portable Interceptors.

Code explanation

Importing required packages
To use Portable Interceptor interfaces, the related packages or header files are required to be included.
Note that the ORBInitInfoPackage is optional if you are using any Portable Interceptors' exceptions, such
as DuplicateName or InvalidName .

Examples

- 394/607 - © 2024 Rocket Software

Required header files for using Portable Interceptor in C++:

To load a client-side request interceptor, a class that uses the interface ORBInitializer must be
implemented. This is also applicable for server-side request interceptor as far as initialization is
concerned.

Proper inheritance of a ORBInitializer to load a server request interceptor:

Notice that each of the object that implements the interface, ORBInitializer , is also required to inherit
from the object LocalObject . This is necessary because the IDL definition of ORBInitializer uses the
keyword local. For more information on the IDL keyword, local , see Using Valuetypes).

During the initialization of the ORB, each request Interceptor is added through the implementation of
the interface, pre_init() . Inside this interface, the client request Interceptor is being added through the
method, add_ client_request_interceptor() . The related client request interceptor is required to be
instantiated before adding itself into the ORB.

Client-side request interceptor initialization and registration to the ORB

According to the OMG specification, the required application will register the respective interceptors
through the method register_orb_initializer . Refer to Portable Interceptor and Information interfaces
for more details. VisiBroker RT for C++ provides an optional way of registering these interceptors
through dynamically loaded libraries. The advantage of using this method of registering is that the
applications do not require changing any code but only the way they are executed.

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

class SampleServerLoader :
public PortableInterceptor::ORBInitializer

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
SampleClientInterceptor *interceptor =

new SampleClientInterceptor;
VISTRY {

_info->add_client_request_interceptor(interceptor);
...

} VISCATCH(CORBA::Exception, e) {
...

} VISCATCH_END
}

Example: client_server

- 395/607 - © 2024 Rocket Software

In order to load the interceptor dynamically, the VISInit interface is used. This is similar to the one
used in 4.x Interceptors. For more information, see Using VisiBroker Interceptors. The registration of
each interceptor loader is similar within the ORB_init implementation.

Example: client_server

- 396/607 - © 2024 Rocket Software

Registration of client-side ORBInitializer dynamic loading

Complete implementation of the client-side interceptor loader

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_bind_interceptors_installed)
return;

SampleClientLoader *client = new SampleClientLoader();
PortableInterceptor::register_orb_initializer(client);

...

Example: client_server

- 397/607 - © 2024 Rocket Software

// SampleClientLoader.C
#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

#include "sampleClientInterceptor.h"

#if !defined(DLL_COMPILE)
#include "vinit.h"
#include "corba.h"
#endif

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace

USE_STD_NS

class SampleClientLoader :
public PortableInterceptor::ORBInitializer

{
private:

short int _interceptors_installed;

#if defined(DLL_COMPILE)
static SampleClientLoader _instance;

#endif

public:
SampleClientLoader() {

_interceptors_installed = 0;
}

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
if(_interceptors_installed) return;

cout << "=====>SampleClientLoader: Installing..." << endl;

SampleClientInterceptor *interceptor =
new SampleClientInterceptor;

VISTRY {
_info->add_client_request_interceptor(interceptor);
_interceptors_installed = 1;
cout << "=====>SampleClientLoader: Interceptors loaded."

<< endl;
}
VISCATCH(PortableInterceptor::ORBInitInfo::DuplicateName, e) {

Example: client_server

- 398/607 - © 2024 Rocket Software

Implementing the ORBInitializer for a server-side Interceptor

cout << "=====>SampleClientLoader: " << e.name
<< " already installed!" << endl;

}
VISAND_CATCHALL {

cout
<< "=====>SampleClientLoader: other exception occurred!"
<< endl;

}
VISEND_CATCH

}

void post_init(PortableInterceptor::ORBInitInfo_ptr _info) { }
};

#if defined(DLL_COMPILE)
class VisiClientLoader : VISInit
{
private:

static VisiClientLoader _instance;
short int _ bind_interceptors_installed;

public:
VisiClientLoader() : VISInit(1) {

_bind_interceptors_installed = 0;
}

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
if(_bind_interceptors_installed) return;

VISTRY {
SampleClientLoader *client = new SampleClientLoader();
PortableInterceptor::register_orb_initializer(client);
_bind_interceptors_installed = 1;

}
VISCATCH(const CORBA::Exception, e)
{

cerr << e << endl;
}
VISEND_CATCH

}
};
// static instance
VisiClientLoader VisiClientLoader::_instance;
#endif

Example: client_server

- 399/607 - © 2024 Rocket Software

At this stage, the client request interceptor should already have been properly instantiated and added.
Subsequent code thereafter only provides exception handling and result display.

Similarly, on the server-side, the server request interceptor is also done the same way except that it
uses the, add_server_request_interceptor() method to add the related server request interceptor into the
ORB.

Server-side request interceptor initialization and registration to the ORB

This method also applies similarly to loading the server-side ORBInitializer class through a DLL
implementation.

Server-side request ORB Initializer dynamic loading

The complete implementation of the server-side interceptor loader follows.

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
SampleServerInterceptor *interceptor =

new SampleServerInterceptor;
VISTRY {

_info->add_server_request_interceptor(interceptor);
...

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_poa_interceptors_installed) return;

SampleServerLoader *server = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(server);

...

Example: client_server

- 400/607 - © 2024 Rocket Software

Complete implementation of the server-side interceptor loader

Example: client_server

- 401/607 - © 2024 Rocket Software

// SampleServerLoader.C
#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

#if defined(DLL_COMPILE)
#include "vinit.h"
#include "corba.h"
#endif

#include "sampleServerInterceptor.h"

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace

USE_STD_NS

class SampleServerLoader :
public PortableInterceptor::ORBInitializer

{
private:

short int _interceptors_installed;

public:
SampleServerLoader() {

_interceptors_installed = 0;
}

void pre_init(PortableInterceptor::ORBInitInfo_ptr _info) {
if(_interceptors_installed) return;

cout << "=====>SampleServerLoader: Installing..." << endl;

SampleServerInterceptor *interceptor =
new SampleServerInterceptor();

VISTRY {
_info->add_server_request_interceptor(interceptor);

_interceptors_installed = 1;
cout << "=====>SampleServerLoader: Interceptors loaded."

<< endl;
}
VISCATCH(PortableInterceptor::ORBInitInfo::DuplicateName, e) {

cout << "=====>SampleServerLoader: " << e.name
<< " already installed!" << endl;

}

Example: client_server

- 402/607 - © 2024 Rocket Software

Implementing the RequestInterceptor for Client- or Server-side Request Interceptor

VISAND_CATCHALL {
cout << "=====>SampleServerLoader: other exception occurred!"

<< endl;
}
VISEND_CATCH

}

void post_init(PortableInterceptor::ORBInitInfo_ptr _info) {}
};

#if defined(DLL_COMPILE)
class VisiServerLoader : VISInit
{
private:

static VisiServerLoader _instance;
short int _poa_interceptors_installed;

public:
VisiServerLoader() : VISInit(1) {

_poa_interceptors_installed = 0;
}

void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb) {
if(_poa_interceptors_installed) return;
VISTRY {

SampleServerLoader *server = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(server);
_poa_interceptors_installed = 1;

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
}

}
};

// static instance
VisiServerLoader VisiServerLoader::_instance;
#endif

Example: client_server

- 403/607 - © 2024 Rocket Software

Upon implementation of either client- or server-side request interceptor, two other interfaces must be
implemented. They are name() and destroy() . The name() is important here because it provides the
name to the ORB to identify the correct interceptor that it will load and call during any request or reply.
According to the CORBA specification, an interceptor may be anonymous, for example, it has an empty
string as the name attribute. In this example, the name, SampleClientInterceptor , is assigned to the
client side interceptor and SampleServerInterceptor is assigned to the server-side interceptor.

Implementation of interface attribute, read-only attribute name:

Implementing the ClientRequestInterceptor for Client

For the client request interceptor, it is necessary to implement the interface, ClientRequestInterceptor ,
for the request interceptor to be working properly. When the class implements the interface, five
request interceptor methods will be implemented regardless of any implementation. They are
send_request() , send_poll() , receive_reply() , receive_exception() and receive_other() . In addition, the
interface for the request interceptor must be implemented before hand. On the client-side interceptor,
the following request interceptor point will be triggered in relation to its events.

send_request - provides an interception point for querying request information and modifying the
service context before the request is sent to the server.

Implementation of the public void send_request(ClientRequestInfo ri) interface

Implementation of the void send_poll(ClientRequestInfo ri) interface

send_poll - provides an interception point for querying information during a Time-Independent
Invocation (TII) polling to get reply sequence.

public:
char *name(void) {

return _name;
}

void send_request(PortableInterceptor::ClientRequestInfo_ptr ri)
{
...

Example: client_server

- 404/607 - © 2024 Rocket Software

Implementation of the void receive_reply(ClientRequestInfo ri) interface

receive_reply - provides an interception point for querying information on a reply after it is returned
from the server and before control is returned to the client.

Implementation of the void receive_exception(ClientRequestInfo ri) interface

receive_exception - provides an interception point for querying the exception's information before it is
raised to the client.

receive_other - provides an interception point for querying information when a request results in
something other than a normal reply or an exception. For example, a request could result in a retry (for
example, a GIOP Reply with a LOCATION_FORWARD status was received); or on asynchronous calls, the reply
does not immediately follow the request. However, the control is returned to the client and an ending
interception point is called.

The complete implementation of the client-side request interceptor follows.

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri)
{
...

void receive_reply(PortableInterceptor::ClientRequestInfo_ptr ri)
{
...

void receive_exception(
PortableInterceptor::ClientRequestInfo_ptr ri)

{
...

void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri)
{
...

Example: client_server

- 405/607 - © 2024 Rocket Software

Complete C++ implementation of the client-side request interceptor

Example: client_server

- 406/607 - © 2024 Rocket Software

// SampleClientInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace
USE_STD_NS

class SampleClientInterceptor :
public PortableInterceptor::ClientRequestInterceptor

{
private:

char *_name;

void init(char *name) {
_name = new char[strlen(name)+1];
strcpy(_name, name);

}

public:
SampleClientInterceptor(char *name) {

init(name);
}
SampleClientInterceptor() {

init("SampleClientInterceptor");
}

char *name(void) {
return _name;

}
void destroy(void) {

cout << "=====>SampleServerLoader: Interceptors unloaded"
<< endl;

}

/**
 * This is similar to VisiBroker 4.x ClientRequestInterceptor,
 *
 * void preinvoke_premarshal(CORBA::Object_ptr target,
 * const char* operation,
 * IOP::ServiceContextList& servicecontexts,
 * VISClosure& closure) = 0;
 */

void send_request(PortableInterceptor::ClientRequestInfo_ptr ri)
{

Example: client_server

- 407/607 - © 2024 Rocket Software

cout << "=====> SampleClientInterceptor id " << ri->request_id()
<< " send_request => " << ri->operation()
<< ": Target = " << ri->target()
<< endl;

}
/**

 * There is no equivalent interface for VisiBroker 4.x
 * ClientRequestInterceptor.
 */

void send_poll(PortableInterceptor::ClientRequestInfo_ptr ri) {
cout << "=====> SampleClientInterceptor id " << ri->request_id()

<< " send_poll => " << ri->operation()
<< ": Target = " << ri->target()
<< endl;

}
/**

 * This is similar to VisiBroker 4.x ClientRequestInterceptor,
 *
 * void postinvoke(CORBA::Object_ptr target,
 * const IOP::ServiceContextList& service_contexts,
 * CORBA_MarshalInBuffer& payload,
 * CORBA::Environment_ptr env,
 * VISClosure& closure) = 0;
 *
 * with env not holding any exception value.
 */

void receive_reply(
PortableInterceptor::ClientRequestInfo_ptr ri) {

cout << "=====> SampleClientInterceptor id " << ri->request_id()
<< " receive_reply => " << ri->operation() << endl;

}
/**

 * This is similar to VisiBroker 4.x ClientRequestInterceptor,
 *
 * void postinvoke(CORBA::Object_ptr target,
 * const IOP::ServiceContextList& service_contexts,
 * CORBA_MarshalInBuffer& payload,
 * CORBA::Environment_ptr env,
 * VISClosure& closure) = 0;
 *
 * with env holding the exception value.
 */

void receive_exception(
PortableInterceptor::ClientRequestInfo_ptr ri) {

cout << "=====> SampleClientInterceptor id " << ri->request_id()
<< " receive_exception => " << ri->operation()
<< ": Exception = " << ri->received_exception()

Example: client_server

- 408/607 - © 2024 Rocket Software

On the server-side interceptor, the following request interceptor point will be triggered in relation to its
events.

receive_request_service_contexts - provides an interception point for getting service context information
from the incoming request and transferring it to PortableInterceptor::Current slot. This interception
point is called before the Servant Manager.

<< endl;
}
/**

 * This is similar to VisiBroker 4.x ClientRequestInterceptor,
 *
 * void postinvoke(CORBA::Object_ptr target,
 * const IOP::ServiceContextList& service_contexts,
 * CORBA_MarshalInBuffer& payload,
 * CORBA::Environment_ptr env,
 * VISClosure& closure) = 0;
 *
 * with env holding the exception value.
 */

void receive_other(PortableInterceptor::ClientRequestInfo_ptr ri)
{

cout << "=====> SampleClientInterceptor id " << ri->request_id()
<< " receive_other => " << ri->operation()
<< ": Exception = " << ri->received_exception()
<< ", Reply Status = " << getReplyStatus(ri->reply_status())
<< endl;

}

protected:
char *getReplyStatus(CORBA::Short status) {

if(status == PortableInterceptor::SUCCESSFUL)
return "SUCCESSFUL";

else if(status == PortableInterceptor::SYSTEM_EXCEPTION)
return "SYSTEM_EXCEPTION";

else if(status == PortableInterceptor::USER_EXCEPTION)
return "USER_EXCEPTION";

else if(status == PortableInterceptor::LOCATION_FORWARD)
return "LOCATION_FORWARD";

else if(status == PortableInterceptor::TRANSPORT_RETRY)
return "TRANSPORT_RETRY";

else
return "invalid reply status id";

}
};

Example: client_server

- 409/607 - © 2024 Rocket Software

Implementation of the void receive_request_service_contexts (ServerRequestInfo ri) interface

receive_request provides an interception point for querying all the information, including operation
parameters.

Implementation of the void receive_request (ServerRequestInfo ri) interface

send_reply provides an interception point for querying reply information and modifying the reply
service context after the target operation has been invoked and before the reply is returned to the
client.

Implementation of the void receive_reply (ServerRequestInfo ri)interface

send_exception provides an interception point for querying the exception information and modifying the
reply service context before the exception is raised to the client.

Implementation of the void receive_exception (ServerRequestInfo ri) interface

send_other provides an interception point for querying the information available when a request results
in something other than a normal reply or an exception. For example, a request could result in a retry
(such as, a GIOP Reply with a LOCATION_FORWARD status was received); or, on asynchronous calls, the reply
does not immediately follow the request, but control is returned to the client and an ending
interception point is called.

void receive_request_service_contexts(
PortableInterceptor::ServerRequest Info_ptr ri) {

...

void receive_request(PortableInterceptor::ServerRequestInfo_ptr ri)
{
...

void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
...

void send_exception(PortableInterceptor::ServerRequestInfo_ptr ri)
{
...

Example: client_server

- 410/607 - © 2024 Rocket Software

Implementation of the void receive_other (ServerRequestInfo ri) interface

All the interception points allow both the client and server to obtain different types of information at
different points of an invocation. In the example, this information is displayed as a debugging tool.

The following code example shows the complete implementation of the server-side request interceptor:

Example 18 Complete C++ implementation of the server-side request interceptor

void send_other(PortableInterceptor::ServerRequestInfo_ptr ri)
{
...

Example: client_server

- 411/607 - © 2024 Rocket Software

// SampleServerInterceptor.h

#include "PortableInterceptor_c.hh"
#include "IOP_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace
USE_STD_NS

class SampleServerInterceptor :
public PortableInterceptor::ServerRequestInterceptor

{
private:

char *_name;

void init(char *name) {
_name = new char[strlen(name)+1];
strcpy(_name, name);

}

public:
SampleServerInterceptor(char *name) {

init(name);
}
SampleServerInterceptor() {

init("SampleServerInterceptor");
}
char *name(void) {

return _name;
}
void destroy(void) {

// do nothing here
cout << "=====>SampleServerLoader: Interceptors unloaded"

<< endl;
}
/**

 * This is similar to VisiBroker 4.x ClientRequestInterceptor,
 *
 * void preinvoke_premarshal(CORBA::Object_ptr target,
 * const char* operation,
 * IOP::ServiceContextList& servicecontexts,
 * VISClosure& closure) = 0;
 */

void receive_request_service_contexts(
PortableInterceptor::ServerRequestInfo_ptr ri) {

cout << "=====> SampleServerInterceptor id "

Example: client_server

- 412/607 - © 2024 Rocket Software

<< ri->request_id()
<< " receive_request_service_contexts => "
<< ri->operation()
<< endl;

}
/**

 * There is no equivalent interface for VisiBroker 4.x
 * SeverRequestInterceptor.
 */

void receive_request(
PortableInterceptor::ServerRequestInfo_ptr ri)

{
cout << "=====> SampleServerInterceptor id "

<< ri->request_id()
<< " receive_request => " << ri->operation()
<< ": Object ID = " << ri->object_id()
<< ", Adapter ID = " << ri->adapter_id()
<< endl;

}
/**

 * There is no equivalent interface for VisiBroker 4.x
 * SeverRequestInterceptor.
 */

void send_reply(PortableInterceptor::ServerRequestInfo_ptr ri) {
cout << "=====> SampleServerInterceptor id "

<< ri->request_id()
<< " send_reply => " << ri->operation()
<< endl;

}
/**

 * This is similar to VisiBroker 4.x ServerRequestInterceptor,
 *
 * virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
 * IOP::ServiceContextList&_service_contexts,
 * CORBA::Environment_ptr _env,
 * VISClosure& _closure) = 0;
 *
 * with env holding the exception value.
 */

void send_exception(
PortableInterceptor::ServerRequestInfo_ptr ri)

{
cout << "=====> SampleServerInterceptor id "

<< ri->request_id()
<< " send_exception => " << ri->operation()
<< ": Exception = " << ri->sending_exception()
<< ", Reply status = " << getReplyStatus(ri->reply_status())

Example: client_server

- 413/607 - © 2024 Rocket Software

Developing the Client and Server Application

After the interceptor classes are written, you need to register them with their respective client and
server applications.

When running the server and client application on the VxWorks host, the ORB initialization is again
performed in the file corba_init.C , which contains the registration calls for the respective interceptor
loader. For the server ORB there is the file server_corba_init.C , that contains the full example code:

<< endl;
}
/**

 * This is similar to VisiBroker 4.x ServerRequestInterceptor,
 * virtual void postinvoke_premarshal(CORBA::Object_ptr _target,
 * IOP::ServiceContextList&_service_contexts,
 * CORBA::Environment_ptr _env,
 * VISClosure& _closure) = 0;
 *
 * with env holding the exception value.
 */

void send_other(PortableInterceptor::ServerRequestInfo_ptr ri) {
cout << "=====> SampleServerInterceptor id "

<< ri->request_id()
<< " send_other => " << ri->operation()
<< ": Exception = " << ri->sending_exception()
<< ", Reply Status = " << getReplyStatus(ri->reply_status())
<< endl;

}

protected:
char *getReplyStatus(CORBA::Short status) {

if(status == PortableInterceptor::SUCCESSFUL)
return "SUCCESSFUL";

else if(status == PortableInterceptor::SYSTEM_EXCEPTION)
return "SYSTEM_EXCEPTION";

else if(status == PortableInterceptor::USER_EXCEPTION)
return "USER_EXCEPTION";

else if(status == PortableInterceptor::LOCATION_FORWARD)
return "LOCATION_FORWARD";

else if(status == PortableInterceptor::TRANSPORT_RETRY)
return "TRANSPORT_RETRY";

else
return "invalid reply status id";

}
};

Example: client_server

- 414/607 - © 2024 Rocket Software

Implementation of the server ORB initialization

Example: client_server

- 415/607 - © 2024 Rocket Software

#include <vxWorks.h>
#include "corba.h"
#include <taskLib.h>
#include "vutil.h"

#include "sampleServerLoader.C"
#define OSAGENT_PORT "14000"

/*---*/
/* Forward Declarations. */
/*---*/
extern "C" void start_server_corba(char * ORB_options_string);
static void do_corba(char * ORB_options_string);

/*---*/
/* Global Variable Declarations */
/*---*/
CORBA::ORB_var orb;

/*---*/
/* function ==> start_corba */
/* This function will spawn a vxWork task @ */
/* priority 100, which will perform the neccessary */
/* initialization for the ORB (i.e. ORB_init,...) */
/*---*/
void start_server_corba(char * ORB_options_string)
{

char * taskName = "DO_CORBA";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

/*---*/
/* Spawn do_corba task. */
/*---*/

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)do_corba,
(int)ORB_options_string,0,0,0,0,0,0,0,0,0);

}

/*---*/
/* function ==>do_corba */
/* This function will perform the necessary */
/* initialization for the ORB (i.e. ORB_init,...) */

Example: client_server

- 416/607 - © 2024 Rocket Software

For the case where both the server and client applications run on the same VxWorks node, the same
ORB must be used to register both the client and server interceptor loaders. This code can be found in
colocated_corba_init.C .

/*---*/
void do_corba(char * ORB_options_string)
{
/*---*/
/* ORB_init options can be specified in two ways. */
/* 1) By calling start_corba and specifying the */
/* ORB initialization string */
/* (e.g. start_corba("-ORBagentport 19000") */
/* 2) Programatically by specifying the */
/* ORB_initialization_options in the */
/* default_argc and default_argv variables below. */
/* */
/* PLEASE NOTE THAT THE OPTIONS PASSED IN VIA start_corba */
/* OVERRIDE THE OPTIONS THAT ARE SET PROGRAMATICALLY. */
/*---*/

int default_argc = 2;
char *default_argv[] = {"-ORBagentport", OSAGENT_PORT};
char **new_argv;
int new_argc = VISUtil::stringToArgv(&new_argv, default_argv,

default_argc, ORB_options_string);
/*---*/
/* Call ORB_init */
/*---*/

VISTRY
{

// Instantiate an interceptor loader before initializing the orb:
SampleServerLoader* loader = new SampleServerLoader();
PortableInterceptor::register_orb_initializer(loader);

// Initialize the ORB
orb = CORBA::ORB_init(new_argc, new_argv);
VISUtil::freeArgv(new_argc, new_argv);

}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Example: client_server

- 417/607 - © 2024 Rocket Software

Following the loader registration(s), the client and server application code need to be developed.

Example: client_server

- 418/607 - © 2024 Rocket Software

Implementation of the client application

Example: client_server

- 419/607 - © 2024 Rocket Software

#include "corba.h"
#include "bank_c.hh"

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace
USE_STD_NS

/*---*/
/* Forward Declarations. */
/*---*/
extern "C" void start_cs_client(void);
static void cs_client(void);

extern CORBA::ORB_var orb;

void start_cs_client(void)
{

char * taskName = "CS_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)cs_client,
0,0,0,0,0,0,0,0,0,0);

}

void cs_client(void)
{

VISTRY {
char *name = "Jack B. Quick";
// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager. Give the full POA name and the
// servant ID.
Bank::AccountManager_var manager =

Bank::AccountManager::_bind("/bank_agent_poa", managerId);

// Request the account manager to open a named account.
Bank::Account_var account = manager->open(name);

Example: client_server

- 420/607 - © 2024 Rocket Software

// Get the balance of the account.
CORBA::Float balance = account->balance();

// Print out the balance.
cout << "The balance in " << name << "'s account is $"

<< balance << endl;
}
VISCATCH(CORBA::Exception, e) {

cerr << e << endl; return;
}
VISEND_CATCH

}

Implementation of the server application

#include "corba.h"
#include "bankImpl.h"

// USE_STD_NS is a define setup by VisiBroker to use the
// std namespace
USE_STD_NS

/*---*/
/* Forward Declarations. */
/*---*/
// Static initialization
AccountRegistry AccountManagerImpl::_accounts;

extern "C" void start_cs_server(void);
static void cs_server(void);

extern CORBA::ORB_var orb;

void start_cs_server(void)
{

char * taskName = "CS_SRVR";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)cs_server,
0,0,0,0,0,0,0,0,0,0);

}

Example: client_server

- 421/607 - © 2024 Rocket Software

void cs_server(void)
{

VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb-> resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA =

PortableServer::POA::_narrow(obj);

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] =

rootPOA->create_lifespan_policy(
PortableServer::PERSISTENT);

// get the POA Manager
PortableServer::POAManager_var

poa_manager = rootPOA->the_POAManager();

// Create myPOA with the right policies
PortableServer::POA_var myPOA =

rootPOA->create_POA("bank_agent_poa",
poa_manager,
policies);

// Create the servant
PortableServer::ServantBase_var managerServant =

new AccountManagerImpl();

// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId, managerServant);

// Activate the POA Manager
poa_manager->activate();

CORBA::Object_var reference =
myPOA->servant_to_reference(managerServant);

cout << reference << " is ready" << endl;
}
VISCATCH(CORBA::Exception, e) {

Example: client_server

- 422/607 - © 2024 Rocket Software

cerr << e << endl;
return;

}
VISEND_CATCH

}

Example: client_server

- 423/607 - © 2024 Rocket Software

Using VisiBroker Interceptors

This section provides an overview of the 4.x VisiBroker interceptors framework, walks through a
interceptor example, and describes some advanced features such as interceptor factories and chaining
interceptors. Lastly, this section covers the expected behaviors when both Portable and interceptors are
used in the same service.

Overview
Similar to Portable Interceptors, VisiBroker interceptors offer CORBA services a mechanism to intercept
normal flow of execution of the ORB. There are two kinds of VisiBroker RT for C++ interceptors:

Client interceptors are system-level interceptors which are called when a method is invoked from
a VisiBroker client.

Server interceptors are system-level interceptors which are called when a method is invoked on a
server object.

To use interceptors you declare a class which implements one of the interceptor interfaces. Once you
have instantiated an interceptor object, you register it with its corresponding interceptor manager. Your
interceptor object will then be notified by its manager whenever, for example, an object has had one of
its methods invoked or its parameters marshalled or demarshalled.

Use object wrappers, described in Using Object Wrappers, if you want to intercept an operation
request before it is marshalled on the clientside or if you want to intercept an operation request just
before it is processed on the server-side.

• •

• •

Note

Using VisiBroker Interceptors

- 424/607 - © 2024 Rocket Software

Interceptor interfaces and managers
Interceptor developers derive classes from one or more of the following base interceptor API classes
which are defined and implemented by the VisiBroker RT for C++ ORB.

Client interceptors

BindInterceptor

ClientRequestInterceptor

Server interceptors

POALifeCycleInterceptor

ActiveObjectLifeCycleInterceptor

ServerRequestInterceptor

IORCreationInterceptor

Client interceptors
There are currently two kinds of client interceptors and their respective managers:

BindInterceptor and BindInterceptorManager

ClientRequestInterceptor and ClientRequestInterceptorManager

For more details about client interceptors, see the VisiBroker RT for C++ Reference Guide.

BindInterceptor
A BindInterceptor object is a global interceptor which is called on the client side before and after binds.

Code example 118 BindInterceptor class

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Interceptor interfaces and managers

- 425/607 - © 2024 Rocket Software

ClientRequestInterceptor
A ClientRequestInterceptor object may be registered during a bind_succeeded call of a BindInterceptor
object, and it remains active for the duration of the connection. Two of its methods are called before the
invocation on the client object, one (preinvoke_premarshal) before the parameters are marshalled and
the other (preinvoke_postmarshal) after they are. The third method (postinvoke) is called after the request
has completed.

Code example 119 ClientRequestInterceptor class

class _VISEXPORT BindInterceptor
: public virtual VISPseudoInterface {

public:
virtual IOP::IORValue_ptr bind(

IOP::IORValue_ptr ior, CORBA_Object_ptr obj,
CORBA::Boolean rebind, VISClosure& closure) = 0;

virtual IOP::IORValue_ptr bind_failed(
IOP::IORValue_ptr ior, CORBA_Object_ptr object,
VISClosure& closure) = 0;

virtual void bind_succeeded(
IOP::IORValue_ptr ior, CORBA_Object_ptr object,
CORBA::Long profile_index,
interceptor::InterceptorManagerControl_ptr control,
VISClosure& closure) = 0;

virtual void exception_occurred(
IOP::IORValue_ptr ior,CORBA_Object_ptr object,
CORBA_Environment_ptr env, VISClosure& closure) = 0;

};

Client interceptors

- 426/607 - © 2024 Rocket Software

Server interceptors
There are currently four kinds of server interceptors:

POALifeCycleInterceptor and POALifeCycleInterceptorManager

ActiveObjectLifeCycleInterceptor and ActiveObjectLifeCycleInterceptorManager

ServerRequestInterceptor and ServerRequestInterceptorManager

IORCreationInterceptor and IORCreationInterceptorManager

For more details about server interceptors see the VisiBroker RT for C++ Reference Guide.

POALifeCycleInterceptor
A POALifeCycleInterceptor object is a global interceptor which is called every time a POA is created (via
the create method) or destroyed (via the destroy method).

Code example 120 POALifeCycleInterceptor class

class _VISEXPORT ClientRequestInterceptor
: public virtual VISPseudoInterface {

public:
virtual void preinvoke_premarshal(

CORBA::Object_ptr target, const char* operation,
IOP::ServiceContextList& servicecontexts,
VISClosure& closure) = 0;

virtual void preinvoke_postmarshal(
CORBA::Object_ptr target, CORBA_MarshalInBuffer& payload,
VISClosure& closure) = 0;

virtual void postinvoke(
CORBA::Object_ptr target,
const IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
CORBA::Environment_ptr env, VISClosure& closure) = 0;

virtual void exception_occurred(
CORBA::Object_ptr target, CORBA::Environment_ptr env,
VISClosure& closure) = 0;

};

• •

• •

• •

• •

Server interceptors

- 427/607 - © 2024 Rocket Software

ActiveObjectLifeCycleInterceptor
An ActiveObjectLifeCycleInterceptor object is called whenever an object is added to the Active Object
Map (via the create method) or after an object has been deactivated and etherealized (via the destroy
method).

The interceptor may be registered by a POALifeCycleInterceptor on a per-POA basis at POA creation time.
This interceptor can only be registered if the POA has the RETAIN policy.

Code example 121 ActiveObjectLifeCycleInterceptor class

ServerRequestInterceptor
A ServerRequestInterceptor object is called at various stages in the invocation of a server implementation
of a remote object:

Before the invocation (via the preinvoke method)

and

class _VISEXPORT POALifeCycleInterceptor
: public virtual VISPseudoInterface {

public:
virtual void create(

PortableServer::POA_ptr _poa, CORBA::PolicyList& _policies,
IOP::IORValue*& _iorTemplate,
interceptor::InterceptorManagerControl_ptr _poaAdmin) = 0;

virtual void destroy(PortableServer::POA_ptr _poa) = 0;
};

class _VISEXPORT ActiveObjectLifeCycleInterceptor
: public virtual VISPseudoInterface {

public:
virtual void create(

const PortableServer::ObjectId& _oid,
PortableServer_ServantBase* _servant,
PortableServer::POA_ptr _adapter) = 0;

virtual void destroy(
const PortableServer::ObjectId& _oid,
PortableServer_ServantBase* _servant,
PortableServer::POA_ptr _adapter) = 0;

};

1. 1.

Server interceptors

- 428/607 - © 2024 Rocket Software

After the invocation both before and after the marshalling of the reply (via the postinvoke_premarshal
and postinvoke_postmarshal methods respectively).

This interceptor may be registered by a POALifeCycleInterceptor object at POA creation time on a per-
POA basis.

Code example 122 ServerRequestInterceptor class

IORCreationInterceptor
An IORCreationInterceptor object is called whenever a POA creates an object reference (via the create
method). This interceptor may be registered by a POALifeCycleInterceptor at POA creation time on a per-
POA basis.

IDL sample 19 IORCreationInterceptor class

2. 2.

class _VISEXPORT ServerRequestInterceptor
: public virtual VISPseudoInterface {

public:
virtual void preinvoke(

CORBA::Object_ptr _target, const char* _operation,
const IOP::ServiceContextList& _service_contexts,
CORBA_MarshalInBuffer& _payload, VISClosure& _closure) = 0;

virtual void postinvoke_premarshal(
CORBA::Object_ptr _target,
IOP::ServiceContextList& _service_contexts,
CORBA::Environment_ptr _env, VISClosure& _closure) = 0;

virtual void postinvoke_postmarshal(
CORBA::Object_ptr _target,
CORBA_MarshalOutBuffer& _payload,
VISClosure& _closure) = 0;

virtual void exception_occurred(
CORBA::Object_ptr _target,
CORBA::Environment_ptr _env, VISClosure& _closure) = 0;

};

Server interceptors

- 429/607 - © 2024 Rocket Software

Registering interceptors with the VisiBrokerRT for C++ ORB
Each interceptor interface has a corresponding interceptor manager interface which is used to register
your interceptor objects with the ORB. The following steps are those necessary to register an
interceptor:

Get a reference to an InterceptorManagerControl object by calling the resolve_initial_references
method on an ORB object with the parameter VisiBrokerInterceptorControl .

Call the get_manager method on the InterceptorManagerControl object with one of the String values in
the table below. Be sure to cast the object reference to its corresponding interceptor manager
interface.

Create an instance of your interceptor.

Register your interceptor object with the manager object by calling the add method.

Load your interceptor objects when running your client and server programs.

class _VISEXPORT IORCreationInterceptor
: public virtual VISPseudoInterface {

public:
virtual void create(

PortableServer::POA_ptr _poa, IOP::IORValue*& _ior) = 0;
};

1. 1.

2. 2.

Value Corresponding interceptor interface

ClientRequest ClientRequestInterceptor

Bind BindInterceptor

POALifeCycle POALifeCycleInterceptor

ActiveObjectLifeCycle ActiveObjectLifeCycleInterceptor

ServerRequest ServerRequestInterceptor

IORCreation IORCreationInterceptor

1. 1.

2. 2.

3. 3.

Registering interceptors with the VisiBrokerRT for C++ ORB

- 430/607 - © 2024 Rocket Software

Creating interceptor objects
Finally, you need to implement a factory class which creates instances of your interceptor and registers
them with the ORB. Your factory class must derive from the VISInit class.

Code example 123 VISInit class

You can also create new instances of your interceptors and register them with the ORB from within
other interceptors as in the example below.

// in the vinit.h file
class _VISEXPORT VISInit
{
public:

VISInit();
VISInit(CORBA::Long init_priority);
virtual ~VISInit();

// ORB_init is called toward the beginning of CORBA::ORB_init()
virtual void ORB_init(int& /*argc*/,

char* const* /*argv*/,
CORBA_ORB* /*orb*/)

{}

// ORB_initialized is called at the end of CORBA::ORB_init()
virtual void ORB_initialized(CORBA_ORB* /*orb*/) {}

// shutdown is called when CORBA::ORB::shutdown() was called
// or process shutdown is detected
virtual void ORB_shutdown() {}
...

};

Note

Creating interceptor objects

- 431/607 - © 2024 Rocket Software

Loading interceptors
To load your interceptor, simply instantiate the factory before the call to CORBA::ORB_init in your
application.

Example interceptors
The example interceptor below uses all of the interceptor API methods (listed in "Interceptor and object
wrapper interfaces and classes" in the VisiBroker RT for C++ Reference Guide) so that you can see how these
methods are used, and when they are invoked.

Example code
In Code listings, each of the interceptor API methods have been given simple implementations which
print out informational messages to the standard output.

There are five example applications in the examples/interceptors directory in your VisiBroker RT for C++
installation:

active_object_lifecycle

authenticate

client_server

ior_creation

encryption

Client-server interceptors example
To run the example, compile the files as you normally would. Then start up the Server and the Client
from the VxWorks C shell as follows:

On VxWorks embedded node 1:

On VxWorks embedded node 2:

• •

• •

• •

• •

• •

-> ld < corba_init
-> ld < server
-> start_corba
-> start_bank_server

Loading interceptors

- 432/607 - © 2024 Rocket Software

You specify as ORB services the two classes which implement the ServiceLoader interface.

The results of executing the example interceptor are shown in the table below. The execution by the
client and server is listed in sequence.

-> ld < corba_init
-> ld < client
-> start_corba
-> start_bank_client

Client Server

============>SampleServerLoader:I
nterceptors loaded
============>In POA /. Nothing to
do.
============>In POA
bank_agent_poa,
1 ServerRequest interceptor
installed
Stub[repository_id=IDL:Bank/
AccountManager:
1.0,key=ServiceId[service=/
bank_agent
_poa,id={11 bytes:
[B][a][n][k][M][a][n][a][g][e]
[r]}]] is ready.

Example code

- 433/607 - © 2024 Rocket Software

Client Server

Bind Interceptors loaded
============>
SampleBindInterceptor bind
============>
SampleBindInterceptor bind_succeeded
============>
SampleClientInterceptor id
MyClientInterceptor
preinvoke_premarshal
=> open
============>
SampleClientInterceptor id
MyClientInterceptor
preinvoke_postmarshal

============>
SampleServerInterceptor id
MyServerInterceptor preinvoke =>
open
Created john's account:
Stub repository_id=IDL:Bank/
Account:1.0,key=TransientId
[poaName=/,id={4 bytes:
(0)(0)(0)(0)},sec=0,usec=0]]

============>
SampleClientInterceptor id
MyClientInterceptor postinvoke
============>
SampleBindInterceptor bind
============>
SampleBindInterceptor bind_succeeded
============>
SampleClientInterceptor id
MyClientInterceptor
preinvoke_premarshal => balance
============>
SampleClientInterceptor id
MyClientInterceptor
preinvoke_postmarshal

Example code

- 434/607 - © 2024 Rocket Software

Since the OAD is not running, the bind() call fails and the server proceeds. The client binds to the
account object, and then calls the balance() method. This request is received by the server, processed,
and results are returned to the client. The client prints the results.

As shown through the example code and results, the interceptors for both the client and server are
installed when the respective ORB instance starts. Information about registering an interceptor is
covered in Registering interceptors with the VisiBroker RT for C++ ORB.

Code listings
The SampleServerInterceptorLoader.h file contains the class POAInterceptorLoader . This class implements
an ORB_init() method which is responsible for loading the POALifeCycleInterceptor implementation and
instantiating the interceptor object. The POAInterceptorLoader inherits from the VISInit class, and
therefore must implement an ORB_init() method which will be called by the ORB during the ORB's
execution of ORB_init() . Its sole purpose is to install a POALifeCycleInterceptor object by creating it and
registering it with the InterceptorManager .

Code example 124 SampleServerInterceptorLoader.h

Client Server

============>
SampleServerInterceptor id
MyServerInterceptor
postinvoke_premarshal
============>
SampleServerInterceptor id
MyServerInterceptor
postinvoke_postmarshal

============>
SampleClientInterceptor id
MyClientInterceptor postinvoke The
balance in john's account is $245.64

Code listings

- 435/607 - © 2024 Rocket Software

The SamplePOALifeCycleInterceptor object is invoked every time a POA is created or destroyed. Because
we have two POAs in the client_server example, this interceptor is invoked twice, first during rootPOA
creation and then at the creation of myPOA . We install the SampleServerInterceptor only at the creation of
MyPOA .

Code example 125 SamplePOALifeCycleInterceptor.h

#include <iostream.h>
#include "vinit.h"
#include "SamplePOALifeCycleInterceptor.h"

class POAInterceptorLoader : VISInit {
private:

short int _poa_interceptors_installed;

public:
POAInterceptorLoader(){

_poa_interceptors_installed = 0;
}
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_poa_interceptors_installed) return;
cout << "Installing POA interceptors" << endl;
SamplePOALifeCycleInterceptor *interceptor =

new SamplePOALifeCycleInterceptor;
// Get the interceptor manager control
CORBA::Object *object = orb->resolve_initial_references(

"VisiBrokerInterceptorControl");
interceptor::InterceptorManagerControl_var control =

interceptor::InterceptorManagerControl::_narrow(object);
// Get the POA manager
interceptor::InterceptorManager_var manager =

control->get_manager("POALifeCycle");
PortableServerExt::POALifeCycleInterceptorManager_var poa_mgr =
PortableServerExt::POALifeCycleInterceptorManager::_narrow(

manager);
// Add POA interceptor to the list
poa_mgr->add(

(PortableServerExt::POALifeCycleInterceptor*)interceptor);
cout << "POA interceptors installed" << endl;
_poa_interceptors_installed = 1;

}
};

Code listings

- 436/607 - © 2024 Rocket Software

The SampleServerInterceptor object is invoked every time a request is received at or a reply is made by
the server.

Code example 126 SampleServerInterceptor.h

#include "interceptor_c.hh"
#include "PortableServerExt_c.hh"
#include "IOP_c.hh"
#include "SampleServerInterceptor.h"

class SamplePOALifeCycleInterceptor
: PortableServerExt::POALifeCycleInterceptor {

public:
void create(PortableServer::POA_ptr poa,

CORBA_PolicyList& policies,
IOP::IORValue_ptr& iorTemplate,
interceptor::InterceptorManagerControl_ptr control) {

if(strcmp(poa->the_name(),"bank_agent_poa") == 0) {
// Add the Request-level interceptor
SampleServerInterceptor* interceptor =

new SampleServerInterceptor("MyServerInterceptor");

// Get the ServerRequest interceptor manager
interceptor::InterceptorManager_var generic_manager =

control->get_manager("ServerRequest");
interceptor::ServerRequestInterceptorManager_var manager =

interceptor::ServerRequestInterceptorManager::_narrow(
generic_manager);

// Add the interceptor
manager->add(

(interceptor::ServerRequestInterceptor*)interceptor);
cout << "============>In POA " << poa->the_name()

<< ", 1 ServerRequest interceptor installed"<< endl;
}
else

cout << "============>In POA " << poa->the_name()
<< ". Nothing to do." << endl;

}

void destroy(PortableServer::POA_ptr poa) {
// To be a trace!
cout << "============> SamplePOALifeCycleInterceptor destroy"

<< poa->the_name() << endl;
}

};

Code listings

- 437/607 - © 2024 Rocket Software

#include <iostream.h>
#include "vclosure.h"
#include "interceptor_c.hh"
#include "IOP_c.hh"

class SampleServerInterceptor
: interceptor::ServerRequestInterceptor {

private:
char * _id;

public:
SampleServerInterceptor(const char* id) {

_id = new char[strlen(id)];
strcpy(_id,id);

}
~SampleServerInterceptor() { _id = NULL;}
void preinvoke(CORBA_Object* target,

const char* operation,
const IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
VISClosure& closure) {

closure.data = new char[strlen(_id)];
strcpy((char*)(closure.data), _id);
cout << "============> SampleServerInterceptor id "

<< (char*)(closure.data) << " preinvoke => "
<< operation << endl;

}
void postinvoke_premarshal(CORBA_Object* target,

IOP::ServiceContextList& service_contexts,
CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id "
<< (char*)(closure.data)
<< " postinvoke_premarshal " << endl;

}
void postinvoke_postmarshal(CORBA_Object* target,

CORBA_MarshalOutBuffer& payload,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id "
<< (char*)(closure.data)
<< " postinvoke_postmarshal " << endl;

}
void exception_occurred(CORBA_Object* target,

CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "============> SampleServerInterceptor id "
<< (char*)(closure.data)

Code listings

- 438/607 - © 2024 Rocket Software

The SampleClientInterceptor is invoked every time a request is made by or a reply is received at the
client.

Code example 127 SampleClientInterceptor.h

<< " exception_occurred" << endl;
}

};

Code listings

- 439/607 - © 2024 Rocket Software

#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"

class SampleClientInterceptor
: public interceptor::ClientRequestInterceptor {

private:
char * _id;

public:
SampleClientInterceptor(char * id) {

_id = new char[strlen(id)+1];
strcpy(_id,id);

}
void preinvoke_premarshal(CORBA::Object_ptr target,

const char* operation,
IOP::ServiceContextList& servicecontexts,
VISClosure& closure) {

closure.data = new char[strlen(_id)];
strcpy((char*)(closure.data), _id);
cout << "SampleClientInterceptor id " << closure.data

<< "=================> preinvoke_premarshal "
<< operation << endl;

}
void preinvoke_postmarshal(CORBA::Object_ptr target,

CORBA_MarshalInBuffer& payload,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> preinvoke_postmarshal " << endl;

}
void postinvoke(CORBA::Object_ptr target,

const IOP::ServiceContextList& service_contexts,
CORBA_MarshalInBuffer& payload,
CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> postinvoke " << endl;

}
void exception_occurred(CORBA::Object_ptr target,

CORBA::Environment_ptr env,
VISClosure& closure) {

cout << "SampleClientInterceptor id " << closure.data
<< "=================> exception_occurred " << endl;

}
};

Code listings

- 440/607 - © 2024 Rocket Software

The SampleClientInterceptorLoader.h file contains the class BindInterceptorLoader . This class implements
an ORB_init() method which is responsible for loading the SampleBindInterceptor objects. The
BindInterceptorLoader inherits from the VISInit class, and therefore must implement an ORB_init()
method which will be called by the ORB during the ORB's execution of ORB_init() . Its sole purpose is to
install a BindInterceptor object by creating it and registering it with the InterceptorManager .

The SampleBindInterceptor class contains the bind() , bind_succeeded() and bind_failed() methods.
These methods are called by the ORB during object binding. When the bind succeeds, bind_succeeded()
will be called by the ORB and a BindInterceptor object is installed by creating it and registering it with
the InterceptorManager .

Code example 128 SampleClientInterceptorLoader.h

Code listings

- 441/607 - © 2024 Rocket Software

The SampleBindInterceptor is invoked when the client attempts to bind to an object. The first step on the
client side after ORB initialization is to bind to an AccountManager object. This bind invokes the
SampleBindInterceptor and a SampleClientInterceptor is installed when the bind succeeds.

Code example 129 SampleBindInterceptor.h

#include <iostream.h>
#include "vinit.h"
#include "SampleBindInterceptor.h"

class BindInterceptorLoader : VISInit {
private:

short int _bind_interceptors_installed;
public:

BindInterceptorLoader() {
_bind_interceptors_installed = 0;

}
void ORB_init(int& argc, char* const* argv, CORBA::ORB_ptr orb)
{

if(_bind_interceptors_installed) return;
cout << "Installing Bind interceptors" << endl;
SampleBindInterceptor *interceptor =

new SampleBindInterceptor;

// Get the interceptor manager control
CORBA::Object *object =

orb->resolve_initial_references(
"VisiBrokerInterceptorControl");

interceptor::InterceptorManagerControl_var control =
interceptor::InterceptorManagerControl::_narrow(object);

// Get the Bind manager
interceptor::InterceptorManager_var manager =

control->get_manager("Bind");
interceptor::BindInterceptorManager_var bind_mgr =

interceptor::BindInterceptorManager::_narrow(manager);

// Add Bind interceptor to the list
bind_mgr->add((interceptor::BindInterceptor*)interceptor);
cout << "Bind interceptors installed" << endl;
_bind_interceptors_installed = 1;

}
};

Code listings

- 442/607 - © 2024 Rocket Software

#include <iostream.h>
#include "interceptor_c.hh"
#include "IOP_c.hh"
#include "vclosure.h"
#include "SampleClientInterceptor.h"

class SampleBindInterceptor : public interceptor::BindInterceptor
{
public:

IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,
CORBA_Object_ptr obj,
CORBA::Boolean rebind,
VISClosure& closure) {

cout << "SampleBindInterceptor-------------------> bind"
<< endl;

return NULL;
}
IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior,

CORBA_Object_ptr object,
VISClosure& closure) {

cout
<< "SampleBindInterceptor-------------------> bind_failed"
<< endl;

return NULL;
}
void bind_succeeded(IOP::IORValue_ptr ior,

CORBA_Object_ptr object,
CORBA::Long profile_index,
interceptor::InterceptorManagerControl_ptr control,
VISClosure& closure) {

cout <<
"SampleBindInterceptor-------------------> bind_succeeded"
<< endl;

// Add the Request-level interceptor
SampleClientInterceptor* interceptor =

new SampleClientInterceptor((char*)"MyClientInterceptor");

// Get the ClientRequest interceptor manager
interceptor::InterceptorManager_var generic_manager =

control->get_manager("ClientRequest");
interceptor::ClientRequestInterceptorManager_var manager =

interceptor::ClientRequestInterceptorManager::_narrow(
generic_manager);

// Add the interceptor
manager->add(

Code listings

- 443/607 - © 2024 Rocket Software

Passing information between your interceptors
VISClosure objects are created by the ORB at the beginning of certain sequences of interceptor calls.
The same VISClosure object is used for all calls in that particular sequence. The VISClosure object
contains a single public data field, object , of type void which may be set by the interceptor to keep
state information. The sequences for which Closure objects are created vary depending on the
interceptor type. In the ClientRequestInterceptor , a new VISClosure is created before calling
preinvoke_premarshal and the same VISClosure is used for that request until the request completes,
successfully or not. Likewise in the ServerInterceptor , a new VISClosure is created before calling
preinvoke , and that VISClosure is used for all interceptor calls related to processing that particular
request.

For an example of how VISClosure is used, see the interceptors/client_server directory in the examples
directory in your installation.

(interceptor::ClientRequestInterceptor*)interceptor);
cout << "============>In bind_succeeded, 1 "

<< "ClientRequest interceptor installed" << endl;
}
void exception_occurred(IOP::IORValue_ptr ior,

CORBA_Object_ptr object,
CORBA_Environment_ptr env,
VISClosure& closure) {

cout <<
"SampleBindInterceptor-------------------> exception_occured"

<< endl;
}

};

Passing information between your interceptors

- 444/607 - © 2024 Rocket Software

Using both Portable Interceptors and Interceptors
simultaneously

Both Portable Interceptors and interceptors can be installed simultaneously with the VisiBroker RT for
C++. However, as they have different implementations, there are several rules of flow and constrains
that developers need to understand when using both interceptors, as described below.

Order of invocation of interception points
The order of invocation of interception points follows the interception point ordering rules of individual
versions of interceptors, regardless of whether the developer actually chooses to install one of more
than one version.

When both Portable and VisiBroker client side interceptors are installed, the order of events, (assuming
no interceptor throws an exception) is:

send_request (Portable Interceptor), followed by preinvoke_premarshal (interceptors)

Construct request message

preinvoke_postmarshal (interceptor)

Send request message and wait for reply

postinvoke (interceptor), followed by received_reply / receive_exception / receive_other (Portable
Interceptor) depending on the type of reply.

Server side Interceptors
When both Portable and VisiBroker server side interceptors are installed, the order of events is received
(locate requests do not fire interceptors, which is the same as VisiBroker behavior), assuming no
interceptor throws an exception, is:

received_request_service_contexts (Portable Interceptor), followed by preinvoke (interceptor)

servantLocator.preinvoke (if using servant locator)

receive_request (Portable Interceptor)

invoke operation on servant

postinvoke_premarshal (interceptor)

servantLocator.postinvoke (if using servant locator)

send_reply / send_exception / send_other , depending on the outcome of the request

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Using both Portable Interceptors and Interceptors simultaneously

- 445/607 - © 2024 Rocket Software

postinvoke_postmarshal (interceptor)

Order of ORB events during POA creation
The order of ORB events during creation of a POA is listed as follows:

An IOR template is created based on profiles of server engines servicing the POA.

A interceptors' POA life cycle interceptors' create() method is invoked. This method can potentially
add new policies or modify the IOR template created in the previous step.

A Portable Interceptor's IORInfo object is created and the IORInterceptor s' establish_components()
method is invoked. This interception point allows the interceptor to query the policies passed to
create_POA() and those added in the previous step, and also add components to the IOR template
based on those policies.

An object reference factory and object reference template for the POA are created, and the Portable
Interceptor's IORInterceptor s' components_established() method is invoked. This interception point
allows the interceptor to change the POA's object reference factory, which will be used to
manufacture object references.

Order of ORB events during object reference creation
The following events occur during calls to POA that create object reference, e.g. create_reference() ,
create_reference_with_id() :

Call the object reference factory's make_object() method to create the object reference (this does not
call the VisiBroker IOR creation interceptors, and the factory may be user-supplied). If there are no
VisiBroker IOR creation interceptors installed, this should be the object reference returned to the
application; otherwise, proceed to step 2.

Extract the IOR from the delegate of the returned object reference, and call the VisiBroker IOR
creation interceptors' create() method.

IOR from step 2 is returned as the object reference to the caller of create_reference() , i.e.
create_reference_with_id() .

8. 8.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

Order of ORB events during POA creation

- 446/607 - © 2024 Rocket Software

Using Object Wrappers

This section describes the object wrapper feature of VisiBroker RT for C++, which allows your
applications to be notified or to trap an operation request for an object.

The libobjwrap.o library is required on the VxWorks embedded node to support use of the VisiBroker
Object Wrappers. For a description of all the libraries provided by the VisiBroker RT for C++ product.
See Step 6: Integrating VisiBroker RT with VxWorks 7.

Overview
VisiBroker RT for C++s object wrapper feature allows you to define methods that are called when a
client application invokes a method on a bound object or when a server application receives an
operation request. Unlike the interceptor feature described inUsing Portable Interceptors which is
invoked at the ORB level, object wrappers are invoked before an operation request has been
marshalled. In fact, you can design object wrappers to return results without the operation request
having ever been marshalled, sent across the network, or actually presented to the object
implementation.

Object wrappers may be installed on just the client-side, just the serverside, or they may be installed in
both the client and server portions of a single application.

Here are a few examples of how you might use object wrappers in your application:

Log information about the operation requests issued by a client or received by a server.

Measure the time required for operation requests to complete.

Cache the results of frequently issued operation requests so results can be immediately returned,
without actually contacting the object implementation each time.

Externalizing a reference to an object for which object wrappers have been installed, using the
ORB::object_to_string method, will not propagate those wrappers to the recipient of the stringified
reference if the recipient is a different process.

Note

• •

• •

• •

Note

Using Object Wrappers

- 447/607 - © 2024 Rocket Software

Typed and un-typed object wrappers
VisiBroker RT for C++ offers two kinds of object wrappers; typed and untyped. You can mix the use of
both of these types of wrappers within a single application. For information on typed wrappers, see
Typed object wrappers. The table below summarizes the important distinctions between these two
types of object wrappers.

Special idl2cpp requirements
Whenever you plan to use typed or un-typed object wrappers, you must ensure that you use the -
obj_wrapper option with the idl2cpp compiler when you generate the code for your applications. This
will result in the generation of Object wrapper base class for each of your interfaces.

Example applications
The <VBRT_install>/examples/vbroker_kernel/interceptors/objectWrappers directory contains three sample
client and server applications that will be used to illustrate both the typed and untyped object wrapper
concepts in this section.

Un-typed object wrappers
Un-typed object wrappers allow you to define methods that are to be invoked before an operation
request is processed, after an operation request is processed, or both. Un-typed wrappers can be
installed for client or server applications and you can also install multiple versions.

You may also mix the use of both typed and un-typed object wrappers within the same client or server
application.

By default, un-typed object wrappers have a global scope and will be invoked for any operation request.
You can design un-typed wrappers so that they have no effect for operation requests on object types in
which you are not interested.

Features Typed Un-typed

Receives all arguments that are to be passed to the stub Yes No

Can return control to the caller without actually invoking the
next wrapper, the stub, or the object implementation.

Yes No

Will be invoked for all operation requests for all objects. No Yes

Typed and un-typed object wrappers

- 448/607 - © 2024 Rocket Software

Unlike typed object wrappers, un-typed wrapper methods do not receive the arguments that the
stub or object implementation would receive nor can they prevent the invocation of the stub or
object implementation.

The figure below shows how an un-typed object wrappers pre_method is invoked before the client stub
method and how the post_method is invoked afterward. It also shows the calling sequence on the
server-side with respect to the object implementation.

Using multiple, un-typed object wrappers

Note

Using multiple, un-typed object wrappers

- 449/607 - © 2024 Rocket Software

Order of pre_method invocation
When a client invokes a method on a bound object, each un-typed object wrapper pre_method will
receive control before the clients stub routine is invoked. When a server receives an operation request,
each un-typed object wrapper pre_method will be invoked before the object implementation receives
control. In both cases, the first pre_method to receive control will be the one belonging to the object
wrapper that was registered first.

Order of post_method invocation
When a server object's implementation completes its processing, each post_method will be invoked
before the reply is sent to the client. When a client receives a reply to an operation request, each
post_method will be invoked before control is returned to the client. In both cases, the first post_method
to receive control will be the one belonging to the object wrapper that was registered last.

If you choose to use both typed and un-typed object wrappers, see Command-line arguments for
typed wrappers for information on the invocation order.

Note

Order of pre_method invocation

- 450/607 - © 2024 Rocket Software

Using un-typed object wrappers
You must use the following steps when using un-typed object wrappers. Each step is discussed, in turn.

Identify the interface, or interfaces, for which you want to create a untyped object wrapper.

Generate the code from your IDL specification using the idl2cpp compiler using the -obj_wrapper
option.

Create an implementation for your un-typed object wrapper factory, derived from the
VISObjectWrapper::UntypedObjectWrapperFactory class.

Create an implementation for your un-typed object wrapper, derived from the
VISObjectWrapper::UntypedObjectWrapper class.

Modify your application to create your un-typed object wrapper factory.

Implementing an un-typed object wrapper factory
The timeWrap.h file, part of the ObjectWrappers sample application, illustrates how to define an un-
typed object wrapper factory by deriving from VISObjectWrapper::UntypedObjectWrapperFactory . Your
factory's create method will be invoked to create an un-typed object wrapper whenever a client binds
to an object or a server invokes a method on an object implementation. The create method receives
the target object, which allows you to design your factory to not create an un-typed object wrapper for
those object types you wish to ignore. It also receives an enum specifying whether the object wrapper
created is for the server-side object implementation or the client-side object.

The following code sample shows the TimingObjectWrapperFactory , which is used to create an un-typed
object wrapper that displays timing information for method calls. Notice the addition of the key
parameter to the TimingObjectWrapperFactory constructor. This parameter is also used by the service
initializer to identify the wrapper.

Code example 130 TimingObjectWrapperFactory implementation from the TimeWrap.h file

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Using un-typed object wrappers

- 451/607 - © 2024 Rocket Software

Implementing an un-typed object wrapper
The following code sample shows the implementation of the TimingObjectWrapper , also defined in the
timeWrap.h file. Your un-typed wrapper must be derived from the VISObjectWrapper::UntypedObjectWrapper
class, and you may provide an implementation for both the pre_method or post_method methods in your
un-typed object wrapper.

Once your factory has been installed, either automatically by the factory's constructor or manually by
invoking the VISObjectWrapper::ChainUntypedObjectWrapper::add method, an untyped object wrapper object
will be created automatically whenever your client binds to an object or when your server invokes a
method on an object implementation.

The pre_method shown in the following code sample, invokes the TimerBegin method, defined in
timeWrap.C , which uses the Closure object to save the current time.

Similarly, the post_method invokes the TimerDelta method to determine how much time has elapsed
since the pre_method was called and print the elapsed time.

class TimingObjectWrapperFactory
: public VISObjectWrapper::UntypedObjectWrapperFactory

{
public:

TimingObjectWrapperFactory(VISObjectWrapper::Location loc,
const char* key)

: VISObjectWrapper::UntypedObjectWrapperFactory(loc),
_key(key) {}

// ObjectWrapperFactory operations
VISObjectWrapper::UntypedObjectWrapper_ptr create(

CORBA::Object_ptr target,
VISObjectWrapper::Location loc) {

if (_owrap == NULL) {
_owrap = new TimingObjectWrapper(_key);

}
return

VISObjectWrapper::UntypedObjectWrapper::_duplicate(_owrap);
}

private:
CORBA::String_var _key;
VISObjectWrapper::UntypedObjectWrapper_var _owrap;

};

Implementing an un-typed object wrapper

- 452/607 - © 2024 Rocket Software

Code example 131 TimingObjectWrapper implementation

pre_method and post_method parameters
Both the pre_method and post_method receive these parameters:

class TimingObjectWrapper :
public VISObjectWrapper::UntypedObjectWrapper {

public:
TimingObjectWrapper(const char* key=NULL) : _key(key) {}

void pre_method(const char* operation,
CORBA::Object_ptr target,
VISClosure& closure)

{
cout << "*Timing: [" << flush;
if ((char *)_key)

cout << _key << flush;
else

cout << "<no key>" << flush;
cout << "] pre_method\t" << operation << "\t->" << endl;
TimerBegin(closure, operation);

}

void post_method(const char* operation,
CORBA::Object_ptr target,
CORBA::Environment& env,
VISClosure& closure)

{
cout << "*Timing: [" << flush;
if ((char *)_key)

cout << _key << flush;
else

cout << "<no key>" << flush;
cout << "] post_method\t" ;
TimerDelta(closure, operation);

}

private:
CORBA::String_var _key;

};

Parameter Description

operation Name of the operation that was requested on the target object.

Implementing an un-typed object wrapper

- 453/607 - © 2024 Rocket Software

The post_method also receives an Environment parameter, which can be used to inform the user of any
exceptions that might have occurred during the previous steps of the method invocation.

Creating and registering un-typed object wrapper factories
An un-typed object wrapper factory is automatically added to the chain of un-typed wrappers whenever
it is created with the base class constructor that accepts a location.

On the client side, objects will be wrapped only if untyped object wrapper factories are created and
registered before the objects are bound. On the server side, untyped object wrappers factories which
are created and registered before an object implementation is called.

The following code sample shows a portion of the sample file untypedClient.C , which shows the
creation, with automatic registration, of two un-typed object wrapper factories for a client.

The factories are created after the ORB has been initialized, but before the client binds to any objects.

Code example 132 Creating and registering two client-side, un-typed object wrapper factories

The following code sample shows the sample file untypedServer.C, which shows the creation and
registration of un-typed object wrapper factories for a server. The factories are created after the ORB is
initialized, but before any object implementations are created.

Code example 133 Registering a server-side, un-typed object wrapper factory

Parameter Description

target Target object.

closure Area where data can be saved across method invocations for this wrapper.

void untyped_bank_client()
{

VISTRY
{

// Install Untyped Object Wrappers for Account.
TimingObjectWrapperFactory timingfact(VISObjectWrapper::Client,

"timeclient");
TraceObjectWrapperFactory tracingfact(VISObjectWrapper::Client,

"traceclient");
...

Creating and registering un-typed object wrapper factories

- 454/607 - © 2024 Rocket Software

// UntypedServer.C
#include <vxWorks.h>
#include "corba.h"
#include "timeWrap.h"
#include "traceWrap.h"
#include "bankImpl.h"
#include "bank_s.hh"

...
void untyped_bank_server()
{

PortableServer::POA_var rootPOA;
VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
VISIFNOT_EXCEP

rootPOA = PortableServer::POA::_narrow(obj);
VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;

VISIFNOT_EXCEP
myPOA = rootPOA->create_POA("bank_ow_poa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Install Untyped Object Wrappers for Account Manager.

Creating and registering un-typed object wrapper factories

- 455/607 - © 2024 Rocket Software

TimingObjectWrapperFactory* timingfact =
new TimingObjectWrapperFactory(VISObjectWrapper::Server,

"timingserver");
TraceObjectWrapperFactory* tracingfact =

new TraceObjectWrapperFactory(VISObjectWrapper::Server,
"traceserver");

VISEND_IFNOT_EXCEP

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

// Create the objectID
PortableServer::ObjectId_var managerId;
VISIFNOT_EXCEP

managerId =
PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Creating and registering un-typed object wrapper factories

- 456/607 - © 2024 Rocket Software

Removing un-typed object wrappers
The VISObjectWrapper::ChainUntypedObjectWrapperFactory class remove method can be used to remove an
un-typed object wrapper factory from a client or server application. You must specify a location when
removing a factory. This means that if you have added a factory with a location of
VISObjectWrapper::Both , you can selectively remove it from the Client location, the Server location, or
Both.

Removing one or more object wrapper factories from a client will not affect objects of that class that
are already bound by the client. Only subsequently bound objects will be affected. Removing object
wrapper factories from a server will not affect object implementations that have already been
created. Only subsequently created object implementations will be affected.

Typed object wrappers
When you implement a typed object wrapper for a particular class, you define the processing that is to
take place when a method is invoked on a bound object. The figure below shows how an object wrapper
method on the client is invoked before the client stub class method and how an object wrapper on the
server-side is invoked before the servers implementation method.

Your typed object wrapper implementation is not required to implement all methods offered by the
object it is wrapping.

You may also mix the use of both typed and un-typed object wrappers within the same client or server
application. For more information, see Combined use of un-typed and typed object wrappers.

Note

Note

Removing un-typed object wrappers

- 457/607 - © 2024 Rocket Software

Using multiple, typed object wrappers
You may implement and register more than one typed object wrapper for a particular class of object, as
shown in the figure below. On the client side, the first object wrapper registered is client_wrapper_1 , so
its methods will be the first to receive control. After performing its processing, the client_wrapper_1
method may pass control to the next object's method in the chain or it may return control to the client.
On the server side, the first object wrapper registered is server_wrapper_1 , so its methods will be the
first to receive control. After performing its processing, the server_wrapper_1 method may pass control
to the next object's method in the chain or it may return control to the servant.

Using multiple, typed object wrappers

- 458/607 - © 2024 Rocket Software

Order of invocation
The methods for a typed object wrapper that are register for a particular class will receive all of the
arguments that are normally passed to the stub method on the client side or to skeleton on the server
side. Each object wrapper method can pass control to the next wrapper method in the chain by
invoking the parent class method, <interface_name>ObjectWrapper::<method_name> . If an object wrapper
wishes to return control without calling the next wrapper method in the chain, it can return with the
appropriate return value.

A typed object wrapper methods ability to return control to the previous method in the chain allows you
to create a wrapper method that never invokes a client stub or object implementation. For example, you
can create an object wrapper method that caches the results of a frequently requested operation. In
this scenario, the first invocation of a method on the bound object results in an operation request being
sent to the object implementation. As control flows back through the object wrapper method, the result
is stored. On subsequent invocations of the same method, the object wrapper method can simply
return the cached result without actually issuing the operation request to the object implementation. If
you choose to use both typed and un-typed object wrappers, see Combined use of un-typed and typed
object wrappers for information on the invocation order.

Typed object wrappers with co-located client and servers
When the client and server are both packaged in the same address space, the first object wrapper
method to receive control will belong to the first client-side object wrapper that was installed. The
figure below shows the invocation order:

Order of invocation

- 459/607 - © 2024 Rocket Software

Using typed object wrappers
You must use the following steps when using typed object wrappers. Each step is discussed in turn.

Identify the interface, or interfaces, for which you want to create a typed object wrapper.

Generate the code from your IDL specification using the idl2cpp compiler using the -obj_wrapper
option.

Derive your typed object wrapper class from the <interface_name>ObjectWrapper class generated by the
idl2cpp compiler and provide an implementation of those methods you wish to wrap.

Modify your application to register the typed object wrapper.

Implementing typed object wrappers
You derive typed object wrappers from the <interface_name>ObjectWrapper class that is generated by the
idl2cpp compiler. The following code shows the implementation of a typed object wrapper for the
Account interface from the file bankWrap.h . Notice that this class is derived from the
AccountObjectWrapper interface and provides a simple caching implementation of the balance method,
which provides these processing steps:

Check the _inited flag to see if this method has been invoked before.

If this is the first invocation, the balance method on the next object in the chain is invoked and the
result is saved to _balance , _inited is set to true, and the value is returned.

If this method has been invoked before, simply return the cached value.

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

2. 2.

3. 3.

Using typed object wrappers

- 460/607 - © 2024 Rocket Software

Registering typed object wrappers for a client
A typed object wrapper is registered on the client-side by invoking the \<interface_name>::add method
that is generated for the class by the idl2cpp compiler. Client-side object wrappers must be registered
after the ORB_init method has been called, but before any objects are bound. The following code shows
a portion of the typedClient.C file that creates and registers a typed object wrapper.

Code example 135 Creating and registering a client-side, typed object wrapper

class CachingAccountObjectWrapper :
public Bank::AccountObjectWrapper

{
public:

CachingAccountObjectWrapper(): _inited((CORBA::Boolean)0) {}
CORBA::Float balance() {

cout <<
"+ CachingAccountObjectWrapper: Before Calling Balance"
<< endl;

if (! _inited) {
_balance = Bank::AccountObjectWrapper::balance();
_inited = 1;

}
else {

cout <<
"+ CachingAccountObjectWrapper: Returning Cached Value"
<< endl;

}
cout <<

"+ CachingAccountObjectWrapper: After Calling Balance"
<< endl;

return _balance;
}

...
};

Registering typed object wrappers for a client

- 461/607 - © 2024 Rocket Software

The ORB keeps track of any object wrappers that have been registered for it on the client-side. When a
client invokes the _bind method to bind to an object of that type, the necessary object wrappers will be
created. If a client binds to more than one instance of a particular class of object, each instance will
have its own set of wrappers.

Registering typed object wrappers for a server
As with a client application, a typed object wrapper is registered on the server-side by invoking the
<interface_name>::add method. Server-side, typed object wrappers must be registered after the
ORB_init method has been called, but before an object implementation services a request. The
following code shows a portion of the typedServer.C file that installs a typed object wrapper.

Code example 136 Registering a server-side, typed object wrapper

...
void typed_client(void)
{

VISTRY {
// Install Typed Object Wrappers for Account.
Bank::AccountObjectWrapper::add(orb,

CachingAccountObjectWrapper::factory,
VISObjectWrapper::Client);

// Get the Manager ID.
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an Account Manager.
Bank::AccountManager_var manager =

Bank::AccountManager::_bind("/bank_ow_poa", managerId);
...

Registering typed object wrappers for a server

- 462/607 - © 2024 Rocket Software

// TypedServer.C
#include <vxWorks.h>
#include "corba.h"
#include "bank_s.hh"
#include "bankImpl.h"
#include "bankWrap.h"

...

void typed_bank_server()
{

PortableServer::POA_var rootPOA;
VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::PolicyList policies;
policies.length(1);
VISIFNOT_EXCEP

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

// get the POA Manager
PortableServer::POAManager_var poa_manager;
VISIFNOT_EXCEP

poa_manager = rootPOA->the_POAManager();
VISEND_IFNOT_EXCEP

// Create myPOA with the right policies
PortableServer::POA_var myPOA;
VISIFNOT_EXCEP

myPOA = rootPOA->create_POA("bank_ow_poa", poa_manager,
policies);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Install Typed Object Wrappers for Account Manager.
Bank::AccountManagerObjectWrapper::add(orb,

Registering typed object wrappers for a server

- 463/607 - © 2024 Rocket Software

SecureAccountManagerObjectWrapper::factory,
VISObjectWrapper::Server);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
Bank::AccountManagerObjectWrapper::add(orb,

CachingAccountManagerObjectWrapper::factory,
VISObjectWrapper::Server);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImpl;

VISEND_IFNOT_EXCEP

// Create the object ID
PortableServer::ObjectId_var managerId;
VISIFNOT_EXCEP

managerId =
PortableServer::string_to_ObjectId("BankManager");

VISEND_IFNOT_EXCEP

// Activate the servant with the ID on myPOA
VISIFNOT_EXCEP

myPOA->activate_object_with_id(managerId, managerServant);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = myPOA->servant_to_reference(managerServant);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH

Registering typed object wrappers for a server

- 464/607 - © 2024 Rocket Software

If a server creates more than one instance of a particular class of object, a set of wrappers will be
created for each instance.

Removing typed object wrappers
The <interface_name>ObjectWrapper::remove method that is generated for a class by the idl2cpp compiler
allows you to remove a typed object wrapper from a client or server application. You must specify a
location when removing a factory. This means that if you have added a factory with a location of
VISObjectWrapper::Both , you can selectively remove it from the Client location, the Server location, or
Both.

Removing one or more object wrappers from a client will not affect objects of that class that are
already bound by the client. Only subsequently bound objects will be affected. Removing object
wrappers from a server will not affect object implementations that have already serviced requests.
Only subsequently created object implementations will be affected.

Combined use of un-typed and typed object wrappers
If you choose to use both typed and un-typed object wrappers in your application, all pre_method
methods defined for the un-typed wrappers will be invoked prior to any typed object wrapper methods
defined for an object. Upon return, all typed object wrapper methods defined for the object will be
invoked prior to any post_method methods defined for the un-typed wrappers.

The sample applications Client.C and Server.C make use of a sophisticated design that allows you to
use command-line properties to specify which, if any, typed and un-typed object wrappers are to be
used.

return;
}

Note

Removing typed object wrappers

- 465/607 - © 2024 Rocket Software

Command-line arguments for typed wrappers
The table below shows the command-line arguments you can use to enable the use of typed object
wrappers for the sample bank applications implemented in typedClient.C and typedServer.C :

Initializer for typed wrappers
The typed wrappers are created in the BankInit::update initializer, defined in <VBRT_install>/examples/
vbroker_kernel/interceptors/objectWrappers/bankWrap.C . This initializer will be invoked when the
ORB_init() method is invoked and will handle the installation of various typed object wrappers, based
on the command-line properties you specify.

The code sample below shows how the initializer uses a set of PropStruct objects to track the command-
line options that have been specified and then add or remove AccountObjectWrapper objects for the
appropriate locations.

Code example 137 Initializer for a typed object wrapper

Bank wrappers
properties

Description

-
BANKaccountCacheClnt
 <0\|1>

Enables or disables a typed object wrapper that caches the results
of the balance method for a client application.

-
BANKaccountCacheSrvr
 <0\|1>

Enables or disables a typed object wrapper that caches the results
of the balance method for a server application.

-
BANKmanagerCacheClnt
 <0\|1>

Enables or disables a typed object wrapper that caches the results
of the open method for a client application.

-
BANKmanagerCacheSrvr
 <0\|1>

Enables or disables a typed object wrapper that caches the results
of the open method for a server application.

-
BANKmanagerSecurity
Clnt <0\|1>

Enables or disables a typed object wrapper that detects
unauthorized users passed on the open method for a client
application.

-
BANKmanagerSecurity
Srvr <0\|1>

Enables or disables a typed object wrapper that detects
unauthorized users passed on the open method for a server
application.

Command-line arguments for typed wrappers

- 466/607 - © 2024 Rocket Software

...
static const CORBA::ULong kNumTypedAccountProps = 2;
static PropStruct TypedAccountProps[kNumTypedAccountProps] = {

{ "BANKaccountCacheClnt",
CachingAccountObjectWrapper::factory,
VISObjectWrapper::Client },

{ "BANKaccountCacheSrvr",
CachingAccountObjectWrapper::factory,
VISObjectWrapper::Server }

};

static const CORBA::ULong kNumTypedAccountManagerProps = 4;
static PropStruct

TypedAccountManagerProps[kNumTypedAccountManagerProps] = {
{ "BANKmanagerCacheClnt",

CachingAccountManagerObjectWrapper::factory,
VISObjectWrapper::Client },

{ "BANKmanagerSecurityClnt",
SecureAccountManagerObjectWrapper::factory,
VISObjectWrapper::Client },

{ "BANKmanagerCacheSrvr",
CachingAccountManagerObjectWrapper::factory,
VISObjectWrapper::Server },

{ "BANKmanagerSecuritySrvr",
SecureAccountManagerObjectWrapper::factory,
VISObjectWrapper::Server }

};

void BankInit::update(int& argc, char* const* argv) {
if (argc > 0) {

init(argc, argv, "-BANK");
CORBA::ULong i;
for (i=0; i < kNumTypedAccountProps; i++) {

CORBA::String_var arg(getArgValue(
TypedAccountProps[i].propname));

if (arg && strlen(arg) > 0) {
if (atoi((char*) arg)) {

Bank::AccountObjectWrapper::add(_orb,
TypedAccountProps[i].fact,
TypedAccountProps[i].loc);

} else {
Bank::AccountObjectWrapper::remove(_orb,

TypedAccountProps[i].fact,
TypedAccountProps[i].loc);

}
}

Initializer for typed wrappers

- 467/607 - © 2024 Rocket Software

Command-line arguments for un-typed wrappers
The table below shows the command-line arguments you can use to enable the use of un-typed object
wrappers for the sample bank applications implemented in untypedClient.C and untypedServer.C :

}

for (i=0; i < kNumTypedAccountManagerProps; i++) {
CORBA::String_var arg(getArgValue(

TypedAccountManagerProps[i].propname));
if (arg && strlen(arg) > 0) {

if (atoi((char*) arg)) {
Bank::AccountManagerObjectWrapper::add(_orb,

TypedAccountManagerProps[i].fact,
TypedAccountManagerProps[i].loc);

} else {
Bank::AccountManagerObjectWrapper::remove(_orb,

TypedAccountManagerProps[i].fact,
TypedAccountManagerProps[i].loc);

}
}

}
}

}

Bank wrappers
properties

Description

-TRACEWRAPclient
<numwraps>

Instantiates the specified number of un-typed object wrapper
factories for tracing wrappers for a client application.

-TRACEWRAPserver
<numwraps>

Instantiate the specified number of un-typed object wrapper
factories for tracing on a server application.

-TRACEWRAPboth
<numwraps>

Instantiate the specified number of un-typed object wrapper
factories for tracing for both a client and server application.

-TIMINGWRAPclient
<numwraps>

Instantiate the specified number of un-typed object wrapper
factories for timing on a client application.

-TIMINGWRAPserver
<numwraps>

Instantiate the specified number of un-typed object wrapper
factories for timing on a server application.

Command-line arguments for un-typed wrappers

- 468/607 - © 2024 Rocket Software

Initializers for un-typed wrappers
The un-typed wrappers are created and registered in the TraceWrapInit::update and
TimingWrapInit::update methods, defined in traceWrap.C and timeWrap.C . These initializers will be
invoked when the ORB_init method is invoked and will handle the installation of various untyped object
wrappers.

The code sample below shows a portion of the traceWrap.C file, which will install the appropriate un-
typed object wrapper factories, based on the command-line properties you specify.

Code example 138 Initializer for an un-typed object wrapper

Bank wrappers
properties

Description

-TIMINGWRAPboth
<numwraps>

Instantiate the specified number of un-typed object wrapper
factories for timing on both a client and a server application.

Initializers for un-typed wrappers

- 469/607 - © 2024 Rocket Software

void TraceWrapInit::update(int& argc, char* const* argv) {
if (argc > 0) {

init(argc, argv, "-TRACEWRAP");

VISObjectWrapper::Location loc;
const char* propname;
LIST(VISObjectWrapper::UntypedObjectWrapperFactory_ptr) *list;

for (CORBA::ULong i=0; i < 3; i++) {
switch (i) {

case 0:
loc = VISObjectWrapper::Client;
propname = "TRACEWRAPclient";
list = &_clientfacts;
break;

case 1:
loc = VISObjectWrapper::Server;
propname = "TRACEWRAPserver";
list = &_serverfacts;
break;

case 2:
loc = VISObjectWrapper::Both;
propname = "TRACEWRAPboth";
list = &_bothfacts;
break;

}
CORBA::String_var getArgValue(property_value(propname));
if (arg && strlen(arg) > 0) {

int numNew = atoi((char*) arg);
char key_buf[256];
for (CORBA::ULong j=0; j < numNew; j++) {

sprintf(key_buf, "%s-%d", propname, list->size());
list->add(new TraceObjectWrapperFactory(loc,

(const char*) key_buf));
}

}
}

}
}

Initializers for un-typed wrappers

- 470/607 - © 2024 Rocket Software

Executing the sample applications
Before executing the sample applications, make sure that an osagent is running on your network. You
can then execute the server application without any tracing or timing object wrappers from the
VxWorks C shell by:

The Client can then be started from the same VxWorks C shell.

Examples

Example

You can also execute this command if you want a default name to be used.

Example

Turning on timing and tracing object wrappers
To execute the client with un-typed timing and tracing object wrappers enabled, use this command:

Example

To execute the server with un-typed wrappers for timing and tracing enabled, use this command:

--> ld < corba_init
--> start_corba()
--> ld < server
--> ld < client
--> start_objwrap_server()

-->start_objwrap_client("John")

-->start_objwrap_client()

-->start_objwrap_client("-TRACEWRAPclient 1 -TIMINGWRAPclient 1")

Executing the sample applications

- 471/607 - © 2024 Rocket Software

Example

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security enabled, use this command:

Example

To execute the server with typed wrappers for caching and security enabled, use this command:

Example

Turning on typed and un-typed wrappers
To execute the client with all typed and un-typed wrappers enabled, use this command:

Example

To execute the server with all typed and un-typed wrappers enabled, use this command:

-->start_objwrap_server("-TRACEWRAPserver 1 -TIMINGWRAPserver 1")

-->start_objwrap_client("-BANKaccountCacheClnt 1 \
-BANKmanagerCacheClnt 1 \
-BANKmanagerSecurityClnt 1")

-->start_objwrap_server("-BANKaccountCacheSrvr 1 \
-BANKmanagerCacheSrvr 1 \
-BANKmanagerSecuritySrvr 1")

-->start_objwrap_client("-BANKaccountCacheClnt 1 \
 -BANKmanagerCacheClnt 1 -BANKmanagerSecurityClnt 1 \
 -TRACEWRAPclient 1 -TIMINGWRAPclient 1")

Turning on caching and security object wrappers

- 472/607 - © 2024 Rocket Software

Executing a co-located client and server
The following command will execute a co-located server and client with all typed wrappers enabled, the
un-typed wrapper enables for just the client, and the un-typed tracing wrapper for just the server, use
this command:

Example

-->start_objwrap_server(-BANKaccountCacheSrvr 1 \
-BANKmanagerCacheSrvr 1 -BANKmanagerSecuritySrvr 1 \
-TRACEWRAPserver 1 -TIMINGWRAPserver 1")

-->start_objwrap_server("-BANKaccountCacheClnt 1 \
 -BANKaccountCacheSrvr 1 \
 -BANKmanagerCacheClnt 1 \
 -BANKmanagerCacheSrvr 1 \
 -BANKmanagerSecurityClnt 1 \
 -BANKmanagerSecuritySrvr 1 \
 -TRACEWRAPboth 1 \
 -TIMINGWRAPboth 1")

Executing a co-located client and server

- 473/607 - © 2024 Rocket Software

Using Valuetypes

This section explains how to use the valuetype IDL type in VisiBroker RT for C++.

Understanding valuetypes
The IDL type valuetype is used to pass state data over the wire. A valuetype is best thought of as a
struct with inheritance and methods. valuetype objects differ from normal interfaces in that they
contain properties to describe the current state, and contain implementation details beyond that of an
interface. The following IDL code declares a simple valuetype :

IDL sample 20 Simple valuetype IDL

valuetype instances are always local. They are not registered with the ORB, and require no identity, as
their value is their identity. They can not be called remotely.

Concrete valuetypes
Concrete valuetype instances contain state data. They extend the expressive power of IDL structs by
allowing:

Single concrete valuetype derivation and multiple abstract valuetype derivation.

Multiple interface support (one concrete and multiple abstract).

Arbitrary recursive valuetype definitions.

Null value semantics.

Sharing semantics.

module Map {
valuetype Point {

public long x;
public long y;
private string label;
factory create (in long x, in long y, in string z);
void print();

};
};

• •

• •

• •

• •

• •

Using Valuetypes

- 474/607 - © 2024 Rocket Software

Valuetype derivation
You can derive a concrete valuetype from a single concrete valuetype . However, a valuetype can be
derived from multiple other abstract valuetype types.

Sharing semantics
valuetype instances can be shared by other valuetype instancess across or within other instances. Other
IDL data types such as structs, unions, or sequences can not be shared. valuetype instances that are
shared are isomorphic between the sending context and the receiving context.

In addition, when the same valuetype is passed into an operation for two or more arguments, the
receiving context receives the same valuetype reference for both arguments.

Null semantics
Null valuetype instances can be passed over the wire, unlike IDL data types such as structs, unions, and
sequences. For instance by boxing a struct as a boxed valuetype , you can pass a null value struct . For
more information, see Boxed valuetypes.

Factories
Factories are methods that can be declared in valuetypes to create valuetype instances in a portable
way. For more information on Factories, see Implementing factories.

Abstract valuetypes
Abstract valuetype definitions contain only methods and do not have state. They may not be
instantiated. Abstract valuetypes are a bundle of operation signatures with a purely local
implementation.

For instance, the following IDL defines an abstract valuetype Account that contains no state, but one
method, get_name() :

Now, two valuetype objects are defined that inherit the get_name() method from the abstract valuetype :

abstract valuetype Account{
string get_name();

}

Abstract valuetypes

- 475/607 - © 2024 Rocket Software

These two valuetype Objects contain a variable balance, and they inherit the get_name() method from
the abstract valuetype Account.

Implementing valuetypes
To implement a valuetype in an application:

Define the valuetype in an IDL file.

Compile the IDL file using idl2cpp .

Implement your valuetype by inheriting the valuetype base class .

Implement the Factory class to implement any factory methods defined in IDL.

Implement the create_for_unmarshal method.

Register your Factory with the ORB.

Either implement the _add_ref , _remove_ref , and _ref_countvalue methods or derive from
CORBA::DefaultValueRefCountBase .

Defining your valuetypes
In IDL sample 20, you define a valuetype named Point that defines a point on a graph. It contains two
public variables, the x and y coordinates, one private variable that is the label of the point, the
valuetypes factory, and a print method to print the point.

valuetype savingsAccount : Account{
private long balance;

}
valuetype checkingAccount : Account{

private long balance;
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Implementing valuetypes

- 476/607 - © 2024 Rocket Software

Compiling your IDL file
Now that you've defined your IDL, compile it using idl2cpp . This will create the C++ source files that you
will use to implement your valuetypes.

If you compile the above IDL, your output will consist of the following files:

map_c.cc

map_c.hh

vap_s.cc

map_s.hh

Inheriting the valuetype base class
After compiling your IDL, create your implementation of the valuetype. The implementation class will
inherit the base class. This class contains the constructor that is called in your ValueFactory , and
contains all the variables and methods declared in your IDL.

For example, in <VBRT_install>/examples/vbroker_kernel/obv/point/pntImpl.h , the PointImpl class extends
the Point class which was generated from the IDL:

• •

• •

• •

• •

Compiling your IDL file

- 477/607 - © 2024 Rocket Software

Implementing the Factory class
Now that you have created an implementation class, implement the Factory for your valuetype .

In our example, the generated Point_init class contains the create method declared in your IDL. This
class extends CORBA::ValueFactoryBase . The PointDefaultFactory class implements PointValueFactory :

Point_init contains a public method, create_for_unmarshal , that is output as a pure virtual method in
Map_c.hh . You must derive a class from Point_init and implement the create_for_unmarshal method to
produce the Factory class. When you compile your IDL file, it wont create a skeleton class for this.

class PointImpl
: public Map::OBV_Point,

public CORBA::DefaultValueRefCountBase {
public:

PointImpl() {}
virtual ~PointImpl() {}

CORBA_ValueBase* _copy_value() {
return new PointImpl(

x(), y(), new Map::Label(CORBA::string_dup(label())));
}
PointImpl(CORBA::Long x, CORBA::Long y, Map::Label_ptr label)

: OBV_Point(x, y, label->_boxed_in())
{}

virtual void print() {
cout << "Point is [" << label() << ": ("

<< x() << ", " << y() << ")]" << endl << endl;
}

};

class PointFactory: public CORBA::ValueFactoryBase {
public:

PointFactory() {}
virtual ~PointFactory() {}
CORBA::ValueBase* create_for_unmarshal() {

return new PointImpl();
}

};

Implementing the Factory class

- 478/607 - © 2024 Rocket Software

Registering your Factory with the ORB
Call ORB::register_value_factory to register your Factory with the ORB.

See Registering valuetypes for more information on registering Factories.

Implementing factories
When the ORB receives a valuetype, it must first be unmarshalled, and then the appropriate factory for
that type must be found in order to create a new instance of that type. Once the instance has been
created, the value data is unmarshalled into the instance. The type is identified by the RepositoryID that
is passed as part of the invocation. The mapping between the type and the factory is language specific.

The following code contains a sample implementation of the factory of the Point valuetype:

Code example 139 Factory for Point valuetype

Factories and valuetypes
When the ORB receives a valuetype , it will look for that type's factory. It will look for a factory named
"valuetype DefaultFactory ". For instance, the Point valuetypes factory is called PointDefaultFactory . If the
correct factory doesn't conform to this naming schema ("valuetype DefaultFactory "), you must register
the correct factory so the ORB can create an instance of the valuetype.

If the ORB cannot find the correct factory for a given valuetype , a MARSHAL exception is raised.

class PointFactory: public CORBA::ValueFactoryBase
{
public:

PointFactory() {}
virtual ~PointFactory() {}
CORBA::ValueBase* create_for_unmarshal() {

return new PointImpl();
}

};

Registering your Factory with the ORB

- 479/607 - © 2024 Rocket Software

Registering valuetypes
Each language mapping specifies how and when registration occurs. If you created a factory with the
valuetype DefaultFactory naming convention, this is considered implicitly registering that factory, and
you do not need to explicitly register your factory with the ORB.

To register a factory that doesnt conform to the valuetype DefaultFactory naming convention, call
register_value_factory . To unregister a factory, call unregister_value_factory on the ORB. You can also
lookup a registered valuetype factory by calling lookup_value_factory on the ORB.

Boxed valuetypes
Boxed valuetype allow you to wrap non-value IDL data types as a valuetype . For example, this following
IDL boxed valuetype declaration

is equivalent to this IDL valuetype declaration:

By boxing other data types as a valuetype , it allows you to use valuetype null semantics and sharing
semantics. Valueboxes are implemented purely with generated code. No user code is required.

Abstract interfaces
Abstract interfaces allow you to choose at run-time whether the object will be passed by value or by
reference.

They differ from IDL interfaces in the following ways:

The actual parameter type determines whether the object is passed by reference or a valuetype is
passed. The parameter type is determined based on two rules:

It is treated as an object reference if it is a regular interface type or sub-type, the interface type
is a sub-type of the signature abstract interface type, and the object is already registered with
the ORB.

valuetype Label string;

valuetype Label{
public string name;

}

• •

• •

Registering valuetypes

- 480/607 - © 2024 Rocket Software

It is treated as a value if it cannot be passed as an object reference, but can be passed as a
value. If it fails to pass as a value, a BAD_PARAM exception is raised.

Abstract interfaces do not implicitly derive from CORBA::Object because they can represent either
object references or valuetypes. valuetype do not necessarily support common object reference
operations. If the abstract interface can be successfully narrowed to an object reference type, you
can invoke the operations of CORBA::Object .

Abstract interfaces may only inherit from other abstract interfaces.

valuetype definitions can support one or more abstract interfaces. For example, examine the
following abstract interface.

IDL sample 21 Abstract interface IDL

For the argument to method m :

itp is always passed as an object reference.

vtp is passed as a value.

• •

• •

• •

• •

abstract interface ai {
};
interface itp : ai {
};
valuetype vtp supports ai {
};
interface x {

void m(ai aitp);
};
valuetype y {

void op(ai aitp);
};

• •

• •

Abstract interfaces

- 481/607 - © 2024 Rocket Software

Custom valuetypes
By declaring a custom valuetype in IDL, you bypass the default marshalling and unmarshalling model
and are responsible for encoding and decoding.

IDL sample 22 Custom valuetype IDL

You must implement the marshal and unmarshal methods from the CustomMarshal interface.

When you declare a custom valuetype , the valuetype extends CORBA::CustomValue , as opposed to
CORBA::StreamableValue , as in a regular valuetype . The compiler doesn't generate read or write methods
for your valuetype .

You must implement your own read and write methods by using CORBA::DataInputStream and
CORBA::DataOutputStream to read and write the values, respectively. For more information on these
classes, see the VisiBroker RT for C++ Reference Guide.

Truncatable valuetypes
Truncatable valuetype objects allow you to treat an inherited valuetype as its parent.

The following IDL defines a valuetype checkingAccount that is inherited from the base type Account and
can be truncated an the receiving object.

This is useful if the receiving context doesnt need the new data members or methods in the derived
valuetype , and if the receiving context isnt aware of the derived valuetype . However, any state data from
the derived valuetype that isn't in the parent data type will be lost when the valuetype is passed to the
receiving context.

custom valuetype customPoint{
public long x;
public long y;
private string label;
factory create(in long x, in long y, in string z);

};

valuetype checkingAccount: truncatable Account{
private long balance;

}

Custom valuetypes

- 482/607 - © 2024 Rocket Software

You cannot make a custom valuetype truncatable.

Note

Truncatable valuetypes

- 483/607 - © 2024 Rocket Software

VisiBroker Logging

VisiBroker RT for C++ provides a logging mechanism which allows applications to log messages and
have them directed, via configurable logging forwarders, to an appropriate destination or destinations.
The ORB itself uses this mechanism for the output of any error, warning or informational messages.

The application can choose to log its and the ORB's messages to the same destination, producing a
single message log for the entire system, or to log messages from different sources to independent
destinations.

Logging Overview
VisiBroker Logging employs one or more Logger objects that applications (including the ORB) may log
messages to. When a message is logged to a Logger, it is queued rather than being output by the
calling thread.

Each Logger has one or more Forwarders associated with it: application-definable pieces of code that
read the queued messages and forward them to desired destinations, such as standard error, a file or
over a network. All the Forwarders associated with a given Logger run on a single Forwarder Thread.
The priority of the Forwarder Thread is configurable.

However, forwarding is not enabled when a Logger is created. Messages logged before forwarding is
enabled are queued until it is enabled. This allows messages to be logged before the Logger or all of
the output destinations have been fully configured (for example during static initialization of C++
constructors).

The ORB uses a special Logger instance (the 'Default Logger'), which is created automatically the first
time the ORB logs a message to it. Applications can log messages to the Default Logger as well, to
integrate their logging output with that of the ORB, or they can create one or more other Loggers in
order to log messages independently. The 'standard error' iostream is the default destination for
messages logged to the Default Logger.

VisiBroker Logging

- 484/607 - © 2024 Rocket Software

The Logger Manager
The Logger Manager is used to manage the lifecycle of Loggers and to configure them. The Logger
Manager is a singleton object belonging to the ORB. A reference to it is obtained by calling its static
instance method. No reference counting is performed upon the Logger Manager.

Code example 140 Using the static instance method to access the singleton Logger Manager object

The methods of the Logger Manager are introduced, along with the description of their use, in the
sections that follow.

Configuring ORB Logging
Even if an application does not log messages of its own, it may wish to configure the logging of
messages by the ORB. The following aspects of ORB logging can be controlled:

The level of ORB logging ('verbosity')

The destination of logged messages - by installing different Forwarders

The priority of the Forwarder Thread that runs the installed Forwarders

The following sections describe the ORB's logging output and how to control it.

// Use its static instance method to obtain a reference to the
// Logger Manager
VISLoggerManager_ptr logger_manager =

VISLoggerManager::instance();
...
// Alternatively, the Logger Manager reference may be obtained
// each time it is used. Here, for example, when calling
// its get_logger method:
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger(LoggerName);

• •

• •

• •

The Logger Manager

- 485/607 - © 2024 Rocket Software

ORB Log Levels
Messages logged by the ORB have one of four Log Levels:

Level 1: ERROR

Messages at this level indicate a fatal error during the operation of the ORB; that is, an error that
has caused one of the threads running ORB code to abort. Note that the cause of the error may
be external to the ORB - for example a network interface configuration that cannot be supported.

Level 2: WARNING

Messages at this level indicate a non-fatal error during the operation of the ORB. This may be
reporting an issue that causes subsequent failures or unexpected behavior, but the ORB will carry
on trying to work as normal for now. Again, the cause of the problem may be external to the ORB.

Level 3: INFORMATION

Messages at this level provide 'verbose' information about the normal operation of the ORB. For
example, information about the successful configuration of a Server Engine at the time of its
creation.

Level 4: DEBUG

Messages at this level provide detailed information about certain aspects of the ORB's operation.
They do not normally need to be viewed, but may be useful in certain debugging scenarios.

By default, only messages at Log Levels 1 (ERROR) and 2 (WARNING) will be logged by the ORB. The
number of levels that are logged can be increased or decreased on a per-ORB component basis. ORB
components are described in the next section.

ORB Logging Components
For the purpose of logging, VisiBroker is divided into a number of components:

ORB

The majority of VisiBroker, including the Object Request Broker itself.

POA

Portable Object Adapters. Note that individual POAs are not distinguished as separate logging
components, so the same level of logging output will be used for all POAs. However, POA
component messages usually identify the POA concerned as part of the logged message.

Smart Agent

The code of the Smart Agent (OSAgent) itself, and also the agent client (DSUser) code that is used
by an ORB when it interacts with the Smart Agent.

• •

• •

• •

• •

• •

• •

• •

ORB Log Levels

- 486/607 - © 2024 Rocket Software

LocSvc

The Location Service programmatic API to the Smart Agent.

CosName

The code of the COS Naming Service, as is provided with VisiBroker RT.

CosEvent

The code of the COS Event Service, as is provided with VisiBroker RT.

The level of logging may be configured on a per-component basis. The way to configure the level of
output is described in the next section.

By default, only messages at Log Levels 1 (ERROR) and 2 (WARNING) are output for all ORB components.

Controlling the Level of ORB Logging
The level of ORB logging is controlled on a per-component basis, by specifying the highest message
Log Level that should be logged for each ORB component.

The LoggerManager provides methods that allow the setting and reading of the maximum Log Level for
each ORB component:

Code example 141 VISLoggerManager methods for setting and reading maximum Log Level per ORB
component

• •

• •

• •

Controlling the Level of ORB Logging

- 487/607 - © 2024 Rocket Software

For example, the following code sets the maximum Log Level to 3 (INFORMATION) for the ORB and POA
components. This has the effect of producing 'verbose' output about the operation of the majority of
the ORB.

Code example 142 Setting the maximum Log Level for the ORB and POA components to Log Level 3
(INFORMATION)

class VISLoggerManager {
public:
...

void ORB_log_level(VISLogLevel level);
VISLogLevel ORB_log_level();

void POA_log_level(VISLogLevel level);
VISLogLevel POA_log_level();

void OSAgent_log_level(VISLogLevel level);
VISLogLevel OSAgent_log_level();

void LocSvc_log_level(VISLogLevel level);
VISLogLevel LocSvc_log_level();

void CosName_log_level(VISLogLevel level);
VISLogLevel CosName_log_level();

void CosEvent_log_level(VISLogLevel level);
VISLogLevel CosEvent_log_level(); ...

};

Controlling the Level of ORB Logging

- 488/607 - © 2024 Rocket Software

Library liblog_message_catalog.o and Formatted ORB Log
Messages

The VisiBroker RT log message structure contains a message key and arguments. By default, the
message key and arguments are output by the Default Forwarder. Building a VisiBroker RT application
with the liblog_message_catalog.o VisiBroker library allows log messages to be created by applying
arguments to a format as defined by the message_key . For more information on selecting VisiBroker RT
libraries for your application please refer to Step 6: Integrating VisiBroker RT with VxWorks 7.

Controlling the Priority of ORB Logging
The ORB logs its messages to a special Logger called the Default Logger. As with all Loggers, when a
message is logged to the Default Logger, the message is written to a queue without being immediately
output to its final destination.

Each Logger has a Forwarder Thread associated with it that reads the queued messages and executes
the Forwarder code to output them to their final destination. The priority at which the Forwarder
Thread executes can be controlled per Logger, via a method on the VISLogger class. The following code
example demonstrates how to set the priority of the Default Logger's Forwarder Thread.

Code example 143 Setting the priority of the Default Logger's Forwarder Thread

The priority is specified as a Real-Time CORBA priority value, and hence must be a valid value in the
currently installed Real-Time CORBA Priority Mapping.

VISLoggerManager::instance()->ORB_log_level(3);
VISLoggerManager::instance()->POA_log_level(3);

// Obtain handle to the Default Logger
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger("DefaultLogger");

// Set the Real-Time CORBA Priority of the Default Logger's
// Forwarder. Note that this will only be effective before
// forwarding has been enabled (no later than ORB_init)
logger->forwarder_priority(27);

Library liblog_message_catalog.o and Formatted ORB Log Messages

- 489/607 - © 2024 Rocket Software

Note that the priority of the Forwarder Thread may only be changed before forwarding is enabled. For
the Default Forwarder, forwarding is enabled automatically when CORBA::ORB_init is called. That is, if it
hasnt already been explicitly enabled before that time.

If a priority is not specified by the application, the Default Logger's Forwarder Thread priority defaults
to the maximum priority in the Real-Time CORBA Priority Mapping installed at the time forwarding is
enabled. This is the same behavior as for any other Loggers created by the application.

The enabling of forwarding is discussed further in the next section.

Enabling Forwarding of ORB Logging
Like all Loggers, the Default Logger used by the ORB does not have the forwarding of logged
messages enabled when it is created. Messages logged before forwarding is enabled are queued until
it is enabled. This allows messages to be logged before the Logger or all of the output destinations
have been fully configured - for example, before the priority of the Forwarder Thread has been
configured, or during static initialization of C++ constructors when the initialization of the C++
iostreams package may not yet have occurred.

However, the Default Logger differs from other Loggers in that, for the Default Logger, forwarding is
automatically enabled when either CORBA::ORB_init or startOsagent is called. Hence, at the time of
calling CORBA::ORB_init or startOsagent , any messages previously logged by the ORB will be forwarded
to the specified destinations.

Forwarding can still be explicitly enabled for the Default Logger, prior to calling CORBA::ORB_init or
startOsagent . This might be done, for example, to investigate any messages logged by the ORB if a
problem is encountered prior to calling CORBA::ORB_init or startOsagent . This should not normally be
necessary. See the section 'Enabling Message Forwarding' below for details of how to enable forwarding
explicitly. The string identifier for the Default Logger is 'DefaultLogger'.

Controlling the Destination of ORB Logging
Messages logged to a Logger may be output to any number of destinations simultaneously, and the
destinations that messages are logged to may be configured on a per-Logger basis, and at any time
during the lifetime of the Logger.

Because the Default Logger is just a special Logger instance, the procedure for adding, removing and
replacing logging destinations is the same as for Loggers created by applications. See the section
'Adding and Removing Logger Forwarders' below.

Enabling Forwarding of ORB Logging

- 490/607 - © 2024 Rocket Software

Application Logging
Applications that wish to log messages via the VisiBroker RT logging mechanism may log messages to
the same Default Logger that the ORB logs messages to, and may also create additional Loggers to log
messages independently of the ORB's logging.

The following sections describe how an application can create and configure additional Loggers, and
then log messages to them or the Default Logger.

Creating or Obtaining a Reference to a Logger
A Logger object can be created using the get_logger method of the VISLoggerManager object. The
get_logger method is used both to create new Loggers and to obtain a reference to an existing Logger.

Code example 144 Signature of get_logger method

get_logger takes two parameters: a name for the Logger and a flag indicating whether a Logger should
be created if one of that name does not already exist. With the second parameter set to true (non-zero),
a new Logger will be created if one of that name does not already exist. If a Logger of that name
already exists, a reference to it will be returned. This is the default behavior.

However, if the second parameter of get_logger is set to false (zero), the get_logger method will fail if a
Logger of the specified name does not already exist. In that case, a CORBA::OBJECT_NOT_EXIST system
exception is thrown.

Thus get_logger can be used both to create a new Logger and to obtain a reference to an existing
Logger without attempting to create it. The following code example illustrates both these use cases:

Code example 145 Using get_logger() to create a new Logger and to obtain a reference to an already
existing Logger without attempting to create it.

typedef VISLogger * VISLogger_ptr;
class VISLoggerManager {

...
VISLogger_ptr get_logger(const char * logger_name,

CORBA::Boolean create_flag = 1);
...

};

Application Logging

- 491/607 - © 2024 Rocket Software

Note that no reference counting is performed on Logger references (VISLogger* or VISLogger_ptr). There
is no reference counting smart pointer implementation available for VISLogger .

Setting the Forwarder Thread Priority of a Logger
When a message is logged to a Logger, the message is written to a queue without being output to its
final destination. Each Logger has a Forwarder Thread associated with it which executes any installed
Forwarders - code that reads the queued messages and outputs them to their final destination. The
priority that the Forwarder Thread executes at can be controlled per Logger, via a method on the
VISLogger class.

The following code example demonstrates how to set the priority of a Loggers Forwarder Thread:

// Obtain reference to a Logger called myAppLogger - create it
// if it doesnt already exist
VISLogger_ptr my_app_logger;
VISTRY
{

// Using single argument variant of get_logger() indicates we want to
// create this Logger if it doesnt already exist
my_app_logger =

VISLoggerManager::instance()->get_logger(myAppLogger);
}
VISCATCH(CORBA::Exception, e)
{

// Handle exceptions here
}

...
// Obtain reference to a Logger - throw an exception if
// it doesnt already exist
VISLogger_ptr logger;
VISTRY
{

// Using a second argument to get_logger() indicates we do NOT
// want to create this Logger if it doesnt already exist
logger =

VISLoggerManager::instance()->get_logger(myAppLogger,0);
}
VISCATCH(CORBA::Exception, e)
{

// Handle exceptions here
}

Setting the Forwarder Thread Priority of a Logger

- 492/607 - © 2024 Rocket Software

Code example 146 Setting the priority of a Logger's Forwarder Thread

The priority is specified as a Real-Time CORBA priority value, and hence must be a valid value in the
currently installed Real-Time CORBA Priority Mapping.

If a priority is not specified by the application, a Logger's Forwarder Thread will (by default) run at the
maximum priority in the Real-Time CORBA Priority Mapping installed at the time forwarding is enabled.
However, this default can be changed to any other priority in the installed Real-Time CORBA priority
mapping, by calling the default_forwarder_thread_priority method of the Logger Manager:

Code example 147 The default_forwarder_thread_priority method may be used to change the default
Real-Time CORBA Priority for Forwarder threads

Note that the priority of the Forwarder Thread is fixed at the time when forwarding is enabled. Hence it
may only be changed before forwarding is enabled. Enabling of forwarding is discussed in the next
section.

Enabling Message Forwarding
A Logger does not have the forwarding of logged messages enabled when it is created. Messages
logged before forwarding is enabled are queued until it is enabled. This allows messages to be logged
before the Logger or all of the output destinations have been fully configured - for example, before the
priority of the Forwarder thread has been configured, or during static initialization of C++ constructors
when the initialization of the C++ iostreams package may not yet have occurred.

For all Loggers, aside from the Default Logger which is used by the ORB, logging must be explicitly
enabled by calling the enable_forwarding method on that Logger.

// Obtain handle to my Logger
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger("myAppLogger");

// Set the Real-Time CORBA Priority of the Logger's Forwarder Thread
// Note that this will only be effective before forwarding has been enabled
logger->forwarder_priority(27);

// Set the default Real-Time CORBA Priority value that
// Forwarder Threads will run at, if a priority is not
// specified before forwarding is enabled
VISLoggerManager::instance()->

default_forwarder_thread_priority(17);

Enabling Message Forwarding

- 493/607 - © 2024 Rocket Software

Code example 148 Forwarding of logged messages must be explicitly enabled for all Loggers apart
from the Default Logger

The Default Logger differs from other Loggers in that for the Default Logger, forwarding is
automatically enabled when either CORBA::ORB_init or startOsagent is called. See
Enabling Forwarding of ORB Logging for details.

Logging a Message to a Logger
Applications log a message to a Logger by calling its log method:

The purpose of each of the parameters is as follows:

source_name

Identifies the application or application component (in a complex system, with multiple logging
sources) that is logging the message. The source name may be used by Forwarders to determine
how to handle the message. Certain source names are reserved by VisiBroker RT, and are used to
determine which message catalog is used to produce the message text.

Specifically, the names "vbroker_en", "nm_vbroker_en", and "ev_vbroker_en" are reserved by
VisiBroker RT.

level

Indicates the Log Level of the message.

// Enable forwarding once Logger and logging destinations are ready
VISLogger_ptr my_app_logger =

VISLoggerManager::instance()->get_logger(myAppLogger);

my_app_logger->enable_forwarding();

class VISLogger {
...
void log(const char * source_name,

VISLogLevel level,
const char * message_key,
VISLogArgs * message_args,
const char * source_thread_identifier,
const char * location_code,
VISLogApplicationFields * application_fields);

...
};

• •

• •

Logging a Message to a Logger

- 494/607 - © 2024 Rocket Software

Messages logged by the ORB use this field to indicate one of four levels, as described in the
section "ORB Log Levels". VISLogLevel is actually of type short , so the application is not restricted
to just four levels. This parameter can be used just for informational purposes, or a Forwarder
could make use of it to decide how to handle messages. (Note that the filtering of ORB messages
based on Log Level takes place in ORB code, before calling the log method. To filter messages
based upon Log Level in a convenient fashion, an application could write a logging wrapper class,
which the application would call instead of VISLogger::log and which only logs messages with
currently selected Log Levels).

message_key

A string identifier that indicates what kind of message this is.

The ORB uses a fixed set of message keys, so that there is a well known set of message types.
These are then used as the keys in a 'message catalog', with the values being message 'format
strings' to be used in combination with the message_args parameter to produce the full text of the
message. This separation of message text and arguments simplifies the support of
internationalization in log message output. Applications may do the same. However, for a simpler
form of logging, the application may just give the full text of its message in the message_key
parameter and leave the message_args field null.

message_args

These are copied by reference rather than by value. See the description of message_key above.

source_thread_identifier

Identifies the thread that logged this message. If this field is left null, the ORB will provide a
default value.

location_code

Identifies the location in application code that is logging this message.

For ORB log messages, this is the source code file name and line number of the calling line of ORB
code (produced using the ANSI C __FILE__ and __LINE__ macros). Applications may do the same,
identify the location in some other way, or even leave this field blank.

application_fields

Any additional data that the application wishes to associate with this logged message.

Copied by reference rather than by value. It is the application's responsibility to make sure that a
Forwarder is installed that can interpret this data.

Note that the memory ownership semantics for the message_args and application_fields parameters are
different to those of the other parameters. message_args and application_fields are passed by reference
rather than by value. The Logger takes ownership of them and they are automatically deallocated after
the last installed Forwarder has made use of them.

• •

• •

• •

• •

• •

Logging a Message to a Logger

- 495/607 - © 2024 Rocket Software

All other parameters are passed by value. That is, the Logger takes a copy of them when the log method
is called. Thus it is the application's responsibility to deallocate any memory that it allocated for the
source_name , message_key , source_thread_identifier or location_code parameters. The memory may be
deallocated as soon as the call to the log method returns.

Adding and Removing Logger Forwarders
Any number of Forwarders may be associated with a given Logger at the same time. Forwarders are
added and removed through a set of methods on the VISLogger class:

Code example 149 Methods used to add and remove Logger Forwarders

add_forwarder and remove_forwarder allow a particular Forwarder to be added to or removed from the list
of Forwarders associated with a Logger. They both take a handle to a Logger Forwarder object as a
parameter.

remove_default_forwarder is provided to allow the removal of the Default Forwarder - the Forwarder that
is associated with each Logger by default. This separate method is used as the application does not
have a handle to the Default Forwarder, to provide as the parameter to remove_forwarder .

The next section describes how an application can create a Forwarder of its own.

class VISLogger {
...
// Add/Remove a Forwarder
void add_forwarder(VISLoggerForwarder_ptr forwarder);
void remove_forwarder(VISLoggerForwarder_ptr forwarder);

// Remove the Default Forwarder
void remove_default_forwarder();
...

};

Adding and Removing Logger Forwarders

- 496/607 - © 2024 Rocket Software

Implementing a Logger Forwarder
A new Logger Forwarder is implemented by defining a C++ class that inherits from the class
VISLoggerForwarder .

Code example 150 The VISLoggerForwarder class, from which Logger Forwarder implementations inherit

A derived Forwarder class implements the forwarding behavior it desires by implementing the
forward_message and handle_memory_failure methods. However, VISLoggerForwarder provides a default
implementation for each of these methods, so that the application is not obliged to implement both of
them. For details of the default implementation of these two methods refer to "The Default Logger
Forwarder".

forward_message is the method that is called under normal circumstances. It is called once for each
message that is logged to any Logger that the Forwarder is associated with. The VISLogMessage data
type, that is passed as a parameter, has the following structure:

Code example 151 The VISLogMessage data structure

class VISLoggerForwarder {
public:

VISLoggerForwarder();
virtual ~VISLoggerForwarder();

virtual void forward_message(VISLogMessage * message);
virtual void handle_memory_failure(

CORBA::ULongLong message_identifier,
CORBA::ULongLong message_creation_time,
VISLogLevellevel level,
const char * source_host,
const char * source_name,
const char * location_code,
CORBA::ULong source_process_identifier,
const char * source_thread_identifier,
VISLogApplicationFields * application_fields,
const char * message_key,
VISLogArgs * message_args);

};

Implementing a Logger Forwarder

- 497/607 - © 2024 Rocket Software

The fields in the VISLogMessage structure correspond to the parameters to the VISLogger::log method (as
described in the section "Logging a Message to a Logger" above), plus the following additional fields:

message_identifier

A message sequence number, starting at one and incrementing for each message logged to that
Logger.

message_creation_time

A time stamp, taken from the system clock at the time the message was logged (rather than the time
when forwarded). Held in the TimeBase::TimeT format: one unit is 100 nanoseconds (one tenth of a
microsecond).

The Logger retains ownership of the VISLogMessage parameter. If the Forwarder wishes to keep a copy of
any of the data it must copy it before forward_message returns. The memory associated with the
VISLogMessage structure is deallocated by the Logger after the last installed Forwarder returns.

handle_memory_failure is called instead of forward_message in the event that the Logger experiences a
memory allocation failure at any point during the logging of a message, up to and including the
creation of the VISLogMessage parameter. As with forward_message , the Logger retains ownership of the
parameters. Note that one or more of the parameters may be null, depending on when the memory
allocation failure occurred.

The following code example illustrates the installation of an application-defined Forwarder. The
Forwarder is shown being installed on the Default Logger (as used by the ORB), but any other Logger
could be specified.

struct VISLogMessage {
CORBA::ULongLong message_identifier;
CORBA::ULongLong message_creation_time;
VISLogLevel level;
const char * source_host;
const char * source_name;
const char * location_code;
CORBA::ULong source_process_identifier;
const char * source_thread_identifier;
VISLogApplicationFields * application_fields;
const char * message_key;
VISLogArgs * message_args;

VISLogMessage() {}
~VISLogMessage();

};

•

•

Implementing a Logger Forwarder

- 498/607 - © 2024 Rocket Software

Code example 152 Installation of an application-defined Forwarder, and removal of the Default
Forwarder.

The example above does not show the implementation of the forward_message and handle_memory_failure
methods. For a sample implementation for these methods, see The Default Logger Forwarder.

#include vlogger.h

class ExampleForwarder : public VISLoggerForwarder {
public:

void forward_message(struct VISLogMessage * message);
// Implementation not shown here - see below

void handle_memory_failure(
CORBA::ULongLong message_identifier,
CORBA::ULongLong message_creation_time,
VISLogLevellevel level,
const char * source_host,
const char * source_name,
const char * location_code,
CORBA::ULong source_process_identifier,
const char * source_thread_identifier,
VISLogApplicationFields * application_fields,
const char * message_key,
VISLogArgs * message_args);
// Implementation not shown here - see below

};

ExampleForwarder * example_forwarder;

void install_forwarder()
{

// Obtain handle to Logger want to install Forwarder on
VISLogger_ptr logger =

VISLoggerManager::instance()->get_logger(DefaultLogger);

// Create instance of Forwarder and add to the list of Forwarders installed
for that Logger

example_forwarder = new ExampleForwarder;
logger->add_forwarder(example_forwarder);

// (Optionally) remove the Default Forwarder from this
Logger logger->remove_default_forwarder();

}

Implementing a Logger Forwarder

- 499/607 - © 2024 Rocket Software

The Default Logger Forwarder
The Default Forwarder implements both the forward_message and handle_memory_failure methods of the
VISLoggerForwarder base class.

The implementation of forward_message uses the VISLogMessageCatalog class to retrieve a message format
string from an appropriate Message Catalog, if one is installed that is associated with the source name
indicated in the message. If there is a message format that corresponds to the message key, it then
uses the VISLogMessageFormat helper class to produce the full text of the message, by combining the
message format string with any message arguments that were specified as part of the message. The
message text is output to standard error (iostream ' cerr '), along with the rest of the message fields.

handle_memory_failure just outputs the fields of the message that can be output without allocating
memory to format them.

The code for forward_message and handle_memory_failure follows:

Code example 153 Code for the Default Forwarder

The Default Logger Forwarder

- 500/607 - © 2024 Rocket Software

#include "vlogger.h"
#include "vlogmfmt.h"
#include "vport.h"

void VISLoggerForwarder::forward_message(
struct VISLogMessage * message)

{
// Obtain the message catalog that corresponds to the message source
// (If there is one - else null)
VISLogMessageCatalog_ptr catalog =

VISLogMessageCatalog::instance(message->source_name);

// If there is a message key (and a catalog), look the key up
// in the message catalog, to get corresponding format
const char * message_format = 0;
if (message->message_key && catalog)
{

message_format = catalog->search(message->message_key);
}

// If there was a format string for that key, use it to format the text
const char * message_text = 0;
CORBA::Boolean format_error = 0;
if (message_format)
{

VISTRY
{

message_text = VISLogMessageFormat::format(
message_format, message->message_args);

}
VISCATCH(CORBA::Exception, e)
{

format_error = 1;
}
VISEND_CATCH

}

// Convert message identifier (ulonglong) to string
char * msg_id_str =

VISPortable::ulonglong_to_str(message->message_identifier);

// Convert message creation time (TimeBase::TimeT) to seconds
CORBA::ULongLong secs =

message->message_creation_time / 10000000;
CORBA::ULong nsec =

(message->message_creation_time % 10000000) * 100;

The Default Logger Forwarder

- 501/607 - © 2024 Rocket Software

char * secs_str = VISPortable::ulonglong_to_str(secs);
char time_str[32];
sprintf(time_str, "%s.%09lu", secs_str, nsec);

// Output the message to standard error
cerr << endl << "Logging: message " << msg_id_str

<< " time " << time_str << " level " << message->level << endl;

delete [] msg_id_str;
delete [] secs_str;

if (message_text)
{

cerr << "Message: " << message_text << endl;
}
else
{

// If didn't end up with formatted message text, explain why
if (!catalog)
{

cerr << "Msg key : " << message->message_key
<< " (Message catalog '" << message->source_name
<< "' not installed)" << endl;

}
else if (!message->message_key)
{

cerr << "Msg key : (null)" << endl;
}
else if (format_error)
{

cerr << "Msg Key : " << message->message_key
<< " (Error formatting message text)" << endl;

}
else
{

cerr << "Msg key: " << message->message_key
<< " (No entry in message catalog)" << endl;

}

// Output message arguments if there are any
if (!message->message_args ||

(message->message_args ->num_args() == 0))
{

cerr << "Arguments: (none)" << endl;
}
else
{

The Default Logger Forwarder

- 502/607 - © 2024 Rocket Software

cerr << "Arguments:";
for (int i=0; i < message->message_args->num_args(); i++)
{

VISLogArgsType* arg = (*(message->message_args))[i];
switch(arg->data_type())
{

case VISLogArgsType::INTEGER:
cerr << " Integer("

<< ((VISLogInteger*)arg)->integer_value()
<< ")";

break;

case VISLogArgsType::STRING:
cerr << " String("

<< ((VISLogString*)arg)->string_value()
<< ")";

break;

case VISLogArgsType::BOOLEAN:
cerr << " Boolean(";
if (((VISLogBoolean*)arg)->boolean_value())

cerr << "true)";
else

cerr << "false)";
break;

default:
break;

}
}
cerr << endl;

}
}

cerr << "Source: "
<< (message->source_host ? message->source_host : "(null)")
<< " "
<< (message->source_name ? message->source_name : "(null)")
<< endl;

cerr << "Location : "
<< (message->location_code ?

message->location_code : "(null)")
<< endl;

cerr << "PID : "
<< message->source_process_identifier
<< " TID : "
<< (message->source_thread_identifier ?

The Default Logger Forwarder

- 503/607 - © 2024 Rocket Software

message->source_thread_identifier : "(null)")
<< endl;

// application fields are not being output

// Delete the formatted text
delete [] message_text;

}

void VISLoggerForwarder::handle_memory_failure(
CORBA::ULongLong message_identifier,
CORBA::ULongLong message_creation_time,
VISLogLevel level,
const char * source_host,
const char * source_name,
const char * location_code,
CORBA::ULong source_process_identifier,
const char * source_thread_identifier,
VISLogApplicationFields * application_fields,
const char * message_key,
VISLogArgs * message_args)

{
// Output subset of data that is output by forward_message
// Don't convert long long values, as this requires memory allocation

cerr << endl << "** Logging Memory Failure ** for message with id"
<< (unsigned long)message_identifier << endl
<< " (id truncated to 32 bits)" << " level " << level
<< endl;

// Don't format message text, as this requires memory allocation

cerr << "Msg key: " <<
(message_key ? message_key : "(null)") << endl;

cerr << "Source: "
<< (source_host ? source_host : "(null)")
<< " "
<< (source_name ? source_name : "(null)") << endl;

cerr << "Location : "
<< (location_code ? location_code : "(null)") << endl;

cerr << "PID: " << source_process_identifier
<< "TID : "
<< (source_thread_identifier ?

source_thread_identifier "(null)") << endl;
}

The Default Logger Forwarder

- 504/607 - © 2024 Rocket Software

Using Interface Repositories

An interface repository (IR) contains descriptions of CORBA object interfaces. The data in an IR is the
same as in IDL files—descriptions of modules, interfaces, operations, and parameters—but it is
organized for runtime access by clients. A client can browse an interface repository (perhaps serving as
an online reference tool for developers) or can look up the interface of any object for which it has a
reference (perhaps in preparation for invoking the object with the Dynamic Invocation Interface).

Reading this section will enable you to create an interface repository and access it using VisiBroker RT
for C++ utilities or with your own code.

The liborb.o library is required when building a VisiBroker RT application to support use of the
Dynamic CORBA concepts. For a description of all the libraries provided by the VisiBroker RT for C++
product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

The Interface Repository (IR) is available ONLY on the development host. VisiBroker RT for C++ does not
provide an Interface Repository as a run-time library.

Additionally the IR provides functionality which address the more Dynamic aspects of CORBA, and
therefore the IR is excluded as per the CORBA/e Compact Profile OMG specification from VisiBroker RT's
'compact' libraries. The CORBA/e Compact Profile OMG specification identifies dynamic functionality
which should be excluded from an ORB, in an effort to reduce the ORB footprint.

For details, refer to the CORBA/e Compact Profile as described by the OMG CORBA Embedded
specification which can be found at https://www.omg.org/spec/CORBAe/1.0/PDF.

What is an interface repository?
An interface repository (IR) is like a database of CORBA object interface information that enables clients
to learn about or update interface descriptions at run-time. In contrast to the VisiBroker RT for C++
Location Service, described in the section Using the Location Service which holds data describing object
instances, an IR’s data describes interfaces (types). There may or may not be available instances that
satisfy the interfaces stored in an IR. The information in an IR is equivalent to the information in an IDL
file (or files), but it is represented in a way that is easier for clients to use at run-time.

Note

Using Interface Repositories

- 505/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0/PDF

Clients that use interface repositories may also use the Dynamic Invocation Interface (DII) described in
Using the Dynamic Invocation Interface. Such clients use an interface repository to learn about an
unknown object’s interface, and they use the DII to invoke methods on the object. However, there is no
necessary connection between an IR and the DII. For example, someone could use the IR to write an
“IDL browser” tool for developers — in such a tool, dragging a method description from the browser to
an editor would insert a template method invocation into the developer’s source code. In this example,
the IR is used without the DII.

You create an interface repository with the VisiBroker RT for C++ irep program, which is the IR server
(implementation). The irep program is a development host only program. You can update or populate an
interface repository with the VisiBroker RT for C++ idl2ir program (also a development host only
program), or you can write your own IR client that inspects an interface repository, updates it, or does
both.

What does an interface repository contain?
An interface repository contains hierarchies of objects whose methods divulge information about
interfaces. Although interfaces are usually thought of as describing objects, using a collection of
objects to describe interfaces makes sense in a CORBA environment because it requires no new
mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL files can contain IDL module
definitions, modules can contain interface definitions, and interfaces can contain operation (method)
definitions. Correspondingly, an interface repository can contain ModuleDef objects which can contain
InterfaceDef objects, which can contain OperationDef objects. Thus, from an IR ModuleDef , you can learn
what InterfaceDefs it contains. The reverse is also true - given an InterfaceDef you can learn what
ModuleDef it is contained in. All other IDL constructs — including exceptions, attributes, and valuetypes
can be represented in an interface repository.

An interface repository also contains typecodes. Typecodes are not explicitly listed in IDL files, but are
automatically derived from the types (long , string , struct , and so on) that are defined or mentioned in
IDL files. Typecodes are used to encode and decode instances of the CORBA any type — a generic type
that stands for any type and is used with the dynamic invocation interface.

What does an interface repository contain?

- 506/607 - © 2024 Rocket Software

How many interface repositories can you have?
Interface repositories are like other objects; you can create as many as you like. There is no VisiBroker
RT for C++ mandated policy governing the creation or use of IRs. You determine how interface
repositories are deployed and named at your site. You may, for example, adopt the convention that a
central interface repository contains the interfaces of all “production” objects, and developers create
their own IRs for testing.

Interface repositories are writable and are not protected by access controls. An erroneous or
malicious client can corrupt an IR or obtain sensitive information from it.

If you want to use the _get_interface_def() method defined for all objects, you must have at least one
interface repository server running so the ORB can look up the interface in the IR. If no interface
repository is available, or if the IR that the ORB binds to has not been loaded with an interface definition
for the object, _get_interface_def() raises a NO_IMPLEMENT exception.

Creating and viewing an interface repository with irep
The VisiBroker RT for C++ interface repository server is called irep , and is located in the <VBRT_install>/
bin directory. The irep program runs as a daemon.

Creating an interface repository with irep
Use the irep program to create an interface repository and view its contents. The usage syntax for the
irep program is as follows:

IRepName and file.idl are described in the following table:

Note

irep <driverOptions> <otherOptions> IRepName [file.idl]

Syntax Description

IRepName Specifies the instance name of the interface repository. Clients can bind to this
interface repository instance by specifying this name.

How many interface repositories can you have?

- 507/607 - © 2024 Rocket Software

The irep arguments are defined in the following table:

Syntax Description

file.idl Specifies the IDL file whose contents irep will load into the interface
repository it creates and will store the IR contents into when it exits. If no file is
specified, irep creates an empty interface repository.

Argument Description

Driver options

-J<java option> Pass the option to JVM directly.

-VBJversion Print VBJ version

-VBJdebug Print VBJ debug information.

-VBJclasspath Specify classpath, precedes CLASSPATH env variable.

- VBJprop <name>[=<value> Pass name/value pair to JVM.

-VBJjavavm <jvmpath> Specify JVM path.

-VBJaddJar <jarfile> Append jar file to the CLASSPATH before execing the
JVM.

Other options

-D, -define foo[=bar] Define a preprocessor macro, optionally with value.

-I, -include <dir> Specify additional directory for #include searching.

-P, -no_line_directives Do not emit #line directives from preprocessor. The
default is off.

-H, -list_includes Display #included file names as they are encountered.
The default is off.

-C, -retain_comments Retain comments in preprocessed output. The default is
off.

-U, -undefine foo Undefine a preprocessor macro.

-[no_]idl_strict Strict OMG-standard interpretation of IDL source. The
default is off.

Creating an interface repository with irep

- 508/607 - © 2024 Rocket Software

The following example shows how an interface repository named myIrep can be created from a file
called bank.idl :

Viewing the contents of the interface repository
You can view the contents of the interface repository using either the VisiBroker RT for C++ ir2idl
utility, or the VisiBroker RT for C++ Console application. The syntax for the ir2idl utility is:

The syntax for viewing the contents of an interface repository in the irep is described in the following
table:

For more details on the ir2idl utility arguments, see the section on idl2ir in the VisiBroker RT for C++
Reference Guide.

Argument Description

-[no_] warn_
unrecognized_pragmas

Warn if a #pragma is not recognized. The default is on.

-[no_] back_compat_mapping Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.

-version Display software version numbers.

-install <service name> Install as a NT service.

-remove <service name> Uninstall this NT service.

irep myIrep bank.idl

ir2idl [-irep *IRname*]

Syntax Description

-irep
IRname

Directs the program to bind to the interface repository instance named IRna
me . If the option is not specified, it binds to any interface repository returned

by the Smart Agent.

Viewing the contents of the interface repository

- 509/607 - © 2024 Rocket Software

Updating an interface repository with idl2ir
You can update an interface repository with the VisiBroker RT for C++ idl2ir utility, which is an IR client.
The syntax for the idl2ir utility is:

For more details on the idl2ir utility arguments, see the section on idl2ir in the VisiBroker RT for C++
Reference Guide.

The following example shows how the TestIR interface repository would be updated with definitions
from the bank.idl file:

Entries in an interface repository cannot be removed using the idl2ir or irep utilities. To remove an
item:

Exit or quit the irep program.

Edit the IDL file named in the irep command line.

Start irep again with the updated file.

Interface repositories have a simple transaction service. If the specified IDL file fails to load, the
interface repository rolls back its content to its previous state. After loading the IDL, the interface
repository commits its state to be used in subsequent transactions. For any repository, there is a file
IRname.rollback in the home directory that contains the state of the last uncommitted transaction.

Understanding the structure of the interface repository
An interface repository organizes the objects it contains into a hierarchy that corresponds to the way
interfaces are defined in an IDL specification. Some objects in the interface repository contain other
objects, just as an IDL module definition might contain several interface definitions. Consider how the
following example IDL file would translate to a hierarchy of objects in an interface repository.

IDL sample 23 bank.idl file

idl2ir [arguments] *idl_file_list*

idl2ir -irep myIrep -replace bank.idl

1. 1.

2. 2.

3. 3.

Updating an interface repository with idl2ir

- 510/607 - © 2024 Rocket Software

The OperationDef object contains references to additional data structures (not interfaces) that hold the
parameters and return type.

Identifying objects in the interface repository
The following table shows the objects that are provided to identify and classify interface repository
objects:

// bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

Item Description

name A character string that corresponds to the identifier assigned in an IDL
specification to a module, interface, operation, and so forth. An identifier is not
necessarily unique.

Identifying objects in the interface repository

- 511/607 - © 2024 Rocket Software

Types of objects that can be stored in the interface repository
The table below summarizes the objects that can be contained in an interface repository. Most of these
objects correspond to IDL syntax elements. A StructDef , for example, contains the same information as
an IDL struct declaration, an InterfaceDef contains the same information as an IDL interface
declaration, all the way down to a PrimitiveDef which contains the same information as an IDL
primitive (boolean , long , and so on) declaration.

Item Description

id A character string that uniquely identifies an IRObject. A RepositoryID contains
three components, separated by colon (\:) delimiters. The first component is
IDL: and the last is a version number such as :1.0 . The second component

is a sequence of identifiers separated by a forward slash (/) characters. The first
identifier is typically a unique prefix.

def_kind An enumeration that defines values which represent all the possible types of
interface repository objects.

Object type Description

Repository Represents the top-level module that contains all other objects.

ModuleDef Represents an IDL module declaration that can contain ModuleDefs , Inter
faceDefs , ConstantDefs , AliasDefs , ExceptionDefs, and the IR

equivalents of other IDL constructs that can be defined in IDL modules.

Interface
Def

Represents an IDL interface declaration and contain OperationDefs , Exce
ptionDefs , AliasDefs , ConstantDefs , and AttributeDefs .

Attribute
Def

Represents an IDL attribute declaration.

Operation
Def

Represents an IDL operation (method) declaration. Defines an operation on an
interface. It includes a list of parameters required for this operation, the
return value, a list of exceptions that may be raised by this operation, and a
list of contexts.

ConstantD
ef

Represents an IDL constant declaration.

Exception
Def

Represents an IDL exception declaration.

Types of objects that can be stored in the interface repository

- 512/607 - © 2024 Rocket Software

Inherited interfaces
Three non-instantiatable (that is, abstract) IDL interfaces define common methods that are inherited by
many of the objects contained in an IR. The table below summarizes these widely inherited interfaces:

Object type Description

ValueDef Represents a valuetype definition containing lists of constants, types,
valuemembers, exceptions, operations, and attributes.

ValueBoxD
ef

Represents a simple boxed valuetype of another IDL type.

ValueMemb
erDef

Represents a member of the valuetype.

NativeDef Represents a native definition. Users can not define their own natives.

StructDef Represents an IDL structure declaration

UnionDef Represents an IDL union declaration.

EnumDef Represents an IDL enumeration declaration.

AliasDef Represents an IDL typedef declaration. Note that the IR TypedefDef
interface is a base interface that defines common operations for
StructDefs , UnionDefs , and others.

StringDef Represents an IDL bounded string declaration.

SequenceD
ef

Represents an IDL sequence declaration.

ArrayDef Represents an IDL array declaration.

Primitive
Def

Represents an IDL primitive declaration: null , void , long , ushort , ulo
ng , float , double , boolean , char , octet , any , TypeCode , Princ
ipal , string , objref , longlong , ulonglong , longdouble , wchar ,
wstring .

Interface Inherited by Principal query methods

IRObject All IR objects including Repository def_kind() - Returns an IR object’s
definition kind, for example, module
or interface

Inherited interfaces

- 513/607 - © 2024 Rocket Software

Accessing an interface repository
Your client program can use an interface repository’s IDL interface to obtain information about the
objects it contains. Your client program can bind to the Repository and then invoke the methods shown
in Code sample 27.1. A complete description of this interface can be found in the VisiBroker RT for C++
Reference Guide.

Code example 154 Repository class

Interface Inherited by Principal query methods

Contain
er

IR objects that can contain other IR
objects, for example, module or
interface

lookup() - Looks up a contained
object by name

contents() - Lists the objects in a
Container

describe_contents() - Describes
the objects in a Container

Contain
ed

IR objects that can be contained in
other objects, that is,
Containers

name() - Name of this object

defined_in() - Container that
contains an object

describe() - Describe an object

move () - Moves an object into
another container.

Accessing an interface repository

- 514/607 - © 2024 Rocket Software

A program that uses an interface repository must be compiled with the -D_VIS_INCLUDE_IR flag.

Example programs
The Interface Repository example (<VBRT_install>/examples/vbroker_kernel/ir) has a simple
AccountManager interface to create an account and open/reopen an account. At the initialization time the
AccountManager implementation bootstraps the Interface Repository definition for the managed Account
interface with purpose to expose to the clients the additional operation that has been already
implemented by this particular Account implementation. The clients now can access all known
(described in IDL) operations as they do this usually and, additionally, the can verify with the Interface
Repository the support for other operations and invoke them. This example illustrates how we can
manage the Interface Repository definition objects and how we can do the remote object's
introspection using the Interface Repository.

Before this program can be tested, the following conditions should be met:

osagent should be up and running.

Interface repository should be started on the development host using irep .

Interface Repository should be loaded with an IDL file either by the command line when you start
the Interface Repository, or by using idl2ir .

class CORBA {
class Repository : public Container {
...

CORBA::Contained_ptr lookup_id(const char * search_id);
CORBA::PrimitiveDef_ptr get_primitive(

CORBA::PrimitiveKind kind);
CORBA::StringDef_ptr create_string(CORBA::ULong bound);
CORBA::SequenceDef_ptr create_sequence(

CORBA::ULong bound, CORBA::IDLType_ptr element_type);
CORBA::ArrayDef_ptr create_array(CORBA::ULong length,
CORBA::IDLType_ptr element_type);

...
};
...

};

Note

• •

• •

• •

Example programs

- 515/607 - © 2024 Rocket Software

Code example 155 Looking up an interface’s operations and attributes in an IR

Example programs

- 516/607 - © 2024 Rocket Software

#ifndef _VIS_INCLUDE_IR
#define _VIS_INCLUDE_IR
#endif

#include <vxWorks.h>
#include "corba.h"
#include <math.h>
#include "bank_c.hh"

extern CORBA::ORB_var orb;

char* getDescription(CORBA::ORB_ptr orb,
Bank::Account_ptr account)

{
CORBA::Any_ptr resultAny;
CORBA::NamedValue_var result;
CORBA::NVList_var operation_list;
CORBA::Request_var request;
CORBA::OperationDef_var odef;

// Obtain operation description for the "describe" method of
// the account
VISTRY {

// Obtain a reference to the Interface Repository
CORBA_Repository_var ir =

CORBA_Repository::_narrow(orb->
resolve_initial_references("InterfaceRepository"));

// Obtain a reference to the Bank::Account interfaceDef
CORBA::InterfaceDef_var intf;
VISIFNOT_EXCEP
{

intf =
CORBA_InterfaceDef::_narrow(ir->lookup("::Bank::Account"));

if (intf == CORBA::InterfaceDef::_nil()) {
cout << "Account returned a nil interface definition. "

<< endl;
cout << "Be sure an Interface Repository is running and"

<< endl;
cout << "properly loaded." << endl;
return (char *)NULL;

}
}
VISEND_IFNOT_EXCEP

CORBA::Contained_var container;

Example programs

- 517/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
container = intf->lookup("describe");

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
{

odef = CORBA::OperationDef::_narrow(container);
if (odef == CORBA::OperationDef::_nil()) {

cout << "Can not find \"describe\" method in irep."
<< endl;

cout << "Please check if Server application is started"
<< endl;

return (char *)NULL;
}

}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
orb->create_operation_list(odef, operation_list.out());

VISEND_IFNOT_EXCEP
}
VISCATCH (CORBA::Exception, e) {

cout << "Error while obtaining operation list: "
<< e << endl;

return (char *)NULL;
}
VISEND_CATCH

// Create request that will be sent to the account object
VISTRY {

// Create placeholder for result
orb->create_named_value(result.out());
VISIFNOT_EXCEP

resultAny = result->value();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
resultAny->replace(odef->result(), NULL);

VISEND_IFNOT_EXCEP

// Create the request
VISIFNOT_EXCEP

account->_create_request(CORBA::Context::_nil(),
"describe",
operation_list,
result,
request.out(), 0);

Example programs

- 518/607 - © 2024 Rocket Software

VISEND_IFNOT_EXCEP
}
VISCATCH (CORBA::Exception, e)
{

cout << "Error while creating request: " << e << endl;
return (char *)NULL;

}
VISEND_CATCH

// Execute the request
VISTRY {

request->invoke();
CORBA::Environment_ptr env = request->env();
if (env->exception()) {

cout << "Exception occured: " << *(env->exception())
<< endl;

return (char *)NULL;
}
else {

char *desc;
*resultAny >>= desc;
return CORBA::string_dup(desc);

}
}
VISCATCH (CORBA::Exception, e) {

cout << "Error while invoking request: " << e << endl;
return (char *)NULL;

}
VISEND_CATCH

return (char *)NULL;
}

static void bank_client(char * in_name, char * new_balance);

void start_bank_client(char * in_name, char * new_balance)
{

char * taskName = "BANK_CLNT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,

Example programs

- 519/607 - © 2024 Rocket Software

(int)in_name,(int)new_balance,0,0,0,0,0,0,0,0);
}

void bank_client(char * in_name, char *new_balance)
{

VISTRY {
// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager
Bank::AccountManager_var manager;
VISIFNOT_EXCEP

manager = Bank::AccountManager::_bind(
"/bank_ir_poa", managerId);

VISEND_IFNOT_EXCEP

// Request the account manager to open a named account
if (!in_name)
{

in_name="Jack B. Quick";
}
CORBA::String_var name = CORBA::string_dup(in_name);

Bank::Account_var account;
VISIFNOT_EXCEP

account = manager->open(name);
VISEND_IFNOT_EXCEP

// Get the balance of the account
CORBA::Float balance;
VISIFNOT_EXCEP

balance = account->balance();
VISEND_IFNOT_EXCEP

// Print out the balance
VISIFNOT_EXCEP

cout << "The old balance in " << name
<< "'s account is $" << balance << endl;

VISEND_IFNOT_EXCEP

// Calculate and set a new balance
VISIFNOT_EXCEP
{

balance = new_balance ? atof(new_balance) :
abs(rand()) % 111111 / 50.0;

account->balance(balance);

Example programs

- 520/607 - © 2024 Rocket Software

}
VISEND_IFNOT_EXCEP

// Get the balance description if it is possible and print
VISIFNOT_EXCEP
{

CORBA::String_var desc = getDescription(orb, account);
cout << "New account description:" << endl << desc

<< endl;
}
VISEND_IFNOT_EXCEP

}
VISCATCH(CORBA::Exception, e)
{

cout << "Exception occured: " << e << endl;
}
VISEND_CATCH
return;

} ...

Example programs

- 521/607 - © 2024 Rocket Software

Using the Dynamic Invocation Interface

The developers of most client programs know the types of the CORBA objects their code will invoke, and
they include the compiler-generated stubs for these types in their code. By contrast, developers of
generic clients cannot know what kinds of objects their users will want to invoke. Such developers use
the Dynamic Invocation Interface (DII) to write clients that can invoke any method on any CORBA object
from knowledge obtained at run-time.

The liborb.o library is required when building a VisiBroker RT application to support the use of
Dynamic Invocation Interface (DII). For a description of all the libraries provided by VisiBroker RT for
C++, see Step 6: Integrating VisiBroker RT with VxWorks 7.

The Dynamic Invocation Interface (DII) is not supported as part of the "CORBA/e Compact Profile"
version of VisiBroker RT for C++ (i.e. liborb_compact.o). The CORBA for Embedded (CORBA/e) OMG
specification identifies dynamic functionality which should be excluded from an ORB, in an effort to
reduce the ORB footprint.

For details, see the CORBA for Embedded OMG specification.

What is the Dynamic Invocation Interface?
The Dynamic Invocation Interface (DII) enables a client program to invoke a method on a CORBA object
whose type was unknown at the time the client was written. The DII contrasts with the default static
invocation, which requires that the client source code include a compiler-generated stub for each type
of CORBA object that the client intends to invoke. In other words, a client that uses static invocation
declares in advance the types of objects it will invoke. A client that uses the DII makes no such
declaration because its programmer doesn’t know what kinds of objects will be invoked.

The advantage of the DII is flexibility—it can be used to write generic clients that can invoke any object,
including objects whose interfaces did not exist when the client was compiled.

The DII has two disadvantages:

It is more difficult to program (in essence, your code must do the work of a stub).

Invocations take longer because more work is done at runtime.

Note

• •

• •

Using the Dynamic Invocation Interface

- 522/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0

The DII is purely a client interface—static and dynamic invocations are identical from an object
implementation’s point of view.

You can use the DII to build clients like these:

Bridges or adapters between script environments and CORBA objects. For example, a script calls
your bridge, passing object and method identifiers and parameter values. Your bridge constructs
and issues a dynamic request, receives the result, and returns it to the scripting environment.
Such a bridge could not use static invocation because its developer could not know in advance
what kinds of objects the script environment would want to invoke.

Generic object testers. For example, a client takes an arbitrary object identifier, looks up its
interface in the interface repository (see Using Interface Repositories), then invokes each of its
methods with artificial argument values. Again, this style of generic tester could not be built with
static invocation.

Clients must pass valid arguments in DII requests. Failure to do so can produce unpredictable
results, including server crashes. Although it is possible to dynamically type-check parameter values
with the interface repository, it is expensive. For best performance, ensure that the code (for
example, script) that invokes a DII-using client can be trusted to pass valid arguments.

Introducing the main DII concepts
The dynamic invocation interface is actually distributed among a handful of CORBA interfaces.
Furthermore, the DII frequently offers more than one way to accomplish a task — the trade-off being
programming simplicity versus performance in special situations. As a result, DII is one of the more
difficult CORBA facilities to grasp. This section is a starting point, a high level description of the main
ideas. Details, including code examples, are provided later.

To use the DII you need to understand these concepts, starting from the most general:

Request objects

Any and Typecode objects

Request sending options

Reply receiving options

• •

• •

Note

• •

• •

• •

• •

Introducing the main DII concepts

- 523/607 - © 2024 Rocket Software

Using request objects
A Request object represents one invocation of one method on one CORBA object. If you want to invoke
two methods on the same CORBA object, or the same method on two different objects, you need two
Request objects. To invoke a method you first need an object reference representing the CORBA object
—the target reference. Using the target reference, you create a Request, populate it with arguments,
send the Request, wait for the reply, and obtain the result from the Request.

There are two ways to create a Request.

The simpler way is to invoke the target object’s _request() method, which all CORBA objects inherit.
This does not, in fact, invoke the target object. You pass _request() the IDL name of the method you
intend to invoke in the Request , for example, get_balance . To add argument values to a Request
created with _request() , you invoke the Request ’s add_value() method for each argument required by
the method you intend to invoke. To pass one or more Context objects to the target, you must add
them to the Request with its ctx() method.

Although not intuitively obvious, you must also specify the type of the Request ’s result with its
result() method. For performance reasons, the messages exchanged between ORBs do not contain
type information.

By specifying a place holder result type in the Request , you give the ORB the information it needs to
properly extract the result from the reply message sent by the target object. Similarly, if the method
you are invoking can raise user exceptions, you must add place holder exceptions to the Request
before sending it.

The more complicated way to create a Request object is to invoke the target object’s _create_request()
method, which, again, all CORBA objects inherit. This method takes several arguments which
populate the new Request with arguments and specify the types of the result and user exceptions, if
any, that it may return. To use the _create_request() method you must have already built the
components that it takes as arguments. The potential advantage of the _create_request() method is
performance. You can reuse the argument components in multiple _create_request() calls if you
invoke the same method on multiple target objects.

There are two overloaded forms of the _create_request() method. One that includes ContextList and
ExceptionList parameters, and one that does not. If you want to pass one or more Context objects in
your invocation, and/or the method you intend to invoke can raise one or more user exceptions, you
must use the _create_request() method that has the extra parameters.

1. 1.

2. 2.

Note

Using request objects

- 524/607 - © 2024 Rocket Software

Encapsulating arguments with the Any type
The target method’s arguments, result, and exceptions are each specified in special objects called Anys.
An Any is a generic object that encapsulates an argument of any type. An Any can hold any type that
can be described in IDL. Specifying an argument to a Request as an Any allows a Request to hold
arbitrary argument types and values without making the compiler complain of type mismatches. The
same is true of results and exceptions.

An Any consists of a TypeCode and a value. A value is just a value, and a TypeCode is an object that
describes how to interpret the bits in the value (that is, the value’s type). Simple TypeCode constants for
simple IDL types, such as long and Object , are built into the header files produced by the idl2cpp
compiler. TypeCode objects for IDL constructed types, such as structs , unions , and typedefs , have to be
constructed. Such TypeCode s can be recursive because the types they describe can be recursive.
Consider a struct consisting of a long and a string . The TypeCode for the struct contains a TypeCode for
the long and a TypeCode for the string. The idl2cpp compiler will generate TypeCode s for the constructed
types in an IDL file if the compiler is invoked with the -type_code_info option.

However, if you are using the DII, you need to obtain TypeCode s at run-time. You can get a TypeCode at
run-time from an interface repository (see Using Interface Repositories) or by asking the ORB to create
one by invoking ORB::create_struct_tc() or ORB::create_exception_tc() .

If you use the _create_request() method, you need to put the Any -encapsulated target method
arguments in another special object called an NVList . No matter how you create a Request , its result is
encoded as an NVList . Everything said about arguments in this paragraph applies to results as well. NV
stands for named value, and an NVList consists of a count and number of items, each of which has a
name, a value, and a flag. The name is the argument name, the value is the Any encapsulating the
argument, and the flag denotes the argument’s IDL mode (for example, in or out). The result of the
Request is represented as a single named value.

Options for sending requests
Once you’ve created and populated a Request with arguments, a result type, and exception types, you
send it to the target object. There are several ways to send a Request :

The simplest is to call the Request ’s invoke() method, which blocks until the reply message is
received.

More complex, but not blocking, is the Request ’s send_deferred() method. This is an alternative to
using threads for parallelism. For many operating systems the send_deferred() method is more
economical than spawning a thread.

If your motivation for using the send_deferred() method is to invoke multiple target objects in
parallel, you can use the ORB object’s send_multiple_requests_deferred() method instead. It takes a
sequence of Request objects.

• •

• •

• •

Encapsulating arguments with the Any type

- 525/607 - © 2024 Rocket Software

Use the Request ’s send_oneway() method if, and only if, the target method has been defined in IDL
as oneway.

You can invoke multiple oneway methods in parallel with the ORB’s
send_multiple_requests_oneway() method.

Options for receiving replies
If you send a Request by calling its invoke() method, there is only one way to get the result — use the
Request object’s env() method to test for an exception, and if none, extract the NamedValue from the
Request with its result() method. If you used the send_oneway() method then there is no result. If you
used the send_deferred() method, you can periodically check for completion by calling the Request ’s
poll_response() method which returns a code indicating whether the reply has been received. If, after
polling for a while, you want to block waiting for completion of a deferred send, use the Request ’s
get_response() method.

If you have sent Request instances using the send_multiple_requests_deferred() method, you can find out
if a particular Request is complete by invoking that Request instance's get_response() method. To learn
when any outstanding Request is complete, use the ORB’s get_next_response() method. To do the same
thing without risking blocking, use the ORB’s poll_next_response() method.

Steps for invoking object operations dynamically
To summarize, here are the steps that a client follows when using the DII:

Make sure the -type_code_info option is passed to the idl2cpp compiler so that type codes are
generated for IDL interfaces and types. See the VisiBroker RT for C++ Reference Guide for a complete
description of the idl2cpp tool.

Obtain a generic reference to the target object you wish to use.

Create a Request object for the target object.

Initialize the request parameters and the result to be returned.

Invoke the request and wait for the results.

Retrieve the results.

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Options for receiving replies

- 526/607 - © 2024 Rocket Software

Location of example programs for using the DII
An example that illustrates the use of the DII is included in the <VBRT_install>/examples/vbroker_kernel/
bank_dynamic directory of the VisiBroker RT for C++ distribution. This example program will be used to
illustrate DII concepts in this section.

Obtaining a generic object reference
When using the DII, a client program does not have to use the traditional bind mechanism to obtain a
reference to the target object, because the class definition for the target object may not have been
known to the client at compile time. Code example 156 shows how your client program can use the
bind method offered by the ORB object to bind to any object by specifying its name. This method
returns a generic CORBA::Object.

Code example 156 Obtaining a generic object reference

Location of example programs for using the DII

- 527/607 - © 2024 Rocket Software

Creating and initializing a request
When your client program invokes a method on an object, a Request object is created to represent the
method invocation. The Request object is written, or marshalled, to a buffer and sent to the object
implementation. When your client program uses client stubs, this processing occurs transparently.
Client programs that wish to use the DII must create and send the Request object themselves.

There is no constructor for the Request class. The Object ’s _request() method or Object ’s
_create_request() method are used to create a Request object.

Request class
The following code sample shows the Request class. The target of the request is set implicitly from the
object reference used to create the Request . The name of the operation must be specified when the
Request is created.

Code example 157 Request class

...
void bank_client(void)
{

VISTRY
{

// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");
// Locate an account manager
CORBA::Object_var manager;
VISIFNOT_EXCEP

manager = orb->bind("IDL:Bank/AccountManager:1.0",
"/bank_agent_poa", managerId);

VISEND_IFNOT_EXCEP
...

Note

Creating and initializing a request

- 528/607 - © 2024 Rocket Software

Ways to create and initialize a DII request
Once you have issued a bind to an object and obtained an object reference, you can use one of two
methods for creating a Request object. The following code sample shows the methods offered by the
CORBA::Object class.

Code example 158 Three methods for creating a Request object

class Request {
public:

CORBA::Object_ptr target() const;
const char* operation() const;
CORBA::NVList_ptr arguments();
CORBA::NamedValue_ptr result();
CORBA::Environment_ptr env();
void ctx(CORBA::Context_ptr ctx);
CORBA::Context_ptr ctx() const;
CORBA::Status invoke();
CORBA::Status send_oneway();
CORBA::Status send_deferred();
CORBA::Status get_response();
CORBA::Status poll_response();
...

};

Ways to create and initialize a DII request

- 529/607 - © 2024 Rocket Software

Using the create_request method
You can use the _create_request() method to create a Request object, initialize the Context , the
operation name, the argument list to be passed, and the result. Optionally, you can set the ContextList
for the request, which corresponds to the attributes defined in the request’s IDL. The request
parameter points to the Request object that was created for this operation.

Using the _request method
The following example shows the use of the _request() method to create a Request object, specifying
only the operation name. After creating a float request, calls to its add_in_arg method add an input
parameter Account name and its result type is initialized to be of Object reference type via a call to
self_return_type method. After a call has been made, the return value is extracted with the result’s call
to the method result() . The same steps are repeated to invoke another method on an Account
Manager instance with the only difference being in-parameters and return types. The req , an Any
object is initialized with the desired account name and added to the request’s argument list as an input
argument. The last step in initializing the request is to set the result value to receive a float .

class Object {
...

CORBA::Request_ptr _request(Identifier operation);

CORBA::Status _create_request(
CORBA::Context_ptr ctx,
const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::Request_ptr request,
CORBA::Flags req_flags);

CORBA::Status _create_request(
CORBA::Context_ptr ctx,
const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::ExceptionList_ptr eList,
CORBA::ContextList_ptr ctxList,
CORBA::Request_out request,
CORBA::Flags req_flags);

...
};

Using the create_request method

- 530/607 - © 2024 Rocket Software

Example of creating a Request object
A Request object maintains ownership of all memory associated with the operation, the arguments, and
the result so you should never attempt to free these items.

Code example 159 Creating a request object

Example of creating a Request object

- 531/607 - © 2024 Rocket Software

Setting the context for the request
Though it is not used in the example program, the Context object can be used to contain a list of
properties, stored as NamedValue objects, that will be passed to the object implementation as part of the
Request . These properties represent information that is automatically communicated to the object
implementation.

Code example 160 Context class

...
CORBA::NamedValue_ptr result;
CORBA::Any_ptr resultAny;
CORBA::Request_var req;
CORBA::Any customer;
...
VISTRY {

// Create request that will be sent to the manager object
CORBA::Request_var request;

VISIFNOT_EXCEP
request = manager->_request("open");

VISEND_IFNOT_EXCEP

// Create argument to request
CORBA::Any customer;
customer <<= (const char *) name;
CORBA::NVList_ptr arguments = request->arguments();
arguments->add_value("name", customer, CORBA::ARG_IN);

// Set result type
VISIFNOT_EXCEP

request->set_return_type(CORBA::_tc_Object);
VISEND_IFNOT_EXCEP

}
VISCATCH (CORBA::Exception, excep) {
...

Setting the context for the request

- 532/607 - © 2024 Rocket Software

Setting arguments for the request
The arguments for a Request are represented with an NVList object, which stores name-value pairs as
NamedValue objects. You can use the arguments() method to obtain a pointer to this list. This pointer can
then be used to set the names and values of each of the arguments.

Always initialize the arguments before sending a Request . Failure to do so will result in marshalling
errors and may even cause the server to abort.

Implementing a list of arguments with the NVList
This class implements a list of NamedValue objects that represent the arguments for a method
invocation. Methods are provided for adding, removing, and querying the objects in the list.

Code example 161 NVList class

class Context {
public:

const char *context_name() const;
CORBA::Context_ptr parent();
CORBA::Status create_child(const char *name,

CORBA::Context_ptr&);
CORBA::Status set_one_value(const char *name, const

CORBA::Any&);
CORBA::Status set_values(CORBA::NVList_ptr);
CORBA::Status delete_values(const char *name);
CORBA::Status get_values(

const char *start_scope,
CORBA::Flags,
const char *name,
CORBA::NVList_ptr&) const;

};

Note

Setting arguments for the request

- 533/607 - © 2024 Rocket Software

Setting input and output arguments with the NamedValue Class
This class implements a name-value pair that represents both input and output arguments for a
method invocation request. The NamedValue class is also used to represent the result of a request that is
returned to the client program. The name property is simply a character string and the value property is
represented by an Any class.

Code example 162 NamedValue class

The following table describes the methods in the NamedValue class:

class NVList {
public:
...

CORBA::Long count() const;
CORBA::NamedValue_ptr add(Flags);
CORBA::NamedValue_ptr add_item(const char *name,

CORBA::Flags flags);
CORBA::NamedValue_ptr add_value(const char *name,

const CORBA::Any *any, CORBA::Flags flags);
CORBA::NamedValue_ptr add_item_consume(char *name,

CORBA::Flags flags);
CORBA::NamedValue_ptr add_value_consume(char *name,

CORBA::Any *any, CORBA::Flags flags);
CORBA::NamedValue_ptr item(CORBA::Long index);
CORBA::Status remove(CORBA::Long index);

...
};

class NamedValue {
public:

const char *name() const;
CORBA::Any *value() const;
CORBA::Flags flags() const;

};

Method Description

name() Returns a pointer to the name of the item that you can then use to initialize the
name.

Setting arguments for the request

- 534/607 - © 2024 Rocket Software

Passing type safely with the Any class
This class is used to hold an IDL-specified type so that it may be passed in a type-safe manner. Objects
of this class have a pointer to a TypeCode that defines the contained object’s type and a pointer to the
contained object. Methods are provided to construct, copy, and release an object as well as initialize
and query the object’s value and type. In addition, streaming operators are provided to read/write the
object to/from a stream.

Code example 163 Any class

Method Description

value() Returns a pointer to an Any object representing the item’s value that you can
then use to initialize the value. For more information, see Passing type safely
with the Any class.

flags() Indicates if this item is an input argument, an output argument, or both an
input and output argument. If the item is both an input and output argument,
you can specify a flag indicating that the ORB should make a copy of the
argument and leave the caller’s memory intact.
The available flags are:
ARG_IN
ARG_OUT
ARG_INOUT

Passing type safely with the Any class

- 535/607 - © 2024 Rocket Software

Representing argument or attribute types with the TypeCode
class

This class is used by the Interface Repository and the IDL compiler to represent the type of arguments
or attributes. TypeCode objects are also used in a Request object to specify an argument’s type, in
conjunction with the Any class. TypeCode objects have a kind and parameter list property.

The table below shows the kinds and parameters for the TypeCode objects.

class Any {
public:
...

CORBA_TypeCode_ptr type();
void type(CORBA_TypeCode_ptr tc);
const void *value() const;
static CORBA::Any_ptr _nil();
static CORBA::Any_ptr _duplicate(CORBA::Any *ptr);
static void _release(CORBA::Any *ptr);

...
}

Kind Parameter list

tk_abstract_in
terface

interface_id , interface_name

tk_alias interface_id , alias_name , TypeCode

tk_any None

tk_array length , TypeCode

tk_boolean None

tk_char None

tk_double None

tk_enum enum-name , enum-id1 , enum-id2 ,... enum-idn

tk_except interface_id , exception_name , StructMembers

tk_fixed digits , scale

Representing argument or attribute types with the TypeCode class

- 536/607 - © 2024 Rocket Software

Kind Parameter list

tk_float None

tk_long None

tk_longdouble None

tk_longlong None

tk_native id , name

tk_null None

tk_objref interface_id

tk_octet None

tk_Principal None

tk_sequence TypeCode , maxlen

tk_short None

tk_string maxlen-integer

tk_struct struct-name , {member1, TypeCode1},... {membern,
TypeCoden}

tk_TypeCode None

tk_ulong None

tk_ulonglong None

tk_union union-name , switch TypeCode ,
{label-value1, membername1, TypeCode1} , ...
{labell-valuen, member-namen, TypeCoden}

tk_ushort None

tk_value id , name , boxType

tk_value_box id , name , typeModifier , concreteBase , members

tk_void None

tk_wchar None

Representing argument or attribute types with the TypeCode class

- 537/607 - © 2024 Rocket Software

Code example 164 TypeCode class

Kind Parameter list

tk_wstring None

Representing argument or attribute types with the TypeCode class

- 538/607 - © 2024 Rocket Software

class _VISEXPORT CORBA_TypeCode
{
public:
...

// For all CORBA_TypeCode kinds
CORBA::Boolean equal(CORBA_TypeCode_ptr tc) const;
CORBA::Boolean equivalent(CORBA_TypeCode_ptr tc) const;
CORBA_TypeCode_ptr get_compact_typecode() const;
CORBA::TCKind kind() const //...
// For tk_objref, tk_struct, tk_union, tk_enum, tk_alias and tk_except
virtual const char* id() const; // raises(BadKind);
virtual const char *name() const; // raises(BadKind);
// For tk_struct, tk_union, tk_enum and tk_except
virtual CORBA::ULong member_count() const;

// raises((BadKind));
virtual const char *member_name(CORBA::ULong index) const;

// raises((BadKind, Bounds));
// For tk_struct, tk_union and tk_except
virtual CORBA_TypeCode_ptr member_type(CORBA::ULong index) const;

// raises((BadKind, Bounds));
// For tk_union
virtual CORBA::Any_ptr member_label(CORBA::ULong index) const;

// raises((BadKind, Bounds));
virtual CORBA_TypeCode_ptr discriminator_type() const;

// raises((BadKind));
virtual CORBA::Long default_index() const;

// raises((BadKind));
// For tk_string, tk_sequence and tk_array
virtual CORBA::ULong length() const; // raises((BadKind));
// For tk_sequence, tk_array and tk_alias
virtual CORBA_TypeCode_ptr content_type() const;

// raises((BadKind));
// For tk_fixed
virtual CORBA::UShort fixed_digits() const;

// raises (BadKind)
virtual CORBA::Short fixed_scale() const;

// raises (BadKind)
// for tk_value
virtual CORBA::Visibility

member_visibility(CORBA::ULong index) const;
// raises(BadKind, Bounds);

virtual CORBA::ValueModifier type_modifier() const;
// raises(BadKind);

virtual CORBA::TypeCode_ptr concrete_base_type() const;
// raises(BadKind); };

Representing argument or attribute types with the TypeCode class

- 539/607 - © 2024 Rocket Software

Sending DII requests and receiving results
The Request class, shown in Code example 157, provides several methods for sending a request, once it
has been properly initialized.

Invoking a request
The simplest way to send a request is to call its invoke() method, which sends the request and waits
for a response before returning to your client program. The return_value() method returns a pointer to
an Any object that represents the return value.

Code example 165 Sending a request with invoke()

Sending DII requests and receiving results

- 540/607 - © 2024 Rocket Software

...
VISTRY {

...
// Create request that will be sent to the account object
request = account->_request("balance");

VISIFNOT_EXCEP
// Set the result type
request->set_return_type(CORBA::_tc_float);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Execute the request to the account object
request->invoke();

VISEND_IFNOT_EXCEP

// Get the return balance
CORBA::Float balance;
VISIFNOT_EXCEP

CORBA::Any& balance_result = request->return_value();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
balance_result >>= balance;

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Print out the balance
cout << "The balance in " << name << "'s account is $"

<< balance << endl;
VISEND_IFNOT_EXCEP

}
VISCATCH (const CORBA::Exception, e)
{

cerr << e << endl;
return 1;

}
VISEND_CATCH
return 0;
...

Invoking a request

- 541/607 - © 2024 Rocket Software

Sending a deferred DII request with the send_deferred() method
A non-blocking method, send_deferred() , is also provided for sending operation requests. It allows your
client to send the request and then use the poll_response() method to determine when the response is
available. The get_response() method blocks until a response is received. The following code shows how
these methods are used.

Code example 166 Using the send_deferred() and poll_response() methods to send a deferred DII
request

Sending a deferred DII request with the send_deferred() method

- 542/607 - © 2024 Rocket Software

...
VISTRY {

// Create request that will be sent to the manager object
CORBA::Request_var request = manager->_request("open");

// Create argument to request
CORBA::Any customer;
VISIFNOT_EXCEP

customer <<= (const char *) name;
VISEND_IFNOT_EXCEP

CORBA::NVList_ptr arguments;
VISIFNOT_EXCEP

arguments = request->arguments();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
arguments->add_value("name", customer, CORBA::ARG_IN);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
// Set result type
request->set_return_type(CORBA::_tc_Object);

VISEND_IFNOT_EXCEP

// Creation of a new account can take some time
// Execute the deferred request to the manager object
VISIFNOT_EXCEP

request->send_deferred();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
VISPortable::vsleep(1);
while (!request->poll_response()) {

cout << "Waiting for response..." << endl;
VISPortable::vsleep(1); // Wait one second between polls

}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
request->get_response();

VISEND_IFNOT_EXCEP

// Get the return value
CORBA::Object_var account;
CORBA::Any& open_result;

Sending a deferred DII request with the send_deferred() method

- 543/607 - © 2024 Rocket Software

Sending an asynchronous DII request with the send_oneway
method

The send_oneway() method can be used to send an asynchronous request. Oneway requests do not
involve a response being returned to the client from the object implementation.

Sending multiple requests
A sequence of DII Request objects can be created using an array of Request objects. A sequence of
requests can be sent using the ORB methods send_multiple_requests_oneway() or
send_multiple_requests_deferred() . If the sequence of requests is sent as oneway requests, no response
is expected from the server to any of the requests.

Code example 167 shows how two requests are created and then used to create a sequence of
requests. The sequence is then sent using the send_multiple_requests_deferred() method.

Code example 167 Sending multiple deferred requests with the send_multiple_requests_deferred()
method

VISIFNOT_EXCEP
open_result = request->return_value();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
open_result >>= CORBA::Any::to_object(account.out());

VISEND_IFNOT_EXCEP
...
}

Sending an asynchronous DII request with the send_oneway method

- 544/607 - © 2024 Rocket Software

...
// Create request to balance
VISTRY
{

req1 = account->_request("balance");

CORBA::NVList_ptr arguments;

VISIFNOT_EXCEP
// Create argument to request
customer1 <<= (const char *) "Happy";
arguments= req1->arguments();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
arguments->add_value("customer", customer1, CORBA::ARG_IN);

VISEND_IFNOT_EXCEP

// Set result
...

}
VISCATCH(const CORBA::Exception,excep)
{

cout << "Error while creating request" << endl;
cout << excep << endl;

}
VISEND_CATCH

// Create request2 to slowBalance
VISTRY {

req2 = account->_request("slowBalance");

CORBA::NVList_ptr arguments;
VISIFNOT_EXCEP

// Create argument to request
customer2 <<= (const char *) "Sleepy";
CORBA::NVList_ptr arguments = req2->arguments();

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
arguments->add_value("customer", customer2, CORBA::ARG_IN);

// Set result
VISEND_IFNOT_EXCEP

...
}
VISCATCH(const CORBA::Exception,excep)

Sending multiple requests

- 545/607 - © 2024 Rocket Software

Receiving multiple requests
When a sequence of requests is sent using send_multiple_requests_deferred() , the poll_next_response()
and get_next_response() methods are used to receive the response the server sends for each request.

The ORB method poll_next_response() can be used to determine if a response has been received from
the server. This method returns true if there is at least one response available. This method returns false
if there are no responses available.

The ORB method get_next_response() can be used to receive a response. If no response is available, this
method will block until a response is received. If you do not wish your client program to block, use the
poll_next_response() method to first determine when a response is available and then use the
get_next_response() method to receive the result.

Code example 168 ORB methods for sending multiple requests and receiving the results

{
cout << "Error while creating request" << endl;
cout << excep << endl;

}
VISEND_CATCH

// Create request sequence
CORBA::Request_ptr reqs[2];
reqs[0] = (CORBA::Request*) req1;
reqs[1] = (CORBA::Request*) req2;
CORBA::RequestSeq reqseq((CORBA::ULong)2, 2,

(CORBA::Request_ptr *) reqs);

// Send the request
VISTRY {

orb->send_multiple_requests_deferred(reqseq);
cout << "Send multiple deferred calls are made..." << endl;

}
VISCATCH(const CORBA::Exception,excep)
{
...

Receiving multiple requests

- 546/607 - © 2024 Rocket Software

Using the interface repository with the DII
The following example has built-in knowledge of a remote object’s type (Account) and the name of one
of its methods (balance()). An actual DII application would get that information from an outside source,
a user for example, then use the interface repository (IR) (see Using Interface Repositories) to obtain
the parameters of an operation.

The example:

Binds to the Bank_Manager AccountManager object.

Builds an operation list.

Creates argument and result components. Note that the balance() method does not return an
exception.

Invokes the Request , extracts and prints the result.

Code example 169 Using DII

class CORBA {
class ORB {

...
typedef sequence <Request_ptr> RequestSeq;
void send_multiple_requests_oneway(const RequestSeq &);
void send_multiple_requests_deferred(const RequestSeq &);
Boolean poll_next_response();
Status get_next_response();
...

};
};

• •

• •

• •

• •

Using the interface repository with the DII

- 547/607 - © 2024 Rocket Software

#include <vxWorks.h>
#include "corba.h"
#include "vport.h"

extern CORBA::ORB_var orb;
static void bank_client(void);

void start_bank_client(void)
{

char * taskName = "CLIENT";
int Prio = 100;
int option = VX_FP_TASK;
int stackSize = 20000;

taskSpawn(taskName,
Prio,
option,
stackSize,
(FUNCPTR)bank_client,
0,0,0,0,0,0,0,0,0,0);

}

void bank_client(void)
{

VISTRY
{

// Get the manager Id
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Locate an account manager
CORBA::Object_var manager;
VISIFNOT_EXCEP

manager = orb->bind("IDL:Bank/AccountManager:1.0",
"/bank_agent_poa", managerId);

VISEND_IFNOT_EXCEP

// Set the account name
const char* name = "Jack B. Quick";

// Create request that will be sent to the manager object
CORBA::Request_var request;
VISIFNOT_EXCEP

request = manager->_request("open");
VISEND_IFNOT_EXCEP

Using the interface repository with the DII

- 548/607 - © 2024 Rocket Software

// Create argument to request
CORBA::Any customer;
customer <<= (const char *) name;
CORBA::NVList_ptr arguments = request->arguments();
arguments->add_value("name", customer, CORBA::ARG_IN);

// Set result type
VISIFNOT_EXCEP

request->set_return_type(CORBA::_tc_Object);
VISEND_IFNOT_EXCEP

// Creation of a new account can take some time
// Execute the deffered request to the manager object
VISIFNOT_EXCEP
{

request->send_deferred();
VISPortable::vsleep(1);

}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
{

while (!request->poll_response())
{

cout << "Waiting for response..." << endl;
VISPortable::vsleep(1); // Wait one second between polls

}
}
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
request->get_response();

VISEND_IFNOT_EXCEP

// Get the return value
CORBA::Object_var account;
VISIFNOT_EXCEP
{

CORBA::Any& open_result = request->return_value();
open_result >>= CORBA::Any::to_object(account.out());

}
VISEND_IFNOT_EXCEP

// Create request that will be sent to the account object
VISIFNOT_EXCEP

request = account->_request("balance");
VISEND_IFNOT_EXCEP

Using the interface repository with the DII

- 549/607 - © 2024 Rocket Software

// Set the result type
VISIFNOT_EXCEP

request->set_return_type(CORBA::_tc_float);
VISEND_IFNOT_EXCEP

// Execute the request to the account object
VISIFNOT_EXCEP

request->invoke();
VISEND_IFNOT_EXCEP

// Get the return balance
CORBA::Float balance;
VISIFNOT_EXCEP

CORBA::Any& balance_result = request->return_value();
// Print out the balance
VISIFNOT_EXCEP
{

balance_result >>= balance;
cout << "The balance in " << name << "'s account is $"

<< balance << endl;
}
VISEND_IFNOT_EXCEP

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
}
VISEND_CATCH
return;

}

Using the interface repository with the DII

- 550/607 - © 2024 Rocket Software

Using the Dynamic Skeleton Interface

This section describes how object servers can dynamically create object implementations at run time to
service client requests.

The liborb.o library is required when building a VisiBroker RT application to support the use of
Dynamic Invocation Interface (DII). For a description of all the libraries provided by the VisiBroker RT
for C++ product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

The Dynamic Skeleton Interface (DSI) is not supported by the "Compact Profile" version of VisiBroker RT
for C++ (i.e. liborb_compact.o).

The CORBA/e Compact Profile specification from OMG identifies dynamic functionality which should be
excluded from an ORB, in an effort to reduce the ORB footprint.

For details, refer to the CORBA/e Compact Profile as described by the OMG CORBA Embedded
specification which can be found at https://www.omg.org/spec/CORBAe/1.0/PDF.

What is the Dynamic Skeleton Interface?
The Dynamic Skeleton Interface (DSI) provides a mechanism for creating an object implementation that
does not inherit from a generated skeleton interface. Normally, an object implementation is derived
from a skeleton class generated by the idl2cpp compiler. The DSI allows an object to register itself with
the ORB, receive operation requests from a client, process the requests, and return the results to the
client without inheriting from a skeleton class generated by the idl2cpp compiler.

From the perspective of a client program, an object implemented with the DSI behaves just like any
other ORB object. Clients do not need to provide any special handling to communicate with an object
implementation that uses the DSI.

The ORB presents client operation requests to a DSI object implementation by calling the object’s
invoke() method and passing it a ServerRequest object. The object implementation is responsible for
determining the operation being requested, interpreting the arguments associated with the request,
invoking the appropriate internal method(s) to fulfill the request, and returning the appropriate values.

Note

Note

Using the Dynamic Skeleton Interface

- 551/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0/PDF

Implementing objects with the DSI requires more manual programming activity than using the normal
language mapping provided by object skeletons. Nevertheless, an object implemented with the DSI can
be very useful in providing inter-protocol bridging.

Steps for creating object implementations dynamically
To create object implementations dynamically using the DSI, follow these steps:

Use the -type_code_info flag when compiling your IDL.

Define the macro _VIS_INCLUDE_DSI in your DSI server implementation. Note this in the file
<VBRT_install>/examples/vbroker_kernel/bank_dynamic/server.cpp .

Design your object implementation so that it is derived from the
PortableServer::DynamicImplementation abstract class instead of deriving your object implementation
from a skeleton class.

Declare and implement the invoke() method, which the ORB will use to dispatch client requests to
your object.

Register your object implementation (POA servant) with the POA manager as the default servant.

Location of an example program for using the DSI
An example program that illustrates the use of the DSI is included in the <VBRT_install>/examples/
vbroker_kernel/basic/bank_dynamic directory of the VisiBroker RT for C++ distribution. This example is
used to illustrate DSI concepts in this section. The Bank.idl file, shown in IDL sample 24, illustrates the
interfaces implemented in this example.

IDL sample 24 Bank.idl file used in the DSI example

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Steps for creating object implementations dynamically

- 552/607 - © 2024 Rocket Software

Extending the DynamicImplementation class
To use the DSI, object implementations should be derived from the DynamicImplementation base class
shown below. This class offers several constructors and the invoke() method, which you must
implement.

Code example 170 DynamicImplementation base class

Example of designing objects for dynamic requests
Code example 171 shows the declaration of the AccountImpl class that is to be implemented with the
DSI. It is derived from the DynamicImplementation class, which declares the invoke() method. The ORB
will call the invoke() method to pass client operation requests to the implementation in the form of
ServerRequest objects.

Also note the Account class constructor and _primary_interface() function are shown in Code example
171:

Code example 171 AccountImpl class from the dynamic example

// Bank.idl
module Bank
{

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

class PortableServer::DynamicImplementation :
public virtual PortableServer::ServantBase

{
public:

virtual void invoke(
PortableServer::ServerRequest_ptr request) = 0;

...
};

Extending the DynamicImplementation class

- 553/607 - © 2024 Rocket Software

// Implementation of Account default servant
class AccountImpl : public PortableServer::DynamicImplementation
{
public:

AccountImpl(PortableServer::Current_ptr current,
PortableServer::POA_ptr poa) :

_poa_current(PortableServer::Current::_duplicate(current)),
_poa(poa)

{}

CORBA::Object_ptr get(const char *name)
{

CORBA::Float balance;

// Check if account exists
if (!_registry.get(name, balance)) {

// simulate delay while creating new account
VISPortable::vsleep(3);

// Make up the account's balance, between 0 and $1000
balance = abs(rand()) % 100000 / 100.0;
// Print out the new account
cout << "Created " << name << "'s account: " << balance

<< endl;
_registry.put(name, balance);

}

// Return object reference
PortableServer::ObjectId_var accountId =

PortableServer::string_to_ObjectId(name);
return _poa->create_reference_with_id(accountId, "IDL:Bank/

Account:1.0");
}

private:
AccountRegistry _registry;
PortableServer::POA_ptr _poa;
PortableServer::Current_var _poa_current;

CORBA::RepositoryId _primary_interface(
const PortableServer::ObjectId& oid,
PortableServer::POA_ptr poa)

{
return CORBA::string_dup(

(const char *)"IDL:Bank/Account:1.0");
};

Example of designing objects for dynamic requests

- 554/607 - © 2024 Rocket Software

The code below shows the implementation of the AccountManagerImpl class that needs to be
implemented with the DSI. It is also derived from the DynamicImplementation class, which declares the
invoke() method. The ORB will call the invoke() method to pass client operation requests to the
implementation in the form of ServerRequest objects.

Code example 172 AccountManagerImpl class from the dynamic example

void invoke(CORBA::ServerRequest_ptr request)
{

// Get the account name from the object id
PortableServer::ObjectId_var oid =

_poa_current->get_object_id();

CORBA::String_var name;
VISTRY
{

name = PortableServer::ObjectId_to_string(oid);
}
VISCATCH (CORBA::Exception, e)
{
VISTHROW(CORBA::OBJECT_NOT_EXIST());
}
VISEND_CATCH

// Ensure that the operation name is correct
if (strcmp(request->operation(), "balance") != 0)
{

VISTHROW(CORBA::BAD_OPERATION());
}

// Find out balance and fill out the result
CORBA::NVList_ptr params = new CORBA::NVList(0);
request->arguments(params);

CORBA::Float balance;
if (!_registry.get(name, balance))

VISTHROW(CORBA::OBJECT_NOT_EXIST());

CORBA::Any result;
result <<= balance;
request->set_result(result);

cout << "Checked " << name << "'s balance: " << balance << endl;
}

};

Example of designing objects for dynamic requests

- 555/607 - © 2024 Rocket Software

// Implementation of manager default servant
class AccountManagerImpl :

public PortableServer::DynamicImplementation
{
public:

AccountManagerImpl(AccountImpl* accounts) { _accounts = accounts; }
CORBA::Object_ptr open(const char* name)
{

return _accounts->get(name);
}

private:
AccountImpl* _accounts;

CORBA::RepositoryId _primary_interface(const
PortableServer::ObjectId& oid, PortableServer::POA_ptr poa)

{
return CORBA::string_dup(

(const char *)"IDL:Bank/AccountManager:1.0");
};

void invoke(CORBA::ServerRequest_ptr request)
{

// Ensure that the operation name is correct
if (strcmp(request->operation(), "open") != 0)

VISTHROW(CORBA::BAD_OPERATION());

// Fetch the input parameter
char *name = NULL;
VISTRY
{

CORBA::NVList_ptr params = new CORBA::NVList(1);
CORBA::Any any;
any <<= (const char*) "";
params->add_value("name", any, CORBA::ARG_IN);
request->arguments(params);
*(params->item(0)->value()) >>= name;

}
VISCATCH (CORBA::Exception, e)
{

VISTHROW(CORBA::BAD_PARAM());
}
VISEND_CATCH

// Invoke the actual implementation and fill out the result
CORBA::Object_var account = open(name);

Example of designing objects for dynamic requests

- 556/607 - © 2024 Rocket Software

Specifying repository IDs
The _primary_interface() method should be implemented to return supported repository identifiers. To
determine the correct repository identifier to specify, start with the IDL interface name of an object and
use the following steps:

Replace all non-leading instances of the delimiter scope resolution operator (::) with a single
forward slash (/).

Add IDL: to the beginning of the string.

Add :1.0 to the end of the string.

For example, code example 173 shows an IDL interface name and code example 174 shows the
resulting repository identifier string.

Code example 173 IDL interface name

Code example 174 Resulting repository

CORBA::Any result;
result <<= account;
request->set_result(result);

}
};

1. 1.

2. 2.

3. 3.

Bank::AccountManager

Specifying repository IDs

- 557/607 - © 2024 Rocket Software

Looking at the ServerRequest class
A ServerRequest object is passed as a parameter to an object implementation’s invoke() method. The
ServerRequest object represents the operation request and provides methods for obtaining the name of
the requested operation, the parameter list, and the context. It also provides methods for setting the
result to be returned to the caller and for reflecting exceptions.

Code example 175 ServerRequest base class

All arguments passed into the arguments() , set_result() , or set_exception() methods are thereafter
owned by the ORB. The memory for these arguments will be released by the ORB — you should not
release them.

 IDL:Bank/AccountManager:1.0

class CORBA::ServerRequest {
public:

const char* op_name() const { return _operation; }
void params(CORBA::NVList_ptr);
void result(CORBA::Any_ptr);
void exception(CORBA::Any_ptr exception);
...
CORBA::Context_ptr ctx() {
...
}
// POA spec methods
const char *operation() const { return _operation; }
void arguments(CORBA::NVList_ptr param) { params(param); }
void set_result(const CORBA::Any& a) {

result(new CORBA::Any(a));
}
void set_exception(const CORBA::Any& a) {

exception(new CORBA::Any(a));
}

};

Looking at the ServerRequest class

- 558/607 - © 2024 Rocket Software

The following methods have been deprecated:

op_name

params

result

exception

Implementing the Account object
The Account interface declares only one method, so the processing done by the AccountImpl class’
invoke() method is fairly straightforward.

The invoke() method first checks to see if the requested operation has the name balance . If the name
does not match, a BAD_OPERATION exception is raised. If the Account object were to offer more than one
method, the invoke() method would need to check for all possible operation names and use the
appropriate internal methods to process the operation request.

Since the balance() method does not accept any parameters, there is no parameter list associated with
its operation request. The balance() method is simply invoked and the result is packaged in an Any
object that is returned to the caller, using the ServerRequest object’s set_result() method.

Implementing the AccountManager object
Like the Account object, the AccountManager interface also declares one method. However, the
AccountManagerImpl object’s open() method does accept an account name parameter. This makes the
processing done by the invoke() method a little more complicated. Code example 172 shows the
implementation of the AccountManagerImpl object’s invoke() method.

The method first checks to see that the requested operation has the name open . If the name does not
match, a BAD_OPERATION exception is raised. If the AccountManager object were to offer more than one
method, its invoke() method would need to check for all possible operation names and use the
appropriate internal methods to process the operation request.

Note

• •

• •

• •

• •

Implementing the Account object

- 559/607 - © 2024 Rocket Software

Processing input parameters
Here are the steps the AccountManagerImpl object’s invoke() method uses to process the operation
request’s input parameters.

Create an NVList to hold the parameter list for the operation.

Create Any objects for each expected parameter and add them to the NVList , setting their TypeCode
and parameter type (ARG_IN , ARG_OUT , or ARG_INOUT).

Invoke the ServerRequest object’s arguments() method, passing the NVList , to update the values for all
the parameters in the list.

The open() method expects an account name parameter; therefore, an NVList object is created to hold
the parameters contained in the ServerRequest . The NVList class implements a parameter list containing
one or more NamedValue objects. The NVList and NamedValue classes are described in Using the Dynamic
Invocation Interface.

An Any object is created to hold the account name. This Any is then added to NVList with the
argument’s name set to name and the parameter type set to ARG_IN .

Once the NVList has been initialized, the ServerRequest object’s arguments() method is invoked to
obtain the values of all of the parameters in the list.

After invoking the arguments() method, the NVList will be owned by the ORB. This means that if an
object implementation modifies an ARG_INOUT parameter in the NVList , the change will automatically
be apparent to the ORB. This NVList should not be released by the caller.

An alternative to constructing the NVList for the input arguments is to use the ORB object’s
create_operation_list() method. This method accepts an OperationDef and returns an NVList object,
completely initialized with all the necessary Any objects. The appropriate OperationDef object may be
obtained from the interface repository, as described in “Using Interface Repositories”.

1. 1.

2. 2.

3. 3.

Note

Processing input parameters

- 560/607 - © 2024 Rocket Software

Setting the return value
After invoking the ServerRequest object’s arguments() method, the value of the name parameter can be
extracted and used to create a new Account object. An Any object is created to hold the newly created
Account object, which is returned to the caller by invoking the ServerRequest object’s set_result()
method.

Server implementation
The implementation of the main routine, shown below, is almost identical to the original example
introduced in Developing an Example Application with VisiBroker RT for C++.

Code example 176 Server implementation

Setting the return value

- 561/607 - © 2024 Rocket Software

int bank_server()
{

PortableServer::POA_var rootPOA;
VISTRY
{

//get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

// Get the POA Manager
VISIFNOT_EXCEP

PortableServer::POAManager_var poaManager =
rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create the account POA with the right policies
CORBA::PolicyList accountPolicies;
accountPolicies.length(3);

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)0] = rootPOA->

create_servant_retention_policy(PortableServer::NON_RETAIN);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(
PortableServer::USE_DEFAULT_SERVANT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
accountPolicies[(CORBA::ULong)2] =

rootPOA->create_id_uniqueness_policy(
PortableServer::MULTIPLE_ID);

VISEND_IFNOT_EXCEP

PortableServer::POA_var accountPOA;

VISIFNOT_EXCEP
accountPOA = rootPOA->create_POA("bank_account_poa",

poaManager, accountPolicies);
VISEND_IFNOT_EXCEP

Server implementation

- 562/607 - © 2024 Rocket Software

// Create the account default servant
PortableServer::Current_var current;

VISIFNOT_EXCEP
current = PortableServer::Current::_instance();

VISEND_IFNOT_EXCEP

AccountImpl *accountServant = new AccountImpl(current,
accountPOA);

VISIFNOT_EXCEP
accountPOA->set_servant(accountServant);

VISEND_IFNOT_EXCEP

PortableServer::POA_var managerPOA;
VISIFNOT_EXCEP
{

// Create the manager POA with the right policies
CORBA::PolicyList managerPolicies;
managerPolicies.length(3);
VISIFNOT_EXCEP

managerPolicies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
managerPolicies[(CORBA::ULong)1] =

rootPOA->create_request_processing_policy(
PortableServer::USE_DEFAULT_SERVANT);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
managerPolicies[(CORBA::ULong)2] = rootPOA->

create_id_uniqueness_policy(PortableServer::MULTIPLE_ID);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
managerPOA = rootPOA->create_POA("bank_agent_poa",

poaManager, managerPolicies);
VISEND_IFNOT_EXCEP

}
VISEND_IFNOT_EXCEP

// Create the manager default servant
AccountManagerImpl *managerServant =

Server implementation

- 563/607 - © 2024 Rocket Software

The DSI implementation is instantiated as a default servant and the POA should be created with the
support of corresponding policies. For more information, see Using POAs.

new AccountManagerImpl(accountServant);

VISIFNOT_EXCEP
managerPOA->set_servant(managerServant);

VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poaManager->activate();
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << "AccountManager is ready" << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
return 1;

}
VISEND_CATCH
return 0;

}

Server implementation

- 564/607 - © 2024 Rocket Software

Using the Dynamically Managed Types

This section describes the DynAny feature of VisiBroker RT for C++, which allows you to construct and
interpret data types at run-time.

The liborb.o library is required when building a VisiBroker RT application to support the use of
Dynamic Invocation Interface.. For a description of all the libraries provided by the VisiBroker RT for
C++ product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

 The DynAny interface is not supported by the "compact profile" version of VisiBroker RT for C++
(i.e. liborb_compact.o).

The CORBA/e Compact Profile specification identifies dynamic functionality which should be excluded
from an ORB, in an effort to reduce the ORB footprint.

For details, refer to the CORBA/e Compact Profile as described by the OMG CORBA Embedded
specification which can be found at https://www.omg.org/spec/CORBAe/1.0/PDF.

Overview
The DynAny interface provides a way to dynamically create basic and constructed data types at run-
time. It also allows information to be interpreted and extracted from an Any object, even if the type it
contains was not known to the server at compile-time. The use of the DynAny interface enables you to
build powerful client and server applications that create and interpret data types at run-time.

Example client and server applications that illustrate the use of DynAny are included as part of the
VisiBroker distribution. These are found in the <VBRT_install>/examples/vbroker_kernel/dynany directory.
These example programs will be used to illustrate DynAny concepts in this section.

Note

Using the Dynamically Managed Types

- 565/607 - © 2024 Rocket Software

https://www.omg.org/spec/CORBAe/1.0/PDF

DynAny types
A DynAny object has an associated value that may either be a basic data type (such as boolean , int , or
float) or a constructed data type. The DynAny interface, described in detail in the VisiBroker RT for C++
Reference Guide, provides methods for determining the type of the contained data as well as for setting
and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which are all derived from DynAny .
Each of these interfaces provides its own set of methods that are appropriate for setting and extracting
the values it contains.

The table below shows the interfaces derived from DynAny that represent constructed data types:

Usage restrictions
A DynAny object may only be used locally by the ORB instance which created it. Any attempt to use a
DynAny object as a parameter on an operation request for a bound object or to externalize it using the
ORB::object_to_string method will cause a MARSHAL exception to be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII request will cause a
NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in CORBA 2.3.

Interface TypeCode Description

DynArray _tk_array An array of values with the same data type that has a fixed
number of elements.

DynEnum _tk_enum A single enumeration value.

DynFixed _tk_fixed Not supported.

DynSequen
ce

_tk_sequen
ce

A sequence of values with the same data type. The
number of elements may be increased or decreased.

DynStruct _tk_struct A structure.

DynUnion _tk_union A union.

DynValue _tk_value Not supported.

DynAny types

- 566/607 - © 2024 Rocket Software

Creating a DynAny
A DynAny object is created by invoking an operation on a DynAnyFactory object. First obtain a reference
to the DynAnyFactory object, then use that object to create the new DynAny object.

Initializing and accessing the value in a DynAny
The DynAny::insert_<type> methods allow you to initialize a DynAny object with a variety of basic data
types, where <type> is boolean , octet , char , and so on. Any attempt to insert a type that does not
match the TypeCode defined for the DynAny will cause a TypeMismatch exception to be raised.

The DynAny::get_<type> methods allow you to access the value contained in a DynAny object, where
<type> is boolean , octet , char , and so on. Any attempt to access a value from a DynAny component
which does not match the TypeCode defined for the DynAny will cause a TypeMismatch exception to be
raised.

The DynAny interface also provide methods for copying, assigning, and converting to or from an Any
object. The sample programs provide examples of how to use some of these methods. The VisiBroker RT
for C++ Reference Guide provides a complete description of these methods.

CORBA::Object_var obj =
orb->resolve_initial_references("DynAnyFactory");

DynamicAny::DynAnyFactory_var factory =
DynamicAny::DynAnyFactory::_narrow(obj);

// Create Dynamic struct
DynamicAny::DynAny_var dynany =

factory->create_dyn_any_from_type_code(
Printer::_tc_StructType);

DynamicAny::DynStruct_var info =
DynamicAny::DynStruct::_narrow(dynany);

info->set_members(seq);

CORBA::Any_var any = info->to_any();

Creating a DynAny

- 567/607 - © 2024 Rocket Software

Constructed data types
The following types are derived from the DynAny interface and are used to represent constructed data
types. These interfaces, and the methods they offer, are all described in the VisiBroker RT for C++
Reference Guide.

Traversing the components in a constructed data type
Several of the interfaces that are derived from DynAny actually contain multiple components. The
DynAny interface provides methods that allow you to iterate through these components. The DynAny -
derived objects that contain multiple components maintain a pointer to the current component.

DynEnum
This interface represents a single enumeration constant. Methods are provided for setting and
obtaining the value as a string or as an integral value.

DynAny
method

Description

rewind Resets the current component pointer to the first component. Has no effect if
the object contains only one component.

next Advances the pointer to the next component. If there are no more
components or if the object contains only one component, false is
returned.

current_co
mponent

Returns a DynAny object, which may be narrowed to the appropriate type,
based on the component’s TypeCode .

seek Sets the current component pointer to the component with the specified,
zero-based index. Returns false if there is no component at the specified
index. Sets the current component pointer to –1 (no component) if specified
with a negative index.

Constructed data types

- 568/607 - © 2024 Rocket Software

DynStruct
This interface represents a dynamically constructed struct type. The members of the structure can be
retrieved or set using a sequence of NameValuePair objects. Each NameValuePair object contains the
member’s name and an Any containing the member’s type and value.

You may use the rewind , next , current_component , and seek methods to traverse the members in the
structure. Methods are provided for setting and obtaining the structure’s members.

DynUnion
This interface represents a union and contains two components. The first component represents the
discriminator and the second represents the member value.

You may use the rewind , next , current_component , and seek methods to traverse the components.
Methods are provided for setting and obtaining the union’s discriminator and member value.

DynSequence and DynArray
A DynSequence or DynArray represents a sequence of basic or constructed data types without the need of
generating a separate DynAny object for each component in the sequence or array. The number of
components in a DynSequence may be changed, while the number of components in a DynArray is fixed.

You may use the rewind , next , current_component , and seek methods to traverse the members in a
DynArray or DynSequence .

Example IDL
The following code sample shows the IDL used in the example client and server applications. The
StructType structure contains two basic data types and an enumeration value. The PrinterManager
interface is used to display the contents of an Any without any static information about the data type it
contains.

Code example 177 IDL for the DynAny example clients

DynStruct

- 569/607 - © 2024 Rocket Software

Example client application
Code example 178 shows a client application that can be found in the <VBRT_install>/examples/
vbroker_kernel/dynany directory in the VisiBroker RT for C++ distribution. The client application uses the
DynStruct interface to dynamically create a StructType structure.

The DynStruct interface uses a sequence of NameValuePair objects to represent the structure members
and their corresponding values. Each name-value pair consists of a string containing the structure
member’s name and an Any object containing the structure member’s value.

After initializing the ORB in the usual manner and binding to an PrintManager object, the client performs
these steps:

Create an empty DynStruct with the appropriate type.

Create a sequence of NameValuePair objects that will contain the structure members.

Create and initialize Any objects for each of the structure member’s values.

Initialize each NameValuePair with the appropriate member name and value.

Initialize the DynStruct object with the NameValuePair sequence.

Invoke the PrinterManager::printAny method, passing the DynStruct converted to a regular Any .

You must use the DynAny::to_any method to convert a DynAny object, or one of its derived types, to an
Any before passing it as a parameter on an operation request.

// Printer.idl
module Printer {

enum EnumType {first, second, third, fourth};
struct StructType {

string str;
EnumType e;
float fl;

};
interface PrinterManager {

void printAny(in any info);
oneway void shutdown();

};
};

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Note

Example client application

- 570/607 - © 2024 Rocket Software

Code example 178 Example client application that uses DynStruct

Example client application

- 571/607 - © 2024 Rocket Software

void client(void)
{

VISTRY
{

CORBA::Object_var obj =
orb->resolve_initial_references("DynAnyFactory");

DynamicAny::DynAnyFactory_var factory;

VISIFNOT_EXCEP
factory = DynamicAny::DynAnyFactory::_narrow(obj);

VISEND_IFNOT_EXCEP

DynamicAny::NameValuePairSeq seq(3);
seq.length(3);

CORBA::Any strAny, enumAny, floatAny;

strAny <<=
CORBA::Any::from_string((const char*)"String", 0, 0UL);

enumAny <<= Printer::second;
floatAny <<= (CORBA::Float)864.50;

CORBA::NameValuePair nvpairs[3];
nvpairs[0].id = CORBA::string_dup("str");
nvpairs[0].value = strAny;

nvpairs[1].id = CORBA::string_dup("e");
nvpairs[1].value = enumAny;

nvpairs[2].id = CORBA::string_dup("fl");
nvpairs[2].value = floatAny;

seq[0] = nvpairs[0];
seq[1] = nvpairs[1];
seq[2] = nvpairs[2];

// Create Dynamic struct
DynamicAny::DynAny_var dynany;

VISIFNOT_EXCEP
dynany = factory->

create_dyn_any_from_type_code(Printer::_tc_StructType);
VISEND_IFNOT_EXCEP

DynamicAny::DynStruct_var info;

Example client application

- 572/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
info = DynamicAny::DynStruct::_narrow(dynany);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
info->set_members(seq);

VISEND_IFNOT_EXCEP

CORBA::Any_var any;

VISIFNOT_EXCEP
any = info->to_any();

VISEND_IFNOT_EXCEP

// now bind to the server and pass the constructed CORBA::Any

// Get the manager Id
PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("PrinterManager");
VISEND_IFNOT_EXCEP

// Locate an account manager. Give the full POA name and the servant ID.
Printer::PrinterManager_var manager;

VISIFNOT_EXCEP
manager = Printer::PrinterManager::_bind("/serverPoa",

managerId);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
manager->printAny(*any);

VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
manager->shutdown();

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << "Caught Exception" << e << endl;
}
VISEND_CATCH

Example client application

- 573/607 - © 2024 Rocket Software

Example server application
The following code sample shows a server application that can be found in the <VBRT_install>/examples/
vbroker_kernel/dynany directory in the VisiBroker RT for C++ distribution. The server application
performs these steps.

Initialize the ORB.

Create the policies for the POA.

Create a PrintManager object.

Export the PrintManager object.

Print a message and wait for incoming operation requests.

Code example 179 Example server application

return;
}

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Example server application

- 574/607 - © 2024 Rocket Software

...
void server()
{

PortableServer::POA_var rootPOA;
VISTRY
{

// get a reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");

VISIFNOT_EXCEP
rootPOA = PortableServer::POA::_narrow(obj);

VISEND_IFNOT_EXCEP

CORBA::Boolean Verbose = 0UL;

CORBA::PolicyList policies;
policies.length(1);

VISIFNOT_EXCEP
policies[(CORBA::ULong)0] = rootPOA->

create_lifespan_policy(PortableServer::PERSISTENT);
VISEND_IFNOT_EXCEP

PortableServer::POAManager_var poa_manager;

VISIFNOT_EXCEP
poa_manager = rootPOA->the_POAManager();

VISEND_IFNOT_EXCEP

// Create serverPOA with the right policies
PortableServer::POA_var serverPOA;

VISIFNOT_EXCEP
serverPOA = rootPOA->create_POA("serverPoa", poa_manager,

policies);
VISEND_IFNOT_EXCEP

// Resolve Dynamic Any Factory CORBA::Object_var fact_obj;

VISIFNOT_EXCEP
fact_obj = orb->resolve_initial_references("DynAnyFactory");

VISEND_IFNOT_EXCEP

DynamicAny::DynAnyFactory_var factory;

Example server application

- 575/607 - © 2024 Rocket Software

VISIFNOT_EXCEP
factory = DynamicAny::DynAnyFactory::_narrow(fact_obj);

VISEND_IFNOT_EXCEP

PortableServer::ObjectId_var managerId;

VISIFNOT_EXCEP
managerId =

PortableServer::string_to_ObjectId("PrinterManager");
VISEND_IFNOT_EXCEP

// Create the printer manager object.
PrinterManagerImpl *manager;

VISIFNOT_EXCEP
manager = new PrinterManagerImpl(orb, factory, serverPOA,

managerId);
VISEND_IFNOT_EXCEP

// Export the newly create object.
VISIFNOT_EXCEP

serverPOA->activate_object_with_id(managerId,manager);
VISEND_IFNOT_EXCEP

// Activate the POA Manager
VISIFNOT_EXCEP

poa_manager->activate();
VISEND_IFNOT_EXCEP

CORBA::Object_var reference;
VISIFNOT_EXCEP

reference = serverPOA->servant_to_reference(manager);
VISEND_IFNOT_EXCEP

VISIFNOT_EXCEP
cout << reference << " is ready" << endl;

VISEND_IFNOT_EXCEP
}
VISCATCH(CORBA::Exception, e)
{

cerr << e << endl;
taskSuspend(0);

}
VISEND_CATCH
return;

}

Example server application

- 576/607 - © 2024 Rocket Software

The following code sample shows how the PrinterManager implementation follows these steps in using a
DynAny to process the Any object, without any compile-time knowledge of the type the Any contains.

Create a DynAny object, initializing it with the received Any .

Perform a switch on the DynAny object’s type.

If the DynAny contains a basic data type, simply print out the value.

If the DynAny contains an Any type, create a DynAny for it, determine it’s contents, then print out the
value.

If the DynAny contains an enum , create a DynEnum for it, then print out the string value.

If the DynAny contains a union , create a DynUnion for it, then print out the union’s discriminator and
the member.

If the DynAny contains a struct , array , or sequence , traverse through the contained components and
print out each value.

Code example 180 The PrinterManager Implementation

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Example server application

- 577/607 - © 2024 Rocket Software

#define _VIS_VXWORKS_LONG_LONG_IOSTREAMS

// PrinterManager Implementation
class PrinterManagerImpl : public POA_Printer::PrinterManager
{
public:

PrinterManagerImpl(CORBA::ORB_ptr orb,
DynamicAny::DynAnyFactory_ptr dynfactory,
PortableServer::POA_ptr poa,
PortableServer::ObjectId_ptr oid)

: _orb(orb)
{

_factory =
DynamicAny::DynAnyFactory::_duplicate(dynfactory);

_poa = PortableServer::POA::_duplicate(poa);
_oid = PortableServer::ObjectId::_duplicate(oid);

}

void printAny(const CORBA::Any& info)
{

VISTRY
{

// Create a DynAny object
DynamicAny::DynAny_var dynAny =

_factory->create_dyn_any(info);
display(dynAny);

}
VISCATCH (CORBA::Exception, e)
{

cout << "Unable to create Dynamic Any from factory"
<< endl;

}
VISEND_CATCH

}

void shutdown()
{

VISTRY
{

_poa->deactivate_object(_oid);
cout << "Server shutting down..." << endl;

}
VISCATCH (CORBA::Exception, e)
{

cerr << e << endl;
return 0;

Example server application

- 578/607 - © 2024 Rocket Software

}
VISEND_CATCH

}

void display(DynamicAny::DynAny_ptr value)
{

CORBA::TypeCode_var type = value->type();
while (type->kind() == CORBA::tk_alias)

type = type->content_type();

switch(type->kind())
{

case CORBA::tk_null:
case CORBA::tk_void:

break;
case CORBA::tk_short:

cout << value->get_short() << endl;
break;

case CORBA::tk_ushort:
cout << value->get_ushort() << endl;
break;

case CORBA::tk_long:
cout << value->get_long() << endl;
break;

case CORBA::tk_ulong:
cout << value->get_ulong() << endl;
break;

case CORBA::tk_float:
cout << value->get_float() << endl;
break;

case CORBA::tk_double:
cout << value->get_double() << endl;
break;

case CORBA::tk_boolean:
cout << value->get_boolean() << endl;
break;

case CORBA::tk_char:
cout << value->get_char() << endl;
break;

case CORBA::tk_octet:
cout << value->get_octet() << endl;
break;

case CORBA::tk_string:
{

CORBA::String_var str = value->get_string();
cout << str << endl;

}

Example server application

- 579/607 - © 2024 Rocket Software

break;
case CORBA::tk_any:

{
CORBA::Any_var any = value->get_any();
DynamicAny::DynAny_var dynAny =

_factory->create_dyn_any(*any);
display(dynAny);

}
break;

case CORBA::tk_TypeCode:
{

CORBA::TypeCode_var tc = value->get_typecode();
cout << tc << endl;

}
break;

case CORBA::tk_objref:
{

CORBA::Object_var obj = value->get_reference();
cout << obj << endl;

}
break;

case CORBA::tk_enum:
{

DynamicAny::DynEnum_var dynEnum =
DynamicAny::DynEnum::_narrow(value);

CORBA::String_var str = dynEnum->get_as_string();
cout << str << endl;

}
break;

case CORBA::tk_union:
{

DynamicAny::DynUnion_var dynUnion =
DynamicAny::DynUnion::_narrow(value);

DynamicAny::DynAny_var temp =
dynUnion->get_discriminator();

display(temp);

temp = dynUnion->member(); display(temp);
}
break;

case CORBA::tk_struct:
case CORBA::tk_array:
case CORBA::tk_sequence:

{
value->rewind();
CORBA::Boolean next = 1UL;
while (next)

Example server application

- 580/607 - © 2024 Rocket Software

{
DynamicAny::DynAny_var d =

value->current_component();
display(d);
next = value->next();

}
}
break;

case CORBA::tk_longlong:
{

#ifndef _VIS_VXWORKS_LONG_LONG_IOSTREAMS
cout << value->get_longlong() << endl;

#else
cout << "received long long";
cout << "long long IOStreams currently not supported"

<< endl;
#endif

}
break;

case CORBA::tk_ulonglong:
{

#ifndef _VIS_VXWORKS_LONG_LONG_IOSTREAMS
cout << value->get_ulonglong() << endl;

#else
cout << "received unsigned long long";
cout << "unsigned long long IOStreams currently not "

"supported" << endl;
#endif

}
break;

default:
cout << "Invalid Type" << endl;

}
}
private:

CORBA::ORB_var _orb;
DynamicAny::DynAnyFactory_var _factory;
PortableServer::POA_var _poa;
PortableServer::ObjectId_var _oid;

};

Example server application

- 581/607 - © 2024 Rocket Software

Using the BOA in VisiBroker RT for C++ 7.0

This section describes how to use the BOA with VisiBroker RT for C++ 7.0.

The libboa.o library is required when building a VisiBroker RT application to support the use of Basic
Object Adapter (BOA). For a description of all the libraries provided by the VisiBroker RT for C++
product, see Step 6: Integrating VisiBroker RT with VxWorks 7.

Compiling your BOA code with VisiBroker RT for C++ 7.0
If you have existing BOA code that you developed with a previous version of VisiBroker RT for C++, you
can continue to use them with the current version.

To generate the necessary BOA base code, you must use the -boa option with the idl2cpp tool. For
more information on using idl2cpp to generate the code, see the VisiBroker RT for C++ Reference
Guide.

Supporting BOA options
All OA command line options supported by VisiBroker RT for C++ 3.x are still supported.

Using object activators
BOA object activators are no longer supported with VisiBroker RT for C++ 7.0.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features that were provided
by the BOA in VisiBroker 3.x releases The POA uses servant activators and servant locators in place of
object activators. See Using servants and servant managers for details on using POA servant managers.

Note

Note

Using the BOA in VisiBroker RT for C++ 7.0

- 582/607 - © 2024 Rocket Software

Naming Objects under the BOA
Though the BOA is deprecated in the current release of VisiBroker RT, you may still use it in conjunction
with the Smart Agent to specify a name for your server objects which may be bound to in your client
programs.

Object names
When creating an object, a server must specify an object name if the object is to be made available to
client applications through the osagent. When the server calls the BOA obj_is_ready method, the
object's interface name will only be registered with the VisiBroker osagent if the object is named.
Objects that are given an object name when they are created return persistent object references, while
objects which are not given object names are created as transient.

If you pass an empty string for the object name to the object constructor in VisiBroker for C++, a
persistent object is created, (that is, an object which is registered with the Smart Agent). If you
pass a null reference to the constructor, a transient object is created.

The use of an object name by your client application is required if it plans to bind to more than
one instance of an object at a time. The object name distinguishes between multiple instances of
an interface. If an object name is not specified when the bind method is called, the osagent will
return any suitable object with the specified interface.

In VisiBroker 3.x, it was possible to have a multiple CORBA objects that provided different interfaces,
all of which had the same object name, but in VisiBroker 7.0, different interfaces may not have
string-equivalent names.

Notes

• •

Note

Naming Objects under the BOA

- 583/607 - © 2024 Rocket Software

Migrating VisiBroker Code

This section describes how to migrate your VisiBroker code from previous versions to VisiBroker RT for
C++ 7.0. In particular, it provides:

Instructions on using BOA with VisiBroker RT for C++ 7.0, changing your BOA code to POA, and
using servant activators.

List of changes to class names, and API calls in VisiBroker 7.0.

Migrating BOA to POA
Class names have changed from previous versions of VisiBroker RT for C++. Be sure to update your
source files to point to the most recent class names. The following table illustrates these name changes
using an example class name:

Looking at an example
The <VBRT_install>/examples/vbroker_kernel/boa/boa2poa directory contains an example of updating your
BOA to the equivalent POA code.

In this example, the BOA code in server.C was updated to POA by:

Obtaining a reference to the root POA instead of initializing the BOA.

Setting the appropriate POA policies to mimic the BOA characteristics.

Defining the servant (the POA has a different definition of a servant than the BOA).

Activating the POA manager (no equivalent step for the BOA).

• •

• •

Old class name New class name

_sk_Account POA_Account

_sk_AccountManager POA_AccountManager

_tie_Account POA_Account_tie

_tie_AccountManager POA_AccountManager_tie

• •

• •

• •

• •

Migrating VisiBroker Code

- 584/607 - © 2024 Rocket Software

Obtaining a reference to the root POA
When using the BOA, a reference to the BOA was obtained through orb->BOA_init() . With the POA,
however, you obtain a reference to the root POA by calling orb->resolve_initial_references(“RootPOA”) .
resolve_initial_references returns a value of type CORBA::Object which you would then narrow to the
desired type.

Code example 181 Obtaining a reference to the rootPOA

Setting the POA policies
The characteristics of a POA are defined by the policies set for that POA. Each POA has its own set of
policies; POAs can not inherit policies from other POAs.

In this example, persistent objects are used. With the BOA, persistent objects are those which have a
specific instance name and are registered with the Smart Agent. A single BOA can support both
persistent and transient objects. Under the POA, a persistent object is one that lives past the ORB
instance that creates them. A single POA can support either persistent object or transient objects, not
both. The supported object type is set by the POA policy. Since the root POA supports transient objects
(by default), a new POA must be created to support persistent objects.

You cannot change the policies of a POA once it is created.

To support persistent objects, set the Lifespan policy to PERSISTENT . Once the appropriate policies have
been set, a new POA can be created with create_POA() .

Code example 182 Setting the POA policies

CORBA::object_var obj = resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA =

PortableServer::POA::_narrow(obj);

Note

Looking at an example

- 585/607 - © 2024 Rocket Software

Defining the servant
With the BOA, a servant is a CORBA object. In this example, the account manager object is created, then
exported with obj_is_ready() .

With the POA, a servant is a programming object that provides the implementation of an abstract
object. A servant is not a CORBA object. Under the POA scenario, the servant is created, then activated
with a specific ID. You can use this ID to obtain the object reference.

Code example 183 Defining and activating a servant

Activating the POA manager
A POA Manager is an object that controls how a POA processes requests. By default, POA Managers are
created in a holding state. In this state, all requests are routed to a holding queue and are not
processed. To allow requests to be dispatched, the POA Manager associated with the POA must be
changed from the holding state to an active state.

This is a new step required for the POA. There is no equivalent step for the BOA.

Code example 184 Activating the POA manager

CORBA::PolicyList policies;
policies.length(1);

policies[(CORBA::ULong)0] =
rootPOA->create_lifespan_policy(PortableServer::PERSISTENT);

// Create myPOA with the right policies
PortableServer::POAManager_var mgr = rootPOA->the_POAManager();
PortableServer::POA_var myPOA =

rootPOA->create_POA("bank_agent_poa", mgr, policies);

// Create the servant
AccountManagerImpl *managerServant = new AccountManagerImp;

// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");

// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId,managerServant);

Looking at an example

- 586/607 - © 2024 Rocket Software

Looking at the other classes
The AccountImpl and AccountManagerImpl class changes are much simpler. Most of the changes simply
involve pointing to the new classes.

Mapping BOA types to POA policies
The following table shows how to set your POA policies to mimic BOA behavior:

rootPOA->the_POAManager()->activate();

Transient Persistent BOA

TPOOL Server Engine policy with TPOOL
dispatcher.
LifeCycle property set to
TRANSIENT.

Server Engine policy with TPOOL
dispatcher.
LifeCycle property set to
PERSISTENTID.
Assignment policy set to USER_ID.
BindSupport policy set to
BY_INSTANCE.

TSESSION Server Engine policy with
TSESSION dispatcher.
LifeCycle property set to
TRANSIENT.

Server Engine policy with
TSESSION dispatcher.
LifeCycle property set to
PERSISTENT.
IDAssignment policy set to
USER_ID.
BindSupport policy set to
BY_INSTANCE.

Mapping BOA types to POA policies

- 587/607 - © 2024 Rocket Software

Migrating interceptors
The preferred method for migrating interceptors to VisiBroker RT for C++ 7.0 is to use the new Portable
Interceptors or the VisiBroker 7.0 interceptors.

Although VisiBroker 7.0 does provide wrappers that allow you to migrate your old interceptor
code virtually unchanged (described below), the VisiBroker 7.0 wrappers for 3.x code do not
provide functionality comparable to that of VisiBroker 7.0 interceptors.

The libmigrate.o library is required when building a VisiBroker RT application to support the
migration of Interceptors from VisiBroker 3.x to VisiBroker 7.x. For a description of all the
libraries provided by the VisiBroker RT for C++ product, see Step 6: Integrating VisiBroker RT with
VxWorks 7.

Using VisiBroker 3.x interceptors
VisiBroker 7.0 ensures that method signatures of VisiBroker 3.x interceptors need not change. However,
installation and initialization procedures for oldstyle interceptors are changed.

Installing VisiBroker 3.x interceptors
To use old-style interceptors with VisiBroker 7.0:

Add the include directive #include "migration_c.hh" to the files where you are going to use VisiBroker
3.x interceptors. The migration_c.hh header file contains the wrappers for the old interceptors.

Re-name the following interceptors as shown in this table:

Transient Persistent BOA

Service-
activated
objects

LifeCycle property set to
TRANSIENT.
Request Processing policy to
USE_SERVANT_MANAGER.
Implicit Activation policy set to
IMPLICIT_ACTIVATION.

LifeCycle property set to
PERSISTENT.
Request Processing policy to
USE_SERVANT_MANAGER.
Implicit Activation policy set to
IMPLICIT_ACTIVATION.

Notes

• •

• •

1. 1.

2. 2.

Migrating interceptors

- 588/607 - © 2024 Rocket Software

Migrating BindInterceptors
The VisiBroker RT for C++ 7.0 wrappers simulate the real BindInterceptor . In previous versions, to add a
BindInterceptor , you would:

Get the reference to the ChainBindInterceptor by calling
ORB::resolve_initial_references(“ChainBindInterceptor”) .

Add the new interceptor to the chain.

To use your VisiBroker 3.x bind interceptor code in VisiBroker 7.0, you should instead:

Get the reference to interceptor_migration::BindInterceptorManager by calling
ORB::resolve_initial_references("ChainBindInterceptor") .

Create and add your interceptor_migration::BindInterceptorDelegate (rather than the
interceptor::BindInterceptor that you used in VisiBroker 3.x) to the chain.

Migrating client-side and server-side interceptors
In previous versions, to add a ClientInterceptor or a ServerInterceptor , you would:

Old style name New style name

interceptor::BindInterceptor interceptor_migration::BindInterceptorD
elegate

interceptor::ChainBindIntercep
tor

interceptor_migration::BindInterceptorM
anager

interceptor::ChainClientInterc
eptor

interceptor_migration::ClientIntercepto
rDelegate

interceptor::ChainServerInterc
eptor

interceptor_migration::ServerIntercepto
rDelegate

interceptor::ClientInterceptor
Factory

interceptor_migration::ClientIntercepto
rFactory

interceptor::ServerInterceptor
Factory

interceptor_migration::ServerIntercepto
rFactory

1. 1.

2. 2.

1. 1.

2. 2.

Using VisiBroker 3.x interceptors

- 589/607 - © 2024 Rocket Software

First, implement the interface Interceptor::ClientInterceptorFactory or
Interceptor::ServerInterceptorFactory . This interface provides methods for creating user-implemented
ClientInterceptors and ServerInterceptors . You could then obtain a reference to the
ChainClientInterceptorFactory or the ChainServerInterceptorFactory and, using these, you can add your
own interceptors to the chain.

Under VisiBroker RT for C++ 7.0, you should instead:

Implement Interceptor_migration::ClientInterceptorDelegate or
Interceptor_migration::ServerInterceptorDelegate .

Then, obtain a reference to the Inteceptor_migration::ClientInterceptorFactory or the
Inteceptor_migration::ServerInterceptorFactory . These methods return the instance of the appropriate
InterceptorDelegate .

After you have access to the client factory, server factory or both, you can install your client- or server-
side interceptors into the appropriate factory chain. To do so, call
ORB::resolve_initial_references("ChainClientInterceptorFactory") or
ORB::resolve_initial_references("ChainServerInterceptorFactory") . Once you have the references, you can
use the Add() method to add to the chain. This procedure is unchanged from VisiBroker 3.x..

VisiBroker RT for C++ 7.0 provides a sample application in <VBRT_install>/examples/vbroker_kernel/
interceptors/migration which shows how to migrate an application that used older 3.x style interceptors
to 7.0.

1. 1.

2. 2.

Using VisiBroker 3.x interceptors

- 590/607 - © 2024 Rocket Software

CORBA Exceptions

This section provides information about CORBA exceptions that can be thrown by the VisiBroker RT for
C++ ORB, and explains possible causes for VisiBroker RT for C++ throwing them.

The following table lists CORBA exceptions and explains reasons why the VisiBroker RT for C++ ORB
might throw them.

Exception Explanation Possible causes

CORBA::BA
D_CONTEXT

An invalid context has
been passed to the
server.

An operation may raise this exception if a client
invokes the operation but the passed context
does not contain the context values required by
the operation.

CORBA::BA
D_INV_ORD
ER

The necessary
prerequisite
operations have not
been called before the
offending operation
request.

An attempt to call the CORBA::Request::get_
response() or CORBA::Request::poll_res
ponse() methods may have occurred before

actually sending the request.
An attempt to call the exception::get_clien
t_info() method may have occurred outside

of the implementation of a remote method
invocation. This function is only valid within the
implementation of a remote invocation.
An operation was called on an ORB that was
already shut down.

CORBA::BA
D_OPERATI
ON

An invalid operation
has been performed.

A server throws this exception if a request is
received for an operation that is not defined on
that implementation’s interface. Ensure that the
client and server were compiled from the same
IDL.
The CORBA::Request::return_value()
method throws this exception if the request was
not set to have a return value. If a return value is
expected when making a DII call, be sure to set
the return value type by calling the CORBA::Req
uest::set_return_type() method.

CORBA Exceptions

- 591/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::BA
D_PARAM

A parameter passed to
the ORB is invalid.

Sequences throw CORBA::BAD_PARAM if an
access is attempted to an invalid index. Make
sure you use the length() method to set the
length of the sequence before storing or
retrieving elements of the sequence.
ORB throws this exception if an invalid Object_
ptr is passed as an in argument (for example, if

a nil reference is passed).
An attempt may have been made to send a NULL
pointer where the IDL to C++ language mapping
requires an initialized C++ object to be sent. For
example, attempting to return NULL as a return
value or out parameter from a method that
should be returning a sequence will throw this
exception. In this case, a new sequence (probably
of length 0) should be returned instead. The
types which cannot be sent with the C++ NULL
value include Any , Context , struct , or seq
uence .

An attempt was made to send a value that is out
of range for an enumerated data type.
An attempt may have been made to construct a
TypeCode with an invalid kind value.

An attempt may have been made to insert a nil
object reference into an Any.
Using the DII and one way method invocations,
an OUT argument may have been specified. An
interface repository thrown this exception if an
argument passed into an IR object’s operation
conflicts with its existing settings. See the
compiler errors for more information.

CORBA::BA
D_TYPECO
DE

The ORB has
encountered a
malformed type code.

CORBA Exceptions

- 592/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::CO
DESET_INC
OMPATIBLE

Communication
between client and
server native code sets
fails because the code
sets are incompatible.

The code sets used by the client and server
cannot work together. For instance, the client
uses ISO 8859-1 and the server uses the Japanese
code set.

CORBA::CO
MM_FAILUR E

Communication is lost
while an operation is in
progress, after the
request was sent by
the client but before
the reply has been
returned.

An existing connection may have closed due to
failure at the other end of the connection.
A new connection request may have failed due to
resource limits on the client or server machine
(the maximum number of connections has been
reached).
When COMM_FAILURES occur due to system
exceptions, the system error number is set in the
minor code of the COMM_FAILURE . Check the
minor code against the system-specific error
numbers. For example, in the include/sys/
errno.h or msdev\\include\winerror.h

files.

CORBA::DA
TA_CONVER
SION

The ORB cannot
convert the
representation of
marshaled data into its
native representation
or vice-versa.

An attempt to marshal Unicode characters with
Output.write_char() or Output.write_st
ring fails.

CORBA::FR
EE_MEM

The ORB failed to free
dynamic memory.

The memory segments that the ORB is trying to
free may be locked.
The heap could be corrupt.

CORBA::IM
P_LIMIT

An implementation
limit was exceeded in
the ORB run time.

The ORB may have reached the maximum
number of references it can hold simultaneously
in an address space.
The size of the parameter may have exceeded the
allowed maximum.
The maximum number of running clients and
servers has been exceeded.

CORBA Exceptions

- 593/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::IN
ITIALIZE

A necessary
initialization has not
been performed.

The ORB_init() method may not have been
called. All clients must call the ORB_init()
method prior to performing any ORB-related
operations. This call is typically made immediately
upon program startup at the top of the main
routine.

CORBA::IN
TERNAL

An internal ORB error
has occurred.

An internal ORB error may have occurred. For
instance, the internal data structures of the ORB
may have been corrupted.

CORBA::IN
TF_REPOS

An instance of the
Interface Repository
could not be located.

If an object implementation cannot locate an
interface repository during an invocation of the
get_interface() method, this exception will

be thrown to the client. Ensure that an Interface
Repository is running, and that the requested
object’s interface definition has been loaded into
the Interface Repository.

CORBA::IN
V_FLAG

An invalid flag was
passed to an
operation.

A Dynamic Invocation Interface request was
created with an invalid flag.

CORBA::IN
V_IDENT

An IDL identifier is
syntatically invalid.

An identifier passed to the interface repository is
not well formed. An illegal operation name is
used with the Dynamic Invocation Interface.

CORBA::IN
V_OBJREF

An invalid object
reference has been
encountered.

The ORB will throw this exception if an object
reference is obtained that contains no usable
profiles.
The ORB::string_to_object() method will
throw this exception if the stringified object
reference does not begin with the characters
IOR: .

CORBA::IN
V_POLICY

An invalid policy
override has been
encountered.

This exception can be thrown from any
invocation. It can be raised when an invocation
cannot be made due to an incompatibility
between policy overrides that apply to the
particular invocation.

CORBA Exceptions

- 594/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::IN
VALID_TRA
NSACTION

A request carried an
invalid transaction
context.

See your transaction service documentation for
more information on this exception.

CORBA::MA
RSHAL

Error marshalling
parameter or result.

A request or reply from the network is
structurally invalid. This error typically indicates a
bug in either the client-side or server-side run
time. For example, if a reply from the server
indicates that the message contains 1000 bytes,
but the actual message is shorter or longer than
1000 bytes, the ORB raises this exception. A MAR
SHAL exception can also be caused by using the

DII or DSI incorrectly. For example, if the type of
the actual parameters sent does not agree with
IDL signature of an operation.

CORBA::NO_
IMPLEMENT

The requested object
could not be located.

A bind() call or some other remote operation
fails because the target could not be found. To
dynamically locate implementations through the
VisiBrokerRT for C++ bind() call, a Smart Agent
must be running in your ORB domain. In
addition, an implementation of the requested
interface must be available on the same ORB
domain. To verify the presence of a Smart Agent,
run the osfind utility. This utility prints the
locations of all Smart Agents on your current
domain (that is, all Smart Agents listening on
your environment’s OSAGENT_PORT).
The osfind utility will also print the interface
name and instance name of all available
implementations. In summary, before running
the client program:
1. Verify that a Smart Agent is running and
accessible on the network.
2. Verify that the desired implementation is
available on the network.
If the rebind() method is enabled and an
object implementation becomes unavailable,
NO_IMPLEMENT will be thrown if another

provider cannot be located.

CORBA Exceptions

- 595/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::NO_
MEMORY

The ORB run-time has
run out of memory

CORBA::NO_
PERMISSI
ON

The caller has
insufficient privileges
to complete an
invocation

CORBA::NO_
RESOURCES

A necessary resource
could not be acquired.

If a new thread cannot be created, this exception
will be thrown.
A server will throw this exception when a remote
client attempts to establish a connection if the
server cannot create a socket—for example, if the
server runs out of file descriptors. The minor
code contains the system error number obtained
after the server’s failed ::socket() or ::acce
pt() call.

A client will similarly throw this exception if a ::
connect() call fails due to running out of file

descriptors. Running out of memory may also
throw this exception.

CORBA::NO_
RESPONSE

A client attempts to
retrieve the result of a
deferred synchronous
call, but the response
for the request is not
yet available.

If BindOptions is used to set timeouts, this
exception is raised when send and receive calls
do not occur within the specified time.

CORBA::OB
J_ADAPTER

An administrative
mismatch has
occurred.

A server has attempted to register itself with an
implementation repository under a name that
already is in use, or is unknown to the repository.
The POA has raised an OBJ_ADAPTER error due
to problems with the application’s servant
managers.

CORBA Exceptions

- 596/607 - © 2024 Rocket Software

Exception Explanation Possible causes

CORBA::OB
JECT_NOT_
EXIST

The requested object
does not exist.

A server throws this exception if an attempt is
made to perform an operation on an
implementation that does not exist within that
server. This will be seen by the client when
attempting to invoke operations on deactivated
implementations.

CORBA::PE
RSIST_STO
RE

A persistent storage
failure has occurred.

Attempts to establish a connection to a database
has failed, or the database is corrupt.

CORBA::RE
BIND

The client has recieved
an IOR which conflicts
with QOS policies.

Thrown anytime the client gets an IOR which will
conflict with the QOS policies that have been set.
If the RebindPolicy has a value of
NO_REBIND , NO_CONNECT , or VB_NOTIFY_REB
IND and an invocation on a bound object

reference results in an object forward or a
location forward message.

CORBA::TR
ANSACTION_
REQUIRED

The request carried a
null transaction
context, but an active
transaction is required.

See your transaction service documentation for
more information on this exception.

CORBA::TR
ANSACTION_
ROLLEDBA
CK

The transaction
associated with a
request has already
been rolled back, or
marked for roll back.

See your transaction service documentation for
more information on this exception.

CORBA::TR
ANSIENT

An error has occurred,
but the ORB believes it
is possible to retry the
operation.

A communications failure may have occurred and
the ORB is signalling that an attempt should be
made to rebind to the server with which
communications have failed. This exception will
not occur if the BindOptions are set to false
with the enable_rebind() method, or the Re
bindPolicy is properly set.

CORBA Exceptions

- 597/607 - © 2024 Rocket Software

The following table provides CORBA exception minor codes:

Exception Explanation Possible causes

CORBA::UN
KNOWN

The ORB could not
determine the thrown
exception.

The server throws something other than a correct
exception, such as a Java run-time exception.
There is an IDL mismatch between the server and
the client, and the exception is not defined in the
client program.
In DII, if the server throws an exception not
known to the client at the time of compilation
and the client did not specify an exception list for
the CORBA::Request . Set the property
vbroker.orb.warn=2 on the server to see

which run-time exception caused the problem.

CORBA::Un
knownUser
Exception

A user exception has
been received, but the
client has no compile-
time knowledge of that
exception.

When a client reads in a user exception from a
server, it will generate this exception if it has no
compile-time knowledge of the exception type.
The client can see the type of the exception, and
is given the marshalled buffer containing the
contents of the exception. The ORB has no way to
unmarshal the exception on its own.

System
exception

Minor
code

Explanation

BAD_PARAM 1 Failure to register, unregister, or lookup the value
factory

2 RID already defined in the interface repository

3 Name already used in the context in the interface
repository

4 Target is not a valid container

5 Name clash in inherited context

6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory

NO_IMPLEMENT 1 Missing local value implementation

CORBA Exceptions

- 598/607 - © 2024 Rocket Software

System
exception

Minor
code

Explanation

2 Incompatible value implementation version

BAD_INV_ORDER 1 Dependency exists in the interface repository
preventing the destruction of the object

2 Attempt to destroy indestructible objects in the
interface repository

3 Operation would deadlock

4 ORB has shut down

OBJECT_NOT_
EXIST

1 Attempt to pass an unactivated (unregistered) value as
an object reference

CORBA Exceptions

- 599/607 - © 2024 Rocket Software

Glossary

activation

Process of preparing an object to receive requests.

API (application program interface)

A set of operations which allows a (client) program to access functionality contained in a library or another program, possibly a
server.

attribute

An attribute is a property of an object. For example, a Point object might have two coordinate attributes, X and Y.

application

A computer program designed to help people perform a certain type of work. Depending on the work for which it was designed, an
application can manipulate text, numbers, graphics, or a combination of these elements.

bind (NamingService)

The process of associating a Name with a remote object in a server application, so that a client application can resolve the Name and
obtain a reference to the remote object.

bind (VisiBroker)

The process of establishing a connection to a server hosting an object we are interested in.

class

A class is a data type which declares what attributes and operations an instantiated object will have.

client/server

A programming strategy in which two programs cooperate with one another using some common and conventional protocol. For
example, on the worldwide web, the browser is the client software, the web server is the server software, and HTTP is the protocol.
Clients send requests to servers, and servers send replies to clients.

component

A chunk or object of a distributed application.

CORBA (common object request broker architecture)

An open, object-oriented, standard architecture developed by the OMG for the interoperability of distributed objects on different
platforms, under different operating systems and implemented in different programming languages.

distributed application

An application whose components are distributed across multiple computers on a network but which seem to be running on the
user’s computer.

Glossary

- 600/607 - © 2024 Rocket Software

distributed objects

Software modules that are designed to work together but reside in multiple computer systems throughout the organization. A
program in one machine sends a message to an object in a remote machine to perform some processing. The results are sent back to
the calling machine.

Dynamic Invocation Interface (DII)

An API that allows a client to make dynamic invocations on remote CORBA objects. It is used if at compile time a client does not have
knowledge about an object it wants to invoke. Once an object is discovered, the client program can obtain a definition of it, issue a
parameterized call to it, and receive a reply from it, all without having a type-specific client stub for the remote object.

Dynamic Skeleton Interface (DSI)

An API that provides a way to deliver requests from an ORB to an object implementation when the type of the object implementation
is not known at compile time. DSI, which is the server side analog to the client side DII, makes it possible for the application
programmer to inspect the parameters of an incoming request to determine a target object and method.

failover

Having more than one system which may be used as backup in case one of the systems fail.

HTML (hypertext markup language)

Markup languiage used to specify the structure of a hypertext (web) document.

HTTP (hypertext transport protocol)

A protocol used by worldwide web client/server applications to connect and transfer HTML documents.

IDL (interface definition language)

A high-level, programming language independent, declarative language for defining the interface of a distributed object.

IDL compiler

A compiler which translates an IDL specification into programming language specific stub and skeleton files which are used to
implement distributed objects.

IDL file

A plain text file which declares modules and interfaces in IDL.

IIOP (Internet Inter-ORB protocol)

A TCP/IP-based protocol developed by the OMG. The IIOP enables two or more ORBs to work in conjunction to provide requests to
objects.

interface

The set of public attributes and operations (or signature) which a (server) object exposes to a (client) object.

interface repository

A service that contains all the registered component interfaces, the methods they support, and the parameters they require. The IFR
stores, updates, and manages object interface definitions. Programs may use the IFR APIs to access and update this information.

master/slave

The Interoperable Naming service runs master and slave naming service for a failover purposes. The master is the primary service
and the slave is the fallback service in general.

Glossary

- 601/607 - © 2024 Rocket Software

method

An operation of an object (the server) which when called by another object (the client) performs some declared behavior.

multithreading

A programming technique whereby an application can be divided into more than one asynchronous time-slice (or thread of
execution).

Name

A name is a predefined name, an alias, or a convenient handle which is associated with a server object. To bind a name to an object,
you use the bind method. To resolve a name (i.e., to retrieve a pointer) use the resolve method.

namespace

A collection of names, no two of which are identical.

naming service

A CORBA service that allows CORBA objects to be named by means of binding a name to an object reference. The name binding may
be stored in the naming service, and a client may supply the name to obtain the desired object reference.

n-tier

A programming strategy in which n programs cooperate with one another using some common and conventional protocol. For
example, a client/ server application can also be described as a two-tier application.

object

A programming entity which is defined by its properties (attributes) and behaviors (operations). Objects have unique identities and
can be distinguished from one another. An object is an instance of a particular class.

object adapter

The ORB component which provides object reference, activation, and state related services to an object implementation.

object implementation

A server process that offers one or more objects which client applications may use.

object reference

A handle to an object, used by a client application to invoke methods on the object.

OMG (Object Management Group)

A consortium of software companies which is charged with the development of the CORBA specification: (see http://www.omg.org/).

operation

The function of an object (the server) which when called by another object (the client) performs some declared behavior.

ORB (object request broker)

The ORB allows clients to make and receive requests and responses.

package

A logical collection of Java classes that provide similar or related features.

Glossary

- 602/607 - © 2024 Rocket Software

http://www.omg.org/

protocol

A language which defines the requests and replies of client/server objects or applications.

RMI (remote method invocation)

A Java API which allows objects to be instantiated and used in a distributed application.

RPC (remote procedure call)

A strategy which allows procedures to be called from outside the currently running program’s memory. RPC allows two or more
different programs to interoperate with one another.

scalability

The degree to which a system or application can handle increasing or decreasing demand on system resources without significant
performance degradation.

servant

An instance of an object implementation for an IDL interface. The servant object is registered with the ORB so that the ORB knows
where to send invocations. It is the servant that performs the services requested when a CORBA object's method is invoked.

server

An object or application which performs a service for other objects or applications (the clients). A server replies to a client’s request
using a protocol.

service

The functionality of a given server.

SGML (standard generalized markup language)

Abbreviation of Standard Generalized Markup Language, a system for organizing and tagging elements of a document. SGML was
developed and standardized by the International Organization for Standards (ISO). SGML itself does not specify any particular
formatting; rather, it specifies the rules for tagging elements. These tags can then be interpreted to format elements in different
ways.

signature

The set of parameters and their names of a given operation which uniquely identify the operation.

skeleton (file)

An older construct (used prior to VisiBroker 4.0): a serverside file generated from IDL which is to be implemented by the object
implementor.

stringification

Converting an object reference to a character string format. Used when an object reference needs to be made persistent to a text file
or stored in a database or sent to a client program.

stub (file)

The portion of a client or server program that executes the data marshalling and network transportation routines.

TCP/IP (transport control protocol / internet protocol)

TCP is one of the main protocols in TCP/IP networks. Whereas the IP protocol deals only with packets, TCP enables two hosts to
establish a connection and exchange streams of data. TCP guarantees delivery of data and also guarantees that packets will be
delivered in the same order in which they were sent.

Glossary

- 603/607 - © 2024 Rocket Software

thread

A thread is a stream of execution within a process. In a multithreaded environment, multiple tasks can execute concurrently within
the same application.

transaction server A server which supports transactional semantics, (e.g., commit or rollback).

XML (extensible markup language)

Extensible Markup Language. A specification developed by the World Wide Web Consortium (W3C). XML is a subset of the SGML
document language, designed especially for Web documents.

Glossary

- 604/607 - © 2024 Rocket Software

Notices

Copyright
© 1996-2024 Rocket Software, Inc. or its affiliates. All Rights Reserved.

Trademarks
Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples
This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

License agreement
This software and the associated documentation are proprietary and confidentical to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the use,
import, or export of encryption technologies, and current use, import, and export regulations should be
followed when exporting this product.

Notices

- 605/607 - © 2024 Rocket Software

http://www.rocketsoftware.com/about/legal

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Contacting Technical Support
The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report a
problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support. In addition to using the
Rocket Community to obtain support, you can use one of the telephone numbers that are listed above
or send an email to support@rocketsoftware.com.

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Country and Toll-free telephone number

Corporate information

- 606/607 - © 2024 Rocket Software

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and
technical support, use one of the following telephone numbers.

- United States: 1-855-577-4323
- Australia: 1-800-823-405
- Belgium: 0800-266-65
- Canada: 1-855-577-4323
- China: 400-120-9242
- France: 08-05-08-05-62
- Germany: 0800-180-0882
- Italy: 800-878-295
- Japan: 0800-170-5464
- Netherlands: 0-800-022-2961
- New Zealand: 0800-003210
- South Africa: 0-800-980-818
- United Kingdom: 0800-520-0439

Country and Toll-free telephone number

- 607/607 - © 2024 Rocket Software

	VisiBroker RT 7.0 C++ Developer's Guide
	Preface
	What’s new
	Conventions
	Platform conventions
	VisiBroker RT example path conventions
	VisiBroker Library conventions

	Where to find additional information

	Introducing VisiBroker RT for C++
	What is CORBA?
	What is VisiBroker RT for C++?
	VisiBroker RT for C++ Features
	VisiBroker RT for C++ Smart Agent architecture
	Enhanced object discovery with the Location Service
	Implementation and object activation support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface repositories
	Server-side portability
	Customizing the ORB with interceptors and object wrappers

	VisiBroker RT for C++ CORBA compliance
	VisiBroker RT for C++ Development Environment
	Administration tools
	Developer’s tools
	VisiBroker RT for C++ header files
	VisiBroker ORB Libraries
	VisiBroker Sample Applications
	Interoperability with VisiBroker for Java

	Interoperability with other ORB products

	Setting up the Development Environment
	Setting the VBROKERDIR Environment Variable
	Setting VBROKERDIR on a Linux platform

	Setting the Path environment variable
	Setting the Path on a Linux platform

	Setting VBROKER_ADM Environment Variable
	Setting VBROKER_ADM on a Linux platform

	Setting OSAGENT_PORT environment variable
	Setting OSAGENT_PORT on a Linux platform

	Logging Output on the Host System

	Developing an Example Application with VisiBrokerRT for C++
	Development Process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	corba_init.C
	client.C
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance
	Other member functions

	Step 4: Implementing the server
	server.C
	Understanding the Account class hierarchy

	Step 5: Building the example
	Step 6: Integrating VisiBroker RT with VxWorks 7
	The VisiBroker RT Runtime
	VisiBroker RT runtime libraries

	Configuring the VxWorks Image Project (VIP) include path
	Integrating VisiBroker RT Libraries with VxWorks 7
	Statically linking VisiBroker RT libraries into the VxWorks Kernel
	Using Workbench 4 to statically link VisiBroker RT for C++ libraries into the VxWorks kernel

	Using the command line to statically link VisiBroker RT for C++ libraries into VxWorks kernel
	Loading VisiBroker RT libraries into the VxWorks Kernel dynamically
	Using Munched Libraries
	Loading Downloadable Kernel Modules Dynamically
	Using the Kernel Shell ld command
	C Interpreter
	Command Interpreter

	Calling loadModule() programmatically

	Using VisiBroker RT with VxSim
	Step 7: Starting the Smart Agent (osagent) Service
	Configuring the Osagent to work with VxSim
	Configuring the VisiBroker ORB running on VxSim to support osagent communications
	Configuring the Smart Agent for use on multihomed VxSim targets
	Starting the Osagent on a Linux Development Host
	Starting the Osagent on a VxWorks Node
	Step 8: Starting the server and running the example
	Starting the server

	Running the client

	Developing an Example Application using VxWorks Real-Time Processes and Visibroker RT
	What are RTPs
	Development Process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	client.C
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance
	Other member functions

	Step 4: Implementing the server
	server.C
	Understanding the Account class hierarchy

	Step 5: Building the example
	Step 6: Linking VisiBroker RT
	The VisiBroker RT Run-time
	VisiBroker RT runtime libraries

	Configuring the VxWorks RTP Makefile Project include path
	Integrating VisiBroker RT Libraries with VxWorks RTP Makefile Project

	Using VisiBroker RT with VxSim
	Step 7: Starting the Smart Agent (osagent) Service
	Configuring the OSAgent to work with VxSim
	Configuring the VisiBroker ORB to run on VxSim with OSAgent communication support
	Configuring the Smart Agent for use on multihomed VxSim targets
	Starting the Osagent on a Linux Development Host
	Starting the OSAgent on a VxWorks Node
	Step 8: Starting the server and running the example
	Starting the server

	Running the client

	Handling Exceptions
	Exceptions in the CORBA model
	System exceptions
	Obtaining completion status
	Getting and setting the minor code
	Determining the type of a SystemException
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	Exception Support in VisiBroker RT for C++
	The Exception Macros

	Server basics
	Overview
	Initializing the ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods
	Activating the POA
	Activating objects
	Complete example

	Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs
	POA policies
	Compact CORBA and POA Policies
	Thread policy
	Lifespan policy
	Object ID Uniqueness policy
	ID Assignment policy
	Servant Retention policy
	Request Processing policy
	Implicit Activation policy
	Bind Support policy
	Server Engine policy

	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA properties
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Adapter activators
	Processing requests

	Using the Tie Mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie mechanism

	Looking at the tie template
	Changing the server to use the _tie_account class
	Building the tie example

	Client basics
	Initializing the ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Checking for nil references
	Obtaining a nil reference
	Duplicating an object reference
	Releasing an object reference
	Obtaining the reference count
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Checking for non-existent objects
	Narrowing object references
	Widening object references

	Using Quality of Service
	Understanding Quality of Service
	Policy overrides and effective policies

	QoS interfaces
	CORBA::Object

	CORBA::PolicyManager
	CORBA::PolicyCurrent
	Messaging::RebindPolicy
	Messaging::RelativeRequestTimeoutPolicy
	Messaging::RelativeRoundtripTimeoutPolicy
	QoSExt::RelativeConnectionTimeoutPolicy
	QoSExt::DeferBindPolicy
	QoSExt::SmartBindPolicy
	QoS exceptions

	Using the VisiBroker RT for C++ Console
	What is the VisiBroker Console?
	Navigating the VisiBroker Console

	Supported ORB Services
	Starting the VisiBroker Console
	VisiBroker Console main menu
	Setting the VisiBroker Console preferences
	General tab
	Security tab
	State tab
	Tools tab

	Setting Properties
	Overview
	Setting Properties Through the Property Manager Interface
	Environment variables
	Setting Properties Through the Command Line
	Setting Properties Through a Property Table
	ORB Default Properties

	Using the IDL compiler
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification
	Looking at code generated for clients
	Methods (stubs) generated by the IDL compiler
	Pointer type _ptr definition
	Automatic memory management _var class

	Looking at code generated for CORBA server implementations
	The PortableServer_RefCountServantBase class
	The PortableServer_ServantBase class
	Methods (skeletons) generated by the IDL compiler
	Class template generated by the IDL compiler

	Defining interface attributes in the IDL
	Specifying oneway methods with no return value
	Note

	Specifying an interface in IDL that inherits from another interface

	Using the Smart Agent
	What is the Smart Agent?
	Locating Smart Agents
	Locating objects through Agent cooperation
	Starting a Smart Agent (osagent)
	Starting the Smart Agent on the Development Host
	Starting the Smart Agent on the Target System
	Starting the Smart Agent Programmatically from a VisiBroker RT Development Host
	Verbose output
	Disabling the agent

	Ensuring Agent availability
	Checking client existence

	Working within ORB domains
	Connecting Smart Agents on different local networks
	Use of the OSAGENT_ADDR_FILE Environment Variable (applicable on Development Host systems only)
	Use of the OSAGENT_ADDR_TABLE By Smart Agents (applicable on VxWorks Target systems only)
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents
	Use of the LOCAL_ADDR_FILE For Multi-Homed hosts

	Use of the OSAGENT_LOCAL_TABLE For Multi-Homed VxWorks Targets

	Using point-to-point communications
	Specifying a host as a run-time parameter
	Specifying an IP address with an environment variable
	Specifying hosts with the agentaddr table

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain state

	Migrating objects between VisiBroker RT Systems
	Migrating objects that maintain state
	Migrating instantiated objects

	Reporting all objects and services

	Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining names of all hosts running Smart Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances of an interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by a trigger

	Querying an agent
	Finding all instances of an interface
	Finding everything known to Smart Agents

	Writing and registering a trigger handler
	Implementing and registering a trigger handler

	Using the Naming Service
	Overview
	Understanding the namespace
	Naming contexts
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the Naming Service
	Integrating the Naming Service into your application
	VisiBroker RT Naming Service libraries

	Compiling and linking programs
	Sample programs
	Starting the Naming Service

	Bootstrapping a Naming Service
	Calling resolve_initial_references
	Using -ORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-ORBDefaultInitRef
	Using -ORBDefaultInitRef with a corbaloc URL
	Using -ORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default context
	Binding a name in C++
	Resolving a name in C++

	Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG Common Object Services Specification

	Communication models
	Push model
	Pull model

	Using event channels
	Example push supplier and consumer
	Deriving a PushSupplier class
	Implementing the PushSupplier

	Deriving a PushConsumer class
	Implementing the PushConsumer

	Starting the Event Service
	Installing the Event Service
	Integrating the Event Service into your application
	VisiBroker Event Service libraries
	VisiBroker Event Service “munched” libraries

	Setting the queue length

	Compiling and linking programs
	Interface reference
	EventChannel
	ConsumerAdmin
	SupplierAdmin
	ProxyPullConsumer
	ProxyPushConsumer
	ProxyPullSupplier
	ProxyPushSupplier
	PullConsumer
	PushConsumer
	PullSupplier
	PullSupplier methods
	PushSupplier

	Real-Time CORBA Extensions
	Overview
	Using the Real-Time CORBA Extensions
	Real-Time CORBA ORB
	Real-Time Object Adapters
	Real-Time CORBA Priority
	Priority Mappings
	Priority Mapping Types
	Rules for Priority Mappings
	Default Priority Mapping
	Replacing the Default Priority Mapping
	Using Native Priorities in VisiBroker Application Code

	Threadpools
	Threadpool API
	Threadpool Creation and Configuration
	Association of an Object Adapter with a Threadpool
	The General Threadpool
	Threadpool Destruction

	Real-Time CORBA Current
	Real-Time CORBA Priority Models
	Client Model Backwards Compatability with VisiBroker 3.2.2

	Setting Priority at the Object Level
	Real-Time CORBA Mutex API
	Control of Internal ORB Thread Priorities
	Limiting the Internal ORB Thread Priority Range
	Configuring Individual Internal ORB Thread Priorities

	Protocol Configuration Policies
	ServerProtocolPolicy
	Scope of ServerProtocolPolicy

	ClientProtocolPolicy

	Listening and Dispatch Configuration
	Overview
	When to Configure Listening and Dispatching
	Listening and Dispatch Architecture
	Interaction of an SCM and Threadpool during Dispatch

	Server Engines and SCM Configuration
	Required Server Engine and SCM Properties
	Optional Server Engine Properties
	Optional SCM Properties

	Server Engine and SCM Creation
	Associating a POA with Server Engines
	Default Server Engines
	Restriction on POA/Server Engine Relationship
	Code Example

	Connection Management
	VisiBroker Default Connection Behavior of VisiBroker RT
	Overriding the Default Behavior with _clone()
	Limiting the Number of Connections
	Limiting Connections on the Server-Side
	Limiting Connections on the Client-Side

	Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional ORB properties
	vbroker.orb.enableBiDir property
	vbroker.se.\<sename>.scm.\<scmname>.manager.exportBiDir property
	vbroker.se.\<sename>.scm.\<scmname>.manager.importBiDir property

	About the examples
	Enabling bidirectional IIOP for existing applications
	Security considerations

	VisiBroker Pluggable Transport Interface
	Pluggable Transport Interface Files
	Transport Layer Requirements
	User-Provided Code Required for a Protocol Plugin
	Unique Profile ID Tag

	Example Code
	Implementing a New Transport
	Connection Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Required Methods
	Class Description
	Method Descriptions

	Connection Factory Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Required Methods
	Class Description
	Method Description

	Listener Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Required Methods
	Class Description
	Method Description

	Listener Factory Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Required Methods
	Class Description
	Method Description

	Profile Class
	Base Class
	Abstract Methods to be Implemented by Subclass
	Other Required Methods
	Recommended methods
	Class Description
	Method Description

	Profile Factory Class
	Base class
	Abstract Methods to be Implemented by Subclass
	Recommended Methods
	Class description
	Method description

	Classes Provided by the Interface
	Transport Bridge Class
	Class name
	Provided Methods
	Class Description
	Method Description

	Transport Registrar Class
	Class Name
	Provided Methods
	Class Description
	Method Description

	Creating a Loadable Library

	Using Portable Interceptors
	Overview
	Portable Interceptor and Information interfaces
	Request Interceptor
	ClientRequestInterceptor
	ClientRequestInterceptor class

	ServerRequestInterceptor
	ServerRequestInterceptor class
	Successful invocations

	IOR Interceptor
	IORInterceptor
	IORInterceptor class

	Portable Interceptor Current
	PortableInterceptor::Current class

	Codec
	Codec class

	CodecFactory
	CodecFactory class
	Creating a Portable Interceptor
	Registering Portable Interceptors
	ORBInitializer class
	ORBInitInfo class

	Registering an ORBInitializer
	Example

	VisiBroker Edition Extensions to Portable Interceptors
	POA scoped Server Request Interceptors
	IORInfoExt class

	Limitations of VisiBroker Edition Portable Interceptors Implementation
	ClientRequestInfo
	ServerRequestInfo

	Examples
	Example Code
	Example: client_server
	Objective of example
	Code explanation
	Importing required packages
	Client-side request interceptor initialization and registration to the ORB
	Registration of client-side ORBInitializer dynamic loading
	Complete implementation of the client-side interceptor loader
	Implementing the ORBInitializer for a server-side Interceptor
	Server-side request interceptor initialization and registration to the ORB
	Server-side request ORB Initializer dynamic loading
	Complete implementation of the server-side interceptor loader
	Implementing the RequestInterceptor for Client- or Server-side Request Interceptor
	Implementing the ClientRequestInterceptor for Client
	Implementation of the public void send_request(ClientRequestInfo ri) interface
	Implementation of the void send_poll(ClientRequestInfo ri) interface
	Implementation of the void receive_reply(ClientRequestInfo ri) interface
	Implementation of the void receive_exception(ClientRequestInfo ri) interface
	Complete C++ implementation of the client-side request interceptor
	Implementation of the void receive_request_service_contexts (ServerRequestInfo ri) interface
	Implementation of the void receive_request (ServerRequestInfo ri) interface
	Implementation of the void receive_reply (ServerRequestInfo ri)interface
	Implementation of the void receive_exception (ServerRequestInfo ri) interface
	Implementation of the void receive_other (ServerRequestInfo ri) interface
	Developing the Client and Server Application
	Implementation of the server ORB initialization
	Implementation of the client application

	Using VisiBroker Interceptors
	Overview
	Interceptor interfaces and managers
	Client interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Registering interceptors with the VisiBrokerRT for C++ ORB
	Creating interceptor objects
	Loading interceptors

	Example interceptors
	Example code
	Client-server interceptors example

	Code listings

	Passing information between your interceptors
	Using both Portable Interceptors and Interceptors simultaneously
	Order of invocation of interception points
	Server side Interceptors
	Order of ORB events during POA creation
	Order of ORB events during object reference creation

	Using Object Wrappers
	Overview
	Typed and un-typed object wrappers
	Special idl2cpp requirements
	Example applications

	Un-typed object wrappers
	Using multiple, un-typed object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using un-typed object wrappers
	Implementing an un-typed object wrapper factory
	Implementing an un-typed object wrapper
	pre_method and post_method parameters

	Creating and registering un-typed object wrapper factories
	Removing un-typed object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client and servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of un-typed and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for un-typed wrappers
	Initializers for un-typed wrappers
	Executing the sample applications
	Examples
	Example
	Example

	Turning on timing and tracing object wrappers
	Example
	Example

	Turning on caching and security object wrappers
	Example
	Example

	Turning on typed and un-typed wrappers
	Example

	Executing a co-located client and server
	Example

	Using Valuetypes
	Understanding valuetypes
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Null semantics

	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes

	VisiBroker Logging
	Logging Overview
	The Logger Manager
	Configuring ORB Logging
	ORB Log Levels
	ORB Logging Components
	Controlling the Level of ORB Logging
	Library liblog_message_catalog.o and Formatted ORB Log Messages
	Controlling the Priority of ORB Logging
	Enabling Forwarding of ORB Logging
	Controlling the Destination of ORB Logging

	Application Logging
	Creating or Obtaining a Reference to a Logger
	Setting the Forwarder Thread Priority of a Logger
	Enabling Message Forwarding
	Logging a Message to a Logger
	Adding and Removing Logger Forwarders
	Implementing a Logger Forwarder
	The Default Logger Forwarder

	Using Interface Repositories
	What is an interface repository?
	What does an interface repository contain?
	How many interface repositories can you have?

	Creating and viewing an interface repository with irep
	Creating an interface repository with irep
	Viewing the contents of the interface repository

	Updating an interface repository with idl2ir
	Understanding the structure of the interface repository
	Identifying objects in the interface repository
	Types of objects that can be stored in the interface repository
	Inherited interfaces

	Accessing an interface repository
	Example programs

	Using the Dynamic Invocation Interface
	What is the Dynamic Invocation Interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Location of example programs for using the DII
	Obtaining a generic object reference
	Creating and initializing a request
	Request class
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting the context for the request
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the NamedValue Class

	Passing type safely with the Any class
	Representing argument or attribute types with the TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred() method
	Sending an asynchronous DII request with the send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII

	Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Steps for creating object implementations dynamically
	Location of an example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository IDs

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation

	Using the Dynamically Managed Types
	Overview
	DynAny types
	Usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	Example IDL
	Example client application
	Example server application

	Using the BOA in VisiBroker RT for C++ 7.0
	Compiling your BOA code with VisiBroker RT for C++ 7.0
	Supporting BOA options

	Using object activators
	Naming Objects under the BOA
	Object names

	Migrating VisiBroker Code
	Migrating BOA to POA
	Looking at an example
	Obtaining a reference to the root POA
	Setting the POA policies

	Defining the servant
	Activating the POA manager
	Looking at the other classes

	Mapping BOA types to POA policies

	Migrating interceptors
	Using VisiBroker 3.x interceptors
	Installing VisiBroker 3.x interceptors
	Migrating BindInterceptors
	Migrating client-side and server-side interceptors

	CORBA Exceptions
	Glossary
	Notices
	Copyright
	Trademarks
	Examples
	License agreement
	Corporate information
	Contacting Technical Support
	Country and Toll-free telephone number

