
VisiBroker 8.5.2

VisiBroker for .NET
Developer’s Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved. VisiBroker contains
derivative works of Borland Software Corporation, Copyright 1992-2010 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.

BORLAND, the Borland logo and VisiBroker are trademarks or registered trademarks
of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-06-30

VisiBroker for .NET Developer ’s Guide iii

Contents

Introduction to VisiBroker for .NET ... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation conventions.. 2

Platform conventions... 2
Contacting Micro Focus .. 2

Further Information and Product Support ... 2
Information We Need .. 3
Contact information .. 3

Understanding the VisiBroker for .NET model.............................. 5
What is VisiBroker for .NET?... 5

Changes in VisiBroker for .NET ... 6
VisiBroker for .NET developer tools ... 6
VisiBroker for .NET runtime.. 6
VisiBroker for .NET features ... 7

What is .NET?... 7
Common language runtime .. 7
.NET Framework class library ... 8
.NET Remoting ... 8
Managed vs. Unmanaged Applications ... 8

What is J2EE?... 9
Enterprise JavaBeans .. 9
Java RMI ... 9

What is CORBA? ... 10
Interface Definition Language... 10
CORBA and .NET Remoting .. 10

Microsoft Visual Studio .NET options .. 11

Developing VisiBroker for .NET client applications 13
Some simple examples .. 13

A simple .NET Remoting example.. 13
A simple J2EE example.. 14
A simple CORBA example... 15

.NET Remoting configuration .. 15
Specifying the object location ... 16

URL schemes ... 16
Specifying the Remoting channel .. 17

Client-activated objects vs. server-activated objects .. 18
Programmatic activation .. 19

Configuring properties... 21
Setting properties at the command line.. 21
Setting properties programmatically .. 22
Setting properties within a configuration file ... 22
VisiBroker for .NET property descriptions.. 23

Resolving the Naming Service .. 23
ORBInitRef .. 23

Licensing property .. 24
janeva.license.dir ... 24

Transactions properties.. 24
janeva.transactions... 24
janeva.transactions.factory.url.. 25

Server-side properties ... 25

iv Vis iBroker for .NET Developer ’s Guide

janeva.server.defaultPort ...25
janeva.server.remoting ..26

Interoperability property ..26
janeva.interop.jvmType ...26

Security properties ..27
janeva.security ...27
janeva.security.username ..28
janeva.security.password ...28
janeva.security.realm ..28
janeva.security.certificate...28

Server-side security properties..29
janeva.security.server ...29
janeva.security.server.defaultPort ..30
janeva.security.server.certificate ...30

Firewall property ...31
janeva.firewall ..31

Portable Interceptor property..31
janeva.orb.init ..31

VisiBroker Smart Agent properties...32
janeva.agent ..32
janeva.agent.port ...32
janeva.agent.addr...32

Setting VisiBroker properties...33

Building and deploying VisiBroker for .NET applications35
Generating VisiBroker for .NET stubs and skeletons..35
Adding references to VisiBroker for .NET runtime libraries36
Deploying VisiBroker for .NET applications ..37

Microsoft .NET Framework Redistributable Package38
VisiBroker for .NET runtime libraries ..38
VisiBroker for .NET deployment license key...38

Including the license as an embedded resource...................................39
Copying the license to the application virtual root................................39
Modifying the application configuration file ...39

Developing VisiBroker for .NET Remoting servers......................41
Introduction ...41

About .NET Remoting...41
About VisiBroker for .NET Server ...42

Developing a server in .NET Remoting style ..43
Singleton object configuration...44

Explicit registration ...44
Implicit registration...44

SingleCall object configuration ..45
Explicit registration ...45
Implicit registration...46

Adding callbacks to a VisiBroker for .NET Remoting client......................................47
Properties ..48

Using hints and custom marshaling ...49
VisiBroker for .NET code generation—an example ..49

ValueFactory class ...50
ValueFactory methods ...51

An introduction to hints..52
Supplying the implementation of a value type ...52
Replacing the default implementation with a custom implementation..............53

Mapping interfaces with methods...55

VisiBroker for .NET Developer ’s Guide v

Using signature type to hide implementation details .. 57
Explicit factory code .. 58
Immutables ... 59
Custom marshaling ... 60
Hints file schema .. 63
One-to-many marshaling precedence... 64

Using Quality of Service .. 65
Understanding Quality of Service .. 65

Setting policies per CORBA object ... 65
Policy overrides and effective policies .. 65

QoS interfaces.. 65
Object... 66

Object methods.. 66
PolicyManager .. 68

PolicyManager methods ... 68
PolicyCurrent ... 69
DeferBindPolicy .. 69

DeferBindPolicy properties ... 69
ExclusiveConnectionPolicy.. 70

ExclusiveConnectionPolicy properties... 70
RelativeConnectionTimeoutPolicy .. 70

RelativeConnectionTimeoutPolicy methods ... 71
RebindPolicy... 72
RebindForwardPolicy ... 75

RebindForwardPolicy methods .. 75
RelativeRequestTimeoutPolicy... 75
RelativeRoundTripTimeoutPolicy .. 76
SyncScopePolicy ... 77

QoS exceptions... 78

Using the dynamically managed types....................................... 79
DynAny types... 79

Usage restrictions ... 79
Creating a DynAny.. 79
Initializing and accessing the value in a DynAny.. 80

Constructed data types.. 80
Traversing the components in a constructed data type 80

DynEnum .. 80
DynStruct .. 80
DynUnion .. 81
DynSequence and DynArray ... 81

Using Portable Interceptors .. 83
Portable Interceptors overview ... 83

Types of Portable Interceptors .. 83
Portable Interceptor classes and interfaces ... 83

Interceptor class... 83
Request Interceptor .. 84

ClientRequestInterceptor ... 84
ServerRequestInterceptor .. 85

IORInterceptor ... 86
PortableInterceptor (PI) Current ... 86
Codec ... 86
CodecFactory ... 86

Creating a Portable Interceptor ... 86
Registering Portable Interceptors .. 87

vi Vis iBroker for .NET Developer ’s Guide

VisiBroker for .NET extensions to Portable Interceptors...87
POA scoped Server Request Interceptors ..87

IORInfoExt Interface ...87
Limitations of the Portable Interceptors Implementation87

Using Portable Object Adapters ...89
What is a Portable Object Adapter? ..89

POA terminology ...90
Steps for creating and using POAs ...90

POA policies..91
Thread policy..91
Lifespan policy..91
Object ID Uniqueness policy ...91
ID Assignment policy ...92
Servant Retention policy ..92
Request Processing policy...92
Implicit Activation policy ..93
Bind Support policy ...93

Creating POAs...93
POA naming convention ...93
Obtaining the Root POA..94
Setting the POA policies ...94
Creating and activating the POA ..94

Activating objects..95
Activating objects explicitly...95
Activating objects on demand ...96
Activating objects implicitly ..96
Activating with the default Servant ..96
Deactivating objects ..98

Using Servants and Servant Managers..98
ServantActivators..99
ServantLocators.. 101

Managing POAs with the POA manager ... 103
Getting the current state.. 103
Holding state .. 103
Active state .. 104
Discarding state.. 104
Inactive state ... 104

Listening and Dispatching: Server Engines, Server Connection Managers, and their
properties .. 105

Server Engine and POAs... 105
Associating a POA with a Server Engine ... 106
Defining Hosts for Endpoints for the Server Engine 106

Server Connection Managers .. 107
Manager .. 107
Listener ... 108
IIOP listener properties.. 108
Dispatcher ... 108

When to use these properties ... 109
Adapter activators ... 110
Processing requests ... 111

Using the Transaction service ..113
Configuring VisiBroker for .NET for transactions... 113
Creating VisiBroker for .NET-managed transactions .. 113

Obtaining a Current object reference ... 114
Looking at the CosTransactions module .. 114

VisiBroker for .NET Developer ’s Guide vii

Transaction service classes and interfaces .. 114
Current interface .. 114

Current methods .. 114
TransactionFactory interface ... 117

TransactionFactory methods... 118
Control interface... 118

Control methods... 119
Terminator interface.. 119

Terminator methods.. 119
Coordinator interface .. 120

Coordinator methods .. 120
RecoveryCoordinator interface .. 122

RecoveryCoordinator methods.. 122
Resource interface .. 122

Resource methods .. 122
Synchronization interface... 124

Synchronization methods... 124
TransactionalObject interface.. 126

Using the Security service ... 127
VisiBroker for .NET Security overview .. 127
Enabling VisiBroker for .NET Security... 128
Interoperating with J2EE servers and CORBA servers ... 128

User name and password authentication .. 128
Using the .NET Remoting API for user name and password authentication129
Using the CORBA-based API for user name and password authentication130
Using a configuration file for user name and password authentication .. 131

Certificate-based authentication.. 131
Using the .NET Remoting API for certificate-based authentication........ 131
Using the CORBA-based API for certificate-based authentication 132
Using a configuration file for certificate-based authentication.............. 133

ASP.NET integration... 133
ASP.NET configuration ... 134

Enabling security for .NET servers ... 135

Using VisiBroker for .NET with Partially Trusted Applications.. 137
Using VisiBroker for .NET in Partially Trusted Environments................................. 137
Permissions Required by VisiBroker for .NET ... 138
Usage in No Touch Deployment environments ... 138

Using VisiBroker for .NET with COM... 141
Overriding COM Visibility.. 142
ClassInterface attributes .. 142
Defining custom interfaces ... 143
Support for array-valued parameters and return values...................................... 145
Avoiding ProgId collisions... 146

Using VisiBroker for .NET with GateKeeper 149
What is GateKeeper? ... 149
Enabling the VisiBroker for .NET Firewall feature ... 149
VisiBroker for .NET server-side configuration .. 150
VisiBroker for .NET client-side configuration.. 151
Callbacks with GateKeeper's bidirectional support.. 152

Security considerations.. 152
Examples... 153

viii Vis iBroker for .NET Developer ’s Guide

Compiler options..155
idl2cs[j] ... 155
java2cs .. 156

IDL to C# mapping ..159
Names ... 159
Reserved generated suffixes ... 160
Reserved words .. 160
Basic types... 161

C# null .. 162
Boolean ... 162
Char.. 162
String and WString.. 162
Integer types.. 162
IDL type extensions... 162

Constants... 163
Constructed types ... 163

Enumerations ... 164
Structs .. 164
Unions... 165
Sequences and Arrays ... 167

Modules ... 167
Interfaces .. 167

Signature and Operations interfaces .. 168
Helper classes .. 168

Methods for all Helper classes... 169
Methods generated for interfaces .. 169

Generated stub classes .. 170
Abstract interfaces .. 170
Passing parameters ... 170
Interface scope... 171

Mapping for exceptions .. 171
User-defined exceptions ... 171
System exceptions .. 172

Mapping for the Any type ... 172
Mapping for certain nested types ... 173
Mapping for TypeDef .. 173

Java built-in type support ..175
java.lang.. 175
java.io ... 176
java.math .. 176
java.net ... 177
java.rmi ... 177
java.sql.. 177
javax.ejb.. 178
javax.naming.. 178
javax.rmi ... 179
javax.transaction... 179
java.util ... 179
Application server support .. 181

Index ...183

VisiBroker for .NET Developer ’s Guide 1

Introduction to VisiBroker
for .NET
Micro Focus VisiBroker for .NET product provides a runtime environment
and a set of developer tools to deliver high-performance connectivity from
the Microsoft .NET runtime to J2EE and CORBA servers. This product allows
applications developed for the .NET Framework to access heterogeneous
server-side components via IIOP, the highly scalable, interoperable and
secure protocol.

Important

VisiBroker for .NET was named Janeva in previous releases. Many instances
of the term Janeva still exist within examples, commands, parameters,
class names, properties, and UI elements. This Developer's Guide uses the
term Janeva when referring to these components.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows

• Choose Start > Programs > VisiBroker > Help Topics

or

• open the Command Prompt and go to the product installation \bin
directory, then type:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then type:

help

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

2 VisiBroker for .NET Developer ’s Guide

Documentat ion convent ions

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you

Convention Used for

italics Used for new terms and book titles.
computer Information that the user or application provides, sample

command lines and code.
bold computer In text, bold indicates information the user types in. In code

samples, bold highlights important statements.
[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

http://www.microfocus.com

VisiBroker for .NET Developer ’s Guide 3

Contact ing Micro Focus

obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (VisiBroker trial software)

• http://supportline.microfocus.com/
xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/
websync/productupdatessearch.aspx (updated VisiBroker files and other
software)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

VisiBroker for .NET Developer ’s Guide 5

Understanding the
VisiBroker for .NET model
This chapter introduces the VisiBroker for .NET components, and it
describes the technologies with which VisiBroker for .NET lets your
applications interoperate.

What is VisiBroker for .NET?
The VisiBroker for .NET product provides high performance connectivity
between the Microsoft .NET runtime and J2EE and CORBA components. This
product allows you to build managed client-side and server-side
applications developed for the .NET Framework (and ASP.NET applications)
that can access heterogeneous server-side components via IIOP, the highly
scalable, interoperable and secure communications protocol.

Figure 1 illustrates how a deployment with VisiBroker for .NET-powered
applications might look. The left and right sides of the figure show two .NET
application environments, the top ones running stand-alone .NET
applications, and the others running ASP.NET hosted applications. In the
middle of the diagram the J2EE and CORBA server environments are shown.

The functionality provided by VisiBroker for .NET, the client stubs, server
skeletons, and the VisiBroker for .NET runtime, is displayed in the shaded
areas. Note that there is no shading in the J2EE and CORBA server
environments, indicating that VisiBroker for .NET does not need to be
deployed into the server environment in order to interoperate with the .NET
environment.

Figure 1 VisiBroker for .NET client-side deployment diagram

EJB1

J2EE Server

RMI-IIOP

EJB2

Obj1

CORBA Server

IDL-IIOP

Obj2

IIOP

C# Basic C++

VisiBroker for .NET Skeletons

VisiBroker for .NET Runtime

.NET Runtime

Distributed
Services

.NET Client side .NET Server side

IIOP

C# Basic C++

VisiBroker for .NET Stubs

VisiBroker for .NET Runtime

ASP .NET Runtime

C# Basic C++

VisiBroker for .NET Stubs

VisiBroker for .NET Runtime

.NET Runtime

6 VisiBroker for .NET Developer ’s Guide

What is Vis iBroker for .NET?

Changes in VisiBroker for .NET
Earlier versions of VisiBroker for .NET (before version 7.0) used J#
reflection to instantiate the class type. From version 7.0 onwards,
VisiBroker for .NET runtime is now independent from either Microsoft J# or
the SUN JDK. It is now completely in .NET MSIL. Therefore, the default
access control for class default constructor may not work as before.

Important

You must explicitly declare class SampleServerLoader using the keyword
"public" in order for .NET runtime to access it. If you do not do so, an
exception is raised and you cannot possibly access the default constructor.

VisiBroker for .NET developer tools
Stubs and skeletons are required for VisiBroker for .NET-powered
applications to invoke methods on J2EE and CORBA objects. Stubs and
skeletons are interface-specific objects that provide parameter marshaling
and communication for an application to invoke methods on an object that
is running in a different execution environment. The VisiBroker for .NET
developer tools provide you with compilers to generate the stubs and
skeletons needed to communicate with your CORBA and J2EE server
objects.

The J2EE-based compiler reads interfaces specified in Java Remote Method
Invocation (RMI) files. The CORBA-based compiler reads interfaces specified
in Interface Definition Language (IDL) files. The resulting stubs and
skeletons target the .NET Common Type System (CTS), Microsoft’s
language-neutral type system. Although the compilers generate stubs and
skeletons in the C# programming language, once the C# stub or skeleton is
compiled into the Microsoft Common Intermediate Language (CIL) by a C#
compiler it is usable from any .NET-compatible language.

VisiBroker for .NET runtime
The VisiBroker for .NET runtime is a collection of libraries and network
resources that integrates within end-user applications, and allows your
applications to locate and use objects. The runtime exposes the basic
CORBA and J2EE APIs required for using remote objects. These APIs are
compliant with the Microsoft Common Language System, and are therefore
accessible to any .NET programming language.

The VisiBroker for .NET runtime provides the following capabilities:

• Marshaling—a high-performance, scalable engine for reading and writing
IIOP packets.

• Connection management—controls the allocation of TCP connections
and other communication resources.

• Security—encryption and authentication of messages based on the
widely adopted standards: SSL, TLS, X.509, etc. (Note that this enables
secure connectivity to any J2EE 1.3 compatible product.)

• Objects-by-value—allows arbitrarily complex data types to be passed
across client-server boundaries (for J2EE 1.3 products).

• Invocation context propagation—provides the ability to augment IIOP
packets with system-level data.

VisiBroker for .NET Developer ’s Guide 7

What is .NET?

• Portable interceptors—provides the ability to augment IIOP packets
with user- or system-level data. This is particularly important for
products that provide distributed transaction support based on the OTS
and XA specifications. (Note that interoperable transaction support is
optional in J2EE 1.3, and is therefore only provided by a subset of J2EE
vendors.)

VisiBroker for .NET features
The VisiBroker for .NET product provides the following capabilities:

• High Performance: VisiBroker for .NET provides binary data formatting
by using IIOP for client-server networking.

• Stateful services: VisiBroker for .NET provides a full distributed object
model, which can support arbitrary server-side components and arbitrary
life-cycle requirements.

• Advanced security support: Encryption, authentication and
authorization are all supported in VisiBroker for .NET, based on the latest
security standards.

• Support for complex data types: Using VisiBroker for .NET, data
conversions are handled automatically, which is both more efficient and
less error prone.

• Enterprise Quality of Service: VisiBroker for .NET provides advanced
QoS out of the box, including:

• Load balancing: The ability to fan-out requests to a collection of
service providers.

• Fault tolerance: The ability to redirect requests from a failed server to
an alternate provider.

• Transactions: The ability to propagate two-phase-commit transaction
contexts across application boundaries and start transactions on the
client side.

• Scalability: The ability to control the lifetime of connections, multiplex
over connections, etc., for optimizing resource utilization.

What is .NET?
Microsoft .NET provides developers with a single approach to build both
desktop applications and Web-based applications. It also enables
developers to use the same tools and skills to develop software for a variety
of systems, using a variety of programming languages, and it can minimize
conflicts between applications by helping incompatible software components
coexist.

The .NET Framework consists of the .NET Framework class library (FCL), for
building .NET applications, and the common language runtime (CLR), for
running them. The .NET Framework is available as a free download from
Microsoft.

VisiBroker for .NET uses Microsoft .NET Framework version 3.0.

Common language runtime
The common language runtime (CLR) is the runtime engine in the Microsoft
.NET Framework for executing applications. The CLR also provides managed

8 VisiBroker for .NET Developer ’s Guide

What is .NET?

applications with services such as cross-language integration, code access
security, object lifetime management, and debugging and profiling support.

Programs can be written for the CLR in just about every language, including
C#, C++, Microsoft Visual Basic, and JScript. The runtime simplifies
programming by assisting with many mundane tasks of writing code. These
tasks include memory management—which can be a big generator of
bugs—security management, and error handling.

When it is compiled using a compiler in a .NET language, the code written in
your programming language of choice is compiled into an assembly-like
language called common intermediate language (CIL). The CIL is compiled
down to executable code by the common language runtime at execution
time.

.NET Framework class library
Programmers who write Windows applications are familiar with the Windows
API, standard class libraries, and functions or classes of their own. The .NET
Framework class library (FCL) includes prepackaged sets of functionality
that developers can use to build applications that use the types, methods,
and properties that target the common language runtime. Writing code
using the types provided in the FCL is the surest way to have completely
interoperable .NET applications.

Some of the features included in the FCL are:

• ASP.NET to help build Web applications and Web services.

• Windows Forms for client user interface development.

• ADO.NET to help connect applications to databases.

.NET Remoting
Distributed applications are traditionally based on DCOM, CORBA, and Java
RMI remoting technologies using binary protocols, such as IIOP, that utilize
network bandwidth efficiently. In contrast, much of .NET interoperability
centers on XML and SOAP.

The VisiBroker for .NET runtime provides a managed code implementation
of IIOP for the .NET Framework. VisiBroker for .NET allows you, the
developer, to locate and call methods on remote objects using .NET
Remoting-style calls, shielding you from having to learn how to write
CORBA or Java RMI-style calls. See application development examples in
“Developing VisiBroker for .NET client applications” and “Developing VisiBroker for
.NET Remoting servers”.

Managed vs. Unmanaged Applications
The .NET Framework supports what it calls managed and unmanaged
applications. Managed applications are programs that you create using a
supported .NET language, such as C#, and which adhere to various rules
imposed by the Framework. All VisiBroker for .NET code is managed code.

VisiBroker for .NET Developer ’s Guide 9

What is J2EE?

Unmanaged applications are programs created in unsupported languages,
or which do not completely adhere to .NET Framework rules. These
applications, many of which are legacy applications, can still be run within a
wrapper process provided by the .NET Framework.

What is J2EE?
Java 2 Platform, Enterprise Edition (J2EE) technology and its component
based model simplifies enterprise development and deployment. The J2EE
platform manages the infrastructure and supports the Web services to
enable development of secure, robust and interoperable business
applications. J2EE consists of several APIs to implement Enterprise
JavaBeans, Java Servlets, Java Server Pages, and JDBC for database
access, among many others.

J2EE simplifies enterprise applications by basing them on standardized,
modular components, by providing a complete set of services to those
components, and by handling many details of application behavior
automatically. J2EE takes advantage of CORBA technology for interaction
with existing enterprise resources.

Enterprise JavaBeans
Enterprise JavaBeans (EJB) technology gives developers the ability to model
a wide range of objects useful in the enterprise by defining two distinct
types of EJB components: Session Beans and Entity Beans. Session Beans
represent behaviors associated with client sessions. Entity Beans represent
collections of data, such as records in a database, and encapsulate
operations on the data they represent. Entity Beans are intended to be
persistent, surviving as long as the data they're associated with.

Client applications communicate with EJBs using strictly standardized
EJBHome and EJBObject interfaces to locate, instantiate, and invoke
methods on remote objects. You can use the VisiBroker for .NET developer
tools to generate all the code needed to communicate with the EJBs, from
its Java RMI source to the .NET-compatible C# language.

Java RMI
Java Remote Method Invocation (RMI) technology allows developers to
work completely in the Java programming language to produce Java
technology-based distributed applications. There is no separate Interface
Definition Language (IDL) or mapping to learn. Java RMI technology that is
run over Internet Inter-Orb Protocol (RMI-IIOP) delivers CORBA distributed
computing capabilities to the J2EE platform.

Like CORBA, RMI-IIOP is based on open standards defined with the
participation of hundreds of vendors and users in the Object Management
Group. Like CORBA, RMI-IIOP uses IIOP as its communication protocol.
IIOP eases legacy application and platform integration by allowing
application components written in C++, C, COBOL, and other CORBA
supported languages to communicate with components running on the Java
platform.

10 VisiBroker for .NET Developer ’s Guide

What is CORBA?

What is CORBA?
Common Object Request Broker Architecture (CORBA) is an architectural
specification that provides the capability for distributed applications to
interoperate without understanding detailed communication requirements
on one end or the other. CORBA is based on open standards defined with
the participation of hundreds of vendors and users in the Object
Management Group.

A common model of a CORBA application is a typical client-server model,
with the exception that it uses a middle layer, known as middleware, or
more specifically, an Object Request Broker (ORB). An ORB is a collection of
services that manage interactions between distributed applications.

Interface Definition Language
The Interface Definition Language (IDL) is a descriptive language you use to
describe your CORBA interfaces to remote objects. You use an IDL compiler
to generate a client stub file and a server skeleton file in your
implementation language, usually C++, Java, C#, or another high-level
language. The Object Management Group (OMG) has defined specifications
for language mappings to a variety of programming languages. VisiBroker
for .NET provides a language mapping for IDL in C#. See “IDL to C# mapping”
for more information.

You can write your IDL code in any IDE but you need an IDL compiler to
generate .NET compatible stubs and skeletons. Using the VisiBroker for
.NET developer tools, you can use one of the IDL compilers included to
generate the C# client stub from an IDL file. The IDL compiler reads the IDL
file and generates a class or other addressable object that includes stubs,
which are general methods that accept a simple message request from an
application. The stub passes the request to the object implementation, on
the server for example, and, on receiving a response, decodes the response
and returns the results to the calling application, or client.

The VisiBroker for .NET features comply with the CORBA specification
(version 3.0) from the Object Management Group (OMG) and are
interoperable with VisiBroker.

CORBA and .NET Remoting
Much of .NET interoperability centers on XML and SOAP. While these
technologies have their strengths, primarily in being able to use
connectionless protocols, such as HTTP, they have serious drawbacks when
it comes to synchronous communications.

In those cases, using peer-to-peer protocols, such as IIOP, are more
efficient and secure. Additionally, using synchronous client-server
communication allows you to pass binary data across a more tightly-
coupled system, providing more data security and recovery capabilities.

VisiBroker for .NET allows you to bootstrap to the CORBA middleware, and
locate objects using either CORBA-style calls or .NET Remoting calls in your
client code. See examples of application development in “Developing
VisiBroker for .NET client applications” and “Developing VisiBroker for .NET Remoting
servers”.

VisiBroker for .NET Developer ’s Guide 11

Microsoft Visual Studio .NET options
If you selected the Microsoft Visual Studio .NET component when you
installed VisiBroker for .NET, your Visual Studio environment will have some
extra elements to make your VisiBroker for .NET application development
go smoothly.

To configure the VisiBroker for .NET options in Visual Studio:

1 Select the Tools menu and click Options

2 Select the VisiBroker for .NET options group

The following configuration options are available:

• Installation directory—the directory where the VisiBroker for .NET
components are installed.

• JRE directory—the directory where the Java Runtime Environment is
installed.

• Supported file extensions—displays the VisiBroker for .NET compiler for
each supported file extension.

• Defaults—allows you to configure default command line arguments for
each of the VisiBroker for .NET compilers. For descriptions of command
line arguments see “Compiler options”.

12 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 13

Developing VisiBroker for
.NET client applications
This chapter introduces the development process for creating .NET client
applications that can access J2EE and CORBA server objects using the
VisiBroker for .NET runtime. Simple examples are provided to illustrate the
three different methods for making calls on remote objects.

VisiBroker for .NET provides you with three methods for developing client
applications that communicate with distributed objects: .NET Remoting,
CORBA, and J2EE. These three technologies each define a standard way of
doing essentially the same steps: bootstrap the middleware, locate and
instantiate remote objects, and invoke methods on them.

The syntax, APIs, and programming models are slightly different for each of
the three technologies, but the following examples will prove that whichever
way you write it you can accomplish the same result with each of them.

Where do I go from here?

If you are a Microsoft developer, already comfortable with .NET Remoting,
or new to distributed technologies, start with “A simple .NET Remoting
example”. Developers familiar with J2EE should start with “A simple J2EE
example”, and those familiar with CORBA should start with “A simple CORBA
example”.

Some simple examples
The following sections show you some simple examples of the three
methods you can use to bootstrap the middleware, locate and instantiate
remote objects, and invoke methods on them.

A simple .NET Remoting example
If you are a Microsoft developer, already comfortable with .NET Remoting,
or new to distributed technologies, you will be pleased to learn that you can
develop .NET applications that interoperate with objects on both J2EE and
CORBA servers using the .NET Remoting programming model.

The following three lines of code show how easily you can instantiate the
remote object MyServer and call a Method() on it.

static void Main(string[] args) {
RemotingConfiguration.Configure (“MyApplication.exe.config”);
MyServerHome myServerHome = new MyServerHomeRemotingProxy();
MyServer myServer = myServerHome.Create();
myServer.Method();

}

The information for establishing a connection with the server and locating
the remote object are contained in an XML configuration file, as shown in
“.NET Remoting configuration”.

Let’s walk through the example line by line:

The first line specifies the configuration file where the .NET Remoting is
configured.

RemotingConfiguration.Configure (“MyApplication.exe.config”);

14 VisiBroker for .NET Developer ’s Guide

Some s imple examples

The next line of code instantiates the factory object MyServerHome.

MyServerHome myServerHome = new MyServerHomeRemotingProxy();

A factory object is a lookup mechanism for locating and creating a remote
object. You look it up first in order to locate and create an instance of the
actual object you want to invoke methods on.

There is no concept of narrowing an object’s type in .NET. You locate the
object and cast it to its specific type all in one step.

The next line creates an instance of myServer.

MyServer myServer = myServerHome.Create();

You can now call methods on your instance of myServer.

myServer.Method();

It’s that simple! If you want more information on configuring .NET Remoting
using the VisiBroker for .NET protocol, see “.NET Remoting configuration”.

A simple J2EE example
VisiBroker for .NET provides a method for allowing developers familiar with
writing calls to EJBs to do so in the .NET application.

Consider the following example.

static void Main(string[] args) {
J2EE.Naming.Context root = new J2EE.Naming.InitialContext(args);
string serverName = "location/of/my/server";
object myServerHomeObject = root.Lookup(serverName);
MyServerHome myServerHome = (MyServerHome)

J2EE.Rmi.PortableRemoteObject.Narrow(myServerHomeObject,
typeof(MyServerHome));

MyServer myServer = myServerHome.Create();
myServer.Method();

}

As you can see this is somewhat more complex than the .NET Remoting
example. There is no configuration file in which to hide the details required
for locating the objects.

Let’s walk through the example line by line:

In the first line we establish the root context for the J2EE naming service.

J2EE.Naming.Context root = new J2EE.Naming.InitialContext(args);

The next two lines declare a variable to contain the location of the EJBHome
object (myServerHomeObject) on the server, and look it up.

string serverName = "location/of/my/server";

object myServerHomeObject = root.Lookup(serverName);

The next line narrows myServerHomeObject to its type, MyServerHome.

MyServerHome myServerHome = (MyServerHome)
J2EE.Rmi.PortableRemoteObject.Narrow(myServerHomeObject,

typeof(MyServerHome));

The next line creates an instance of myServer.

MyServer myServer = myServerHome.Create();

Finally we can invoke a method on MyServer:

myServer.Method();

VisiBroker for .NET Developer ’s Guide 15

.NET Remoting conf igurat ion

A simple CORBA example
VisiBroker for .NET provides a method for allowing developers familiar with
writing calls to CORBA objects to do so in the .NET application.

The following example shows the calls you might make.

static void Main(string[] args) {
CORBA.ORB orb = CORBA.ORB.Init(args);
CORBA.Object rootObject = orb.ResolveInitialReferences("NameService");
CosNaming.NamingContextExt root =

CosNaming.NamingContextExtHelper.Narrow(rootObject);
string serverName = "location/of/my/server";
CORBA.Object myServerHomeObject = root.ResolveStr(serverName);
MyServerHome myServerHome = MyServerHomeHelper.Narrow(myServerHomeObject);
MyServer myServer = myServerHome.Create();
myServer.Method();

}

As you can see this is somewhat more complex than the .NET Remoting
example. There is no configuration file in which to hide the details required
for locating the objects.

Let’s walk through the example line by line:

In the first line we initialize the ORB.

CORBA.ORB orb = CORBA.ORB.Init(args);

In the next two lines we obtain the root context for the CORBA naming
service.

CORBA.Object rootObject = orb.ResolveInitialReferences("NameService");
CosNaming.NamingContextExt root =

CosNaming.NamingContextExtHelper.Narrow(rootObject);

The next two lines declare a variable to contain the location of the factory
object (myServerHomeObject) on the server, and look it up.

string serverName = "location/of/my/server";
CORBA.Object myServerHomeObject = root.ResolveStr(serverName);

The next line narrows myServerHomeObject to its type, MyServerHome.

MyServerHome myServerHome = MyServerHomeHelper.Narrow(myServerHomeObject);

The next line creates an instance of myServer.

MyServer myServer = myServerHome.Create();

Finally we can invoke a method on MyServer.

myServer.Method();

.NET Remoting configuration
This section contains the details of the configuration file alluded to in the
.NET example in “A simple .NET Remoting example”.

Let’s recall that .NET Remoting example:

static void Main(string[] args) {
RemotingConfiguration.Configure (“MyApplication.exe.config”);
MyServerHome myServerHome = new MyServerHomeRemotingProxy();
MyServer myServer = myServerHome.Create();
myServer.Method();

}

16 VisiBroker for .NET Developer ’s Guide

.NET Remoting conf igurat ion

The information for establishing a connection with the server and locating
the remote object are hidden away in an XML configuration file. This
technique is known as declarative activation in .NET.

A configuration file for our example might look like the following:

<configuration>
<system.runtime.remoting>

<application name="MyApplication">
<client>

<wellknown type="MyServerHomeRemotingProxy, MyApplicationAssembly"
url="janeva:corbaname:rir:#location/of/my/server/object"/>

</client>
<channels>

<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>

</channels>
</application>

</system.runtime.remoting>
</configuration>

Specifying the object location
When we instantiated MyServerHome in the first line of the example, we
used the new operator on MyServerHomeRemotingProxy(). In order to
locate the object on which to make the call, the example configuration file
uses the wellknown element,

<wellknown type="MyServerHomeRemotingProxy, MyApplication"
url="janeva:corbaname:rir:#location/of/my/server/

object"/>

where MyServerHomeRemotingProxy is the type name and MyApplication is
the name of the assembly where the type is defined.

Note:

MyServerHome is represented as a wellknown object (also known as
Server-activated object or SAO). Any CORBA or EJB server object can be
represented as an SAO. In addition, EJBs can be represented as Client
Activated Objects (CAO). See “Client-activated objects vs. server-activated
objects” for more information.

The .NET programming model requires that you locate the remote object
with a URL. URLs are formed with two parts:

• The janeva: protocol prefix tells the application to use the IIOP channel
(Janeva.Remoting.IiopChannel), specified in the <channel> element of the
configuration file.

Typically in .NET the first part of the URL contains the communication
protocol. VisiBroker for .NET extends .NET Remoting with a new protocol:
CORBA IIOP.

• corbaname:rir:#location/of/my/server/object is one of several CORBA ORB
string_to_object() compatible URL schemes. See the table in “URL
schemes” for more examples and descriptions of the URL schemes.

URL schemes
To address the problem of bootstrapping and allow for more convenient
exchange of human-readable object references, VisiBroker for .NET allows

VisiBroker for .NET Developer ’s Guide 17

.NET Remoting conf igurat ion

URLs in the formats listed in the following table to be converted into object
references.

Specifying the Remoting channel
To communicate with remote objects a .NET client application has to create
and register a Remoting channel. The channel provides a conduit for
communication between a client and a remote object.

Instead of using the .NET Framework Channels types, VisiBroker for .NET
provides the Janeva.Remoting.IiopChannel type for creating a channel
on IIOP.

<channel type="Janeva.Remoting.IiopChannel, Borland.Janeva.Runtime"/>

The second argument is the VisiBroker for .NET runtime assembly name.

URL
scheme Examples Description
corbaname: janeva:corbaname:rir:#location/of/my/

server/object

or

janeva:corbaname:rir:<NS_host>:
<NS_port>#location/of/my/server/object

The corbaname URL scheme is most
often used to resolve EJBs. It allows URLs
to denote entries in a Naming Service. The
host address is the location and listening
port of the Naming Service and it can be
formatted as
<NS_host_name>:<NS_port> or
<NS_ip_address>:<NS_port>. More
details about the corbaname URL
scheme are available in the OMG CORBA
specification.

corbaloc: janeva:corbaloc:rir:<host>:<port>/
object_key

The corbaloc URL scheme provides
direct access to server objects by location
and object key. It is not often used
because of the limited amount of
addressing power. More details about the
corbaloc URL scheme are available in
the OMG CORBA specification.

osagent: janeva:osagent:poa:<poa_name>:
<object_id>[:<server_host_name>]

or

janeva:osagent:repid:
<interface_repository_id>
[:<object_name>][:<server_host_name>]

The osagent scheme is a private feature
for using with VisiBroker CORBA server
objects.

To avoid ambiguity, all colons (:) in the
<interface_repository_id> must be
prefixed with the backslash (\) character,
as follows:
janeva:osagent:repid:IDL\:com/
semagroup/targys/servicelayer/
corba/ServiceRootI\
:1.0:SL_demo_server

IOR: janeva:IOR:
<stringified_object_reference>

The IOR URL scheme allows you to look
up an object by stringified object
reference (IOR).

http: janeva:http:<host_address>/location/of/my/
ior/file

The HTTP URL scheme points to a text file
containing the stringified object reference.

file: janeva:file:<host_address>/location/of/my/
ior/file

The file URL scheme points to a text file
containing the stringified object reference.

18 VisiBroker for .NET Developer ’s Guide

Cl ient-act ivated objects vs. server-act ivated objects

Client-activated objects vs. server-activated objects
VisiBroker for .NET supports both types of activation for remotable objects:

• Server activation. Server-activated objects (SAO) are created by the
server only when they are needed. They are not created when the client
proxy is created by calling new or Activator.GetObject, but rather
when the client invokes the first method on that proxy. The previous
sections in this chapter are examples of this object activation method.

• Client activation. Use client-activated objects when the application
needs to retain state between method calls and also needs to pair each
client with a unique object instance. Client-activated objects (CAO) are
created on the server when the client calls new or
Activator.CreateInstance.

Any kind of remote object supported by VisiBroker for .NET can be used on
the client-side as an SAO. In addition, a J2EE server object can also be
represented as a CAO.

The client activation in VisiBroker for .NET is based on the fact that many
J2EE components follow the factory design pattern. Namely, any remotely
accessible EJB (that is, stateful or stateless session or entity bean) exposes
a home interface which is used to create or resolve the bean instance. For
EJBs configured as CAOs, VisiBroker for .NET allows you to skip resolving
the home interface and to create or resolve the bean instance simply by
creating an instance of bean’s proxy class.

For example, let’s consider a simple EJB interface, SimpleSession, and its
home interface, SimpleSessionHome:

public interface SimpleSession extends javax.ejb.EJBObject {
public void ping() throws java.rmi.RemoteException;

}
public interface SimpleSessionHome extends javax.ejb.EJBHome {

public SimpleSession create(String name);
}

The SimpleSession interface configured as an SAO can be accessed on the
client side in C# as follows:

SimpleSessionHome home = new SimpleSessionHomeRemotingProxy();
SimpleSession session = home.Create("my name");
session.Method();

If the SimpleSession interface is represented as a CAO, the client code is
a bit simpler:

SimpleSession session = new SimpleSessionRemotingProxy("my name");
session.Method();

Now, let’s explore in detail how VisiBroker for .NET supports the client
activation model for J2EE components.

First, the java2cs compiler has extended knowledge of the EJB home
interface. The compiler maps some methods defined on the EJB home
interface to constructors of the bean’s Remoting Proxy class in the
generated C# code. For the Session EJB home (stateful or stateless), these
are any create() methods. For the Entity EJB home, this is the
findByPrimaryKey() method. Also, the java2cs compiler preserves the
parameters of the original home method in the generated proxy constructor.
For example, the SimpleSessionHome.create(String name) method
maps to the SimpleSessionRemotingProxy(string name) constructor in
the generated C# code.

VisiBroker for .NET Developer ’s Guide 19

Programmat ic act ivat ion

When a new instance of the CAO Remoting Proxy is created, the VisiBroker
for .NET runtime does a few things under the covers. First, it resolves the
bean’s home interface based on the VisiBroker for .NET URL specified in the
Remoting object configuration. Then, depending on whether this is a
Session bean or an Entity bean, the runtime remotely calls either the
corresponding Session’s create() method, or the Entity’s
findByPrimaryKey() method. Lastly, the Remoting Proxy of the EJB
instance, resulted by this call, becomes an object returned by the new
statement.

While the VisiBroker for .NET CAO usage model resembles the original .NET
Remoting CAO model quite closely, it is worth noting a few peculiarities:

1 Creating an EJB Remoting Proxy, configured as a CAO, does not always
imply that a new EJB instance is created on the server side (the EJB
container). While this is true for the Session beans, the Entity beans
behave differently. For Entities, the CAO constructor call translates into
the findByPrimaryKey() call, therefore an existing instance with the
corresponding primary key must already exist, otherwise an exception
will be thrown. Thus, the CAO representation of the Entity bean can be
used only to resolve a bean instance, not to create one. To create a new
Entity instance use the SAO model.

2 VisiBroker for .NET Client-activated objects do not support the lifetime
lease model. This is due to the fact that the EJB models this concept.
Moreover, the EJB life cycle is different depending on the EJB type. The
client-side developer needs to understand these differences and explicitly
call the Remove() method on the EJB interface or the home when the EJB
instance is no longer needed.

A configuration file for a CAO example should look like the following:

<configuration>
<system.runtime.remoting>

<application name="MyApplication">
<client url=”janeva:corbaname:rir:#location/of/my/server/object”>

<activated type="SimpleSessionRemotingProxy,
MyApplicationAssembly"/>

</client>
<channels>

<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>

</channels>
</application>

</system.runtime.remoting>
</configuration>

Programmatic activation
An alternative to configuration files for writing your .NET calls to server side
objects is to activate the Remoting channel and specify the location of the
remote object directly in the code. The following code sample shows how
this might look for an SAO.

static void Main(string[] args) {
Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel

(args);
System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel(channel);
string objectUrl = "janeva:corbaname:rir:#" +

"location/of/my/server/object";
MyServerHome myServerHome = (MyServerHome)

System.Activator.GetObject(typeof(MyServerHome), objectUrl);

20 VisiBroker for .NET Developer ’s Guide

Programmatic act ivat ion

MyServer myServer = myServerHome.Create();
myServer.Method();

}

The following code sample shows how this might look for a CAO.

static void Main(string[] args) {

Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel
(args);

System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel(channel);
string objectUrl = "janeva:corbaname:rir:#" +

"location/of/my/server/object";
MyServer myServer = (MyServer) System.Activator.CreateInstance(

typeof(MyServerRemotingProxy), new object[] {“my name”});
myServer.Method();

}

The first two lines in each example deal with setting up the VisiBroker for
.NET Remoting channel on IIOP.

Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel(args);
System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel(channel);

The third line declares a variable to contain the location of the factory object
(myServerHomeObject) on the server, and look it up similar to the way it
was done in the J2EE and CORBA examples in the previous sections, except
that there is no narrowing in .NET.

VisiBroker for .NET Developer ’s Guide 21

Configuring properties
There are three ways to set VisiBroker for .NET properties. These are given
below in order of priority, from highest to lowest.

1 Using command-line arguments

2 Setting properties programmatically

3 Using a configuration file

Note

The settings with higher priority override the settings with lower priority.
For example, the properties set at the command-line override the
properties defined programmatically.

Setting properties at the command line
If you are running a VisiBroker for .NET application from a command
prompt, then you may specify VisiBroker for .NET properties as space-
delimited key-value pairs, and the key is preceded by a hyphen (-). For
example:

Client -ORBInitRef NameService=corbaloc:iiop:1.2@host1:3075/NameService

In the application code, for developers who use the VisiBroker for .NET style
API, the command line arguments can be passed into the corresponding
version of the Janeva.Remoting.IiopChannel() constructor. For
example:

static void Main(string[] args) {
 Janeva.Remoting.IiopChannel channel = new
Janeva.Remoting.IiopChannel(args);
 …
}

For developers using the CORBA style API, pass these arguments to the
static ORB.Init() constructor:

static void Main(string[] args) {
 CORBA.ORB orb = CORBA.ORB.Init(args);
 ...
}

For J2EE developers, VisiBroker for .NET supports an equivalent ORB
initialization API using J2EE.Naming.InitialContext(). For example,
suppose your J2EE server is running on the local host with a Naming Service
listening to port 2809. Your client can use the -ORBInitRef style
initialization to point to the Naming Service as follows:

Client -ORBInitRef NameService=corbaname:iiop:localhost:2809/NameService

In you application code, you simply pass these arguments to the static
J2EE.Naming.InitialContext constructor:

static void Main(string[] args) {
 J2EE.Naming.Context context =
 J2EE.Naming.InitialContext(args);
 …
}

22 VisiBroker for .NET Developer ’s Guide

Set t ing propert ies programmatical ly

Setting properties programmatically
You can store VisiBroker for .NET properties in a
System.Collections.Hashtable object, and pass these to either
CORBA.ORB.Init(), J2EE.Naming.InitialContext(), or
Janeva.Remoting.IiopChannel(). This provides a cleaner approach to
setting VisiBroker for .NET properties than the command-line approach and
is useful when the command-line is not available.

The .NET Remoting developer may pass the Hashtable settings into the
appropriate version of the Janeva.Remoting.IiopChannel constructor:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable();
props.Add("ORBInitRef",

“NameService=corbaloc:iiop:1.2@host1:3075/NameService”);
props.Add(“janeva.transaction”, true);
Janeva.Remoting.IiopChannel channel =

new Janeva.Remoting.IiopChannel(args. props);
// other code here

…
}

The following CORBA example creates a Hashtable object and sets three
properties:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable();
props.Add("ORBInitRef",

“NameService=corbaloc:iiop:1.2@host1:3075/NameService”);
props.Add("janeva.transactions", true);
CORBA.ORB orb = CORBA.ORB.Init(args, props);

// other code here
…

}

For J2EE developers, you may also use a Hashtable to initialize the
application:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable();
props.Add("ORBInitRef",

“NameService=corbaloc:iiop:1.2@host1:3075/NameService”);
props.Add("janeva.transactions", true);
J2EE.Naming.InitialContext context = new J2EE.Naming.InitialContext

(props);
// other code here

…
}

Setting properties within a configuration file
VisiBroker for .NET properties can be set by using a configuration file.

Important

The configuration file section <janeva> is renamed to <visinet> in
VisiBroker for .NET 7.0 and later versions. However, for backward
compatibility with older versions, the section name <janeva> is still
supported.

VisiBroker for .NET Developer ’s Guide 23

Vis iBroker for .NET property descript ions

Properly named, the configuration file is loaded automatically. For ASP.NET
applications, this is the Web.config file. For other applications, this is the
<app_assembly_name>.exe.config file located in the same directory where
the <app_assembly_name>.exe is.

Note

In Microsoft Visual Studio .NET you must add a file called app.config to your
project to get the appropriately named XML configuration file included in
your build.

The example below shows a sample configuration file.

<configuration>
<configSections>

<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>
<visinet>

<transactions enabled="true"/>
<server defaultPort="10000">

<remoting enabled="true"/>
</server>

</visinet>
</configuration>

Notice that all of the VisiBroker for .NET settings are grouped under the
<visinet> section in the configuration file. Since the VisiBroker for .NET
settings are not part of the standard .NET configuration XML, it is important
to instruct the .NET runtime to read the <visinet> XML. This is achieved
by adding the <configSections> section as it is demonstrated in the
example above.

VisiBroker for .NET property descriptions
Each VisiBroker for .NET property has a counterpart setting in the
configuration file. The following sections describe each VisiBroker for .NET
property and the corresponding configuration file setting in detail.

Resolving the Naming Service
The following property is used to resolve the Naming Service.

ORBInitRef
Type: string

Default value: none

XML:

<naming url="NameService=URL" />

Each application server has its own URL syntax as shown in the following
table.

Application
server Naming Service URL format
WebLogic 7 or 8 corbaloc::localhost:7001/NameService
IBM WebSphere 5 corbaname:iiop:localhost:2809/NameServiceServerRoot
Oracle's 0C4J: corbaloc:iiop:1.2@localhost:5555/NameService
Sybase corbaloc:iiop:1.2@localhost:9000/NameService

24 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET property descr ipt ions

Note also that the default port number may vary for your deployment.

Note

Resolving the naming service for VisiBroker is automatic (based on
OSAgent), so this configuration is optional for VisiBroker. Other application
servers require this configuration.

Examples

To resolve the Naming Service using the command line the argument
should be in the following format:

> client -ORBInitRef NameService=corbaloc::localhost:7001/NameService

The property setting in the configuration file would resemble the following
example.

<visinet>
<naming url=”corbaloc::localhost:7001/NameService” />

</visinet>

Licensing property
This property is configured to enable the VisiBroker for .NET runtime to
locate the license if necessary.

janeva.license.dir
Set the path to the directory where the VisiBroker for .NET license file is
located. The path can be absolute or relative to the current directory.

Type: string

Default value: none

XML:

<license dir=”path” />

Example
The following example sets the janeva.license.dir property in a configuration
file.

<visinet>
<license dir=”C:\Micro Focus\VisiBroker\” />

</visinet>

Transactions properties
These properties are configured to enable VisiBroker for .NET transaction
support.

janeva.transactions
Set this property to true to enable support of the client-demarcated
transactions. Keep in mind that it is impossible to start a new transaction
without turning this feature on. Namely, the
orb.ResolveInitialReferences("TransactionCurrent") call will fail
if transactions are not enabled.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

VisiBroker for .NET Developer ’s Guide 25

Vis iBroker for .NET property descript ions

Type: boolean [true | false]

Default value: false

XML:

<transactions enabled=”value” />

Note

If the <transactions> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable transactions.

Example
The following example configurations set the janeva.transactions property to
true.

<visinet>
<transactions enabled=”true” />

</visinet>

<visinet>
<transactions />

</visinet>

janeva.transactions.factory.url
This URL points to a transaction service Current factory.

Type: string

Default value: none

XML:

<transactions>
<factory url=”corbaloc::URL” />

</transactions>

Example
The following example configuration sets the
janeva.transactions.factory.url property.

<visinet>
<transactions enabled=”true”>

<factory url=”corbaloc::localhost:6666/TransactionFactory” />
</transactions>

</visinet>

Server-side properties
These properties are used to configure VisiBroker for .NET server-side
support.

janeva.server.defaultPort
This property sets the port on which a VisiBroker for .NET server listens to
for IIOP requests. The value 0 (zero) means that the system will pick a
random port number.

Type: integer

Default value: 0 (zero)

26 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET property descr ipt ions

XML:

<server defaultPort=”value”>

janeva.server.remoting
This property is configured when using remoting-style callbacks and
remoting-style VisiBroker for .NET servers. If set to true, then remoting-
style callbacks and remoting-style VisiBroker for .NET servers are enabled.

This feature is disabled by default. When enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]

Default value: false

XML:

<server><remoting enabled=”value” /></server>

Example
The following example sets the janeva.server.port and the
janeva.server.remoting properties in a configuration file.

<visinet>
<server defaultPort=”2809”>

<remoting enabled=”true” />
</server>

</visinet>

Interoperability property
This property is used to configure various VisiBroker for .NET
interoperability aspects.

janeva.interop.jvmType
This property controls how VisiBroker for .NET writes certain data types on
the wire. It specifies the JVM on the receiving side of the outgoing
communication. This is pertinent when communicating with a server
running on Java. When communicating between a .NET client and .NET
server this property must be set to the same value on both sides.

Type: integer [1|2|3]

Default value: 1

XML:

<interop jvmType=”value” />

Note that the marshaling format for various data types evolves over time as
the JDK changes. In order for VisiBroker for .NET to be able to write such
changing data types, this flag can be used to indicate which type of VM you
are inter-operating with.

Currently there are three valid setting for this flag:

1 A value of 1 indicates that you are using a version 1.1, 1.2 or 1.3 JVM.

2 A value of 2 indicates that you are using a version 1.4.0 or 1.4.1 JVM

3 A value of 3 indicates that you are using a version 1.4.2 or later JVM.

The main difference between JVM Type 1 and 2 is the format for writing an
instance of:

VisiBroker for .NET Developer ’s Guide 27

Vis iBroker for .NET property descript ions

java.lang.Random
java.math.BigDecimal
java.math.BigInteger

This format changed in JDK version 1.4.0, and if you need to send such data
from a VisiBroker for .NET process to a Java process, you must set this flag
appropriately.

The main difference between JVM Type 2 and 3 is the format for writing an
instance of:

java.util.Vector
java.util.Stack

This format changed in JDK version 1.4.2, and if you need send such data
from a VisiBroker for .NET process to a Java process, you must set this flag
appropriately.

A few notes on JVM interoperability:

• The janeva.interop.jvmType property only affects the write side of
VisiBroker for .NET.

• The VisiBroker for .NET read side always supports all JVMs. So, it is
possible to receive Random, Vector, and Stack instances from J2EE
applications running on any JVM irrespective of the setting for the
jvmType flag. Only when the VisiBroker for .NET process needs to send
such objects to a J2EE application will the jvmType need to be specified.

Example

The following example sets the janeva.interop.jvmType property in a
configuration file.

<visinet>
<interop jvmType=”2”/>

</visinet>

Security properties
These properties are used to configure VisiBroker for .NET security support.

janeva.security
Set this property to true to enable VisiBroker for .NET security support.

This feature is disabled by default. When enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]

Default value: false

XML:

<security enabled=”value”/>

Note

If the <security> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable security.

28 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET property descr ipt ions

janeva.security.username
This property configures the user name for the security identity passed to
the server-side for authentication. This property is used in conjunction with
the janeva.security.password property.

Type: string

Default value: none

XML:

<security><identity><username>value</username></
identity></security>

janeva.security.password
Specifies the password in the clear text format.

Type: string

Default value: none

XML:

<security>
<identity>

<password>value</password>
</identity>

</security>

janeva.security.realm
This is the authentication realm to be used in conjunction with the user
name and password elements in the security identity configuration. By
default, users belong to the security realm called default. This property
should be set when using an authentication realm other than a realm called
default.

Type: string

Default value: default

XML:

<security>
<identity>

<realm>value</realm>
</identity>

</security>

janeva.security.certificate
This property sets the certificate used for authentication. The expected
value is a string representing the friendly name of the certificate located in
the Windows Certificate Store.

Type: string

Default value: none

XML:

<security><identity><certificate>value</certificate></identity></security>

VisiBroker for .NET Developer ’s Guide 29

Vis iBroker for .NET property descript ions

Examples

The following example sets the janeva.security.username,
janeva.security.password and janeva.security.realm properties for
the security identity in a configuration file.

<visinet>
<security enabled=”true”>

<identity>
<username>admin</username>
<password>foobar</password>
<realm>MyRealm</realm>

</identity>
</security>

</visinet>

The following example sets the janeva.security.certificate property
for the security identity in a configuration file.

<visinet>
<security enabled=”true”>

<identity>
<certificate>joeshopper</certificate>

</identity>
</security>

</visinet>

Server-side security properties
These properties are used to configure VisiBroker for .NET server-side
security.

janeva.security.server
Set this property to true to enable VisiBroker for .NET server-side security
support.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]

Default value: false

XML:

<security>
<server enabled=”value”/>

</security>

Note

If the <security><server> section is present in the configuration file, and
the enabled attribute is missing, the default VisiBroker for .NET behavior is
to enable server-side security.

30 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET property descr ipt ions

janeva.security.server.defaultPort
Configures the port to be used for SSL over IIOP.

Type: integer

Default value: none

XML:

<security>
<server defaultPort=”value”/>

</security>

janeva.security.server.certificate
This property specifies the friendly name of the certificate. If a certificate is
specified in this section, then it will be used to identify the server peer of
the SSL connection. Note, that if value for this setting is not provided, the
VisiBroker for .NET runtime will try to use a certificate provided in the
janeva.security.certificate setting. If neither of these settings is
specified, VisiBroker for .NET runtime considers this as a bad configuration
and fails to initialize.

Type: string

Default value: none

XML:

<security>
<server>

<certificate>value</certificate>
</server>

</security>

Example

The following example sets the server-side security properties in a
configuration file.

<visinet>
<security>

<server enabled=”true” defaultPort=”15000”>
<certificate>Book Store</certificate>

</server>
</security>

</visinet>

VisiBroker for .NET Developer ’s Guide 31

Vis iBroker for .NET property descript ions

Firewall property
This property is used to enable the VisiBroker for .NET firewall support.

janeva.firewall
Enables support of the high-level firewall gateway such as VisiBroker
Gatekeeper.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]

Default value: false

XML:

<firewall enabled=”value”/>

Note

If the <firewall> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable the firewall.

Example

The following example sets the janeva.firewall property in a
configuration file.

<visinet>
<firewall enabled=”true”/>

</visinet>

Portable Interceptor property
This property is used to configure the portable interceptor.

janeva.orb.init
Specifies the portable interceptor that needs to be loaded by the ORB. If the
portable interceptor is part of the same assembly containing the main class,
then you can just specify the class name. If the portable interceptor is part
of an assembly outside of the assembly containing the main class, then you
need to specify the strongly-named assembly name. You may specify as
many portable interceptors as you wish.

Type: string

Default value: none

XML:

<orb>
<init type=”value”/>

</orb>

32 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET property descr ipt ions

Example

The following example sets the janeva.orb.init property in a
configuration file.

<visinet>
<orb>

<init type="MyInterceptor, MyInterceptorAssembly, version=1.2.3.4,
culture=neutral, publicKeyToken=xxxx"/>

<init type="MyInterceptor2”/>
</orb>

</visinet>

VisiBroker Smart Agent properties
These properties are configured when you are using the Smart Agent
(OSAgent) for object registration and lookup.

janeva.agent
This property can be used to disable the Smart Agent.

Type: boolean [true | false]

Default value: false

XML:

<agent enabled=”value”/>

janeva.agent.port
This property sets the port used by the Smart Agent.

Type: integer

Default value: 14000

XML:

<agent port=”value”/>

janeva.agent.addr
This property specifies the physical location of the Smart Agent, either by IP
address or hostname. If not provided, VisiBroker for .NET will look for any
Smart Agent on the network with the proper port during the ping. Providing
a host address will reduce network traffic, as VisiBroker for .NET will ping
the Smart Agent on the provided host address and port.

Type: string

Default value: none

XML:

<agent addr=”value”/>

Example
The following example configuration file sets the janeva.agent
janeva.agent.port and janeva.agent.addr properties.

<visinet>
<agent enabled=”true” port="14001" addr="localhost.localdomain.com"/>

</visinet>

VisiBroker for .NET Developer ’s Guide 33

Setting VisiBroker properties
VisiBroker for .NET supports all of the properties originally introduced in the
VisiBroker line of products. Among these properties are the settings used to
fine-tune the firewall support. In a configuration file you can specify the
VisiBroker properties as key-value attributes in the <vbroker> section.

The following example show how to set some VisiBroker GateKeeper
properties in a configuration file.

<visinet>
<firewall enabled=”true”/>
<vbroker

vbroker.orb.alwaysProxy=”true”
vbroker.orb.gatekeeper.ior=”ior:…”

/>
</visinet>

34 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 35

Building and deploying
VisiBroker for .NET
applications
This chapter describes the process for building and deploying your
VisiBroker for .NET-powered .NET applications. It contains the following
topics:

• Generating VisiBroker for .NET stubs and skeletons

• Adding references to VisiBroker for .NET runtime libraries

• Deploying VisiBroker for .NET applications

Generating VisiBroker for .NET stubs and skeletons
The J2EE and CORBA technologies define object-level interfaces, and
communication between your .NET applications and server objects is
conducted exclusively through these interfaces. In CORBA these interfaces
are defined in IDL, in J2EE they are defined in Java RMI.

The VisiBroker for .NET java2cs and idl2cs tools convert the interfaces
from Java RMI or IDL into C#. VisiBroker for .NET adds features to the
Microsoft Visual Studio .NET so that you can configure and use these tools
in your IDE projects. You can also use the command line to compile the
interfaces.

Visual Studio

To generate VisiBroker for .NET stubs and skeletons in Visual Studio .NET:

1 Add an IDL, JAR, or EAR to your Visual Studio project.

2 Select the file and confirm the VisiBroker for .NET properties as shown in
Figure 2.

Figure 2 Microsoft Visual Studio .NET VisiBroker for .NET properties

For an IDL file the compiler should be set to IDL2cs. A JAR or EAR file
should use the Java2cs compiler. You can add compiler arguments and
rename the output file in the properties dialog.

Important:

If you are generating the server skeleton code be sure to add the
-servant compiler flag to the compiler arguments.

3 To compile just the interface file, right-click the file in the Solution
Explorer and select Build and Browse.

36 VisiBroker for .NET Developer ’s Guide

Adding references to VisiBroker for .NET runt ime l ibrar ies

If the compile is successful, it should generate a C# file and add it to your
project.

command line

To use the compilers at the command line, make sure that the tools are
available in your path so that it can be run from the command prompt. The
compilers are located in the bin directory of the VisiBroker for .NET
installation directory. To test whether the compilers are in your path, open a
command prompt and type idl2cs. You should get a listing of compiler
switches.

If you did not add it during the installation process, you can add idl2cs to
your path from the command prompt by typing:

prompt> set PATH=<VisiBroker Home>\VisBroker.NET\bin;%PATH%

Once you've confirmed that the compilers are in your path, you can use
them:

prompt> idl2cs Example.idl

If the compile is successful, it generates a C# file.

Adding references to VisiBroker for .NET runtime
libraries

In order to take advantage of the VisiBroker for .NET runtime, applications
must refer to the VisiBroker for .NET DLLs. The following sections describe
how to add references to the VisiBroker for .NET runtime libraries in your
applications.

Visual Studio

To add references to the VisiBroker for .NET runtime libraries in Visual
Studio .NET:

1 Right-click the References node for your application in the Solution
Explorer.

2 Select Add Reference.

VisiBroker for .NET Developer ’s Guide 37

Deploying Vis iBroker for .NET appl icat ions

Figure 3 Microsoft Visual Studio .NET Add Reference dialog

3 In the .NET tab select the appropriate VisiBroker for .NET reference and
click Select.

If you are building a client application select only the VisiBroker for .NET
Runtime reference. If you are building a server application, select both
the VisiBroker for .NET Runtime and VisiBroker for .NET Services
references.

4 Click OK.

If you selected the VisiBroker for .NET Runtime reference, the
Borland.Janeva.Runtime should appear in your references list. If you
selected the VisiBroker for .NET Services reference, the
Borland.Janeva.Services should appear in your references list.

command line

To add the reference to the VisiBroker for .NET runtime library at compile
time, invoke the C# command line compiler on the C# source code,
including Borland.Janeva.Runtime.dll or Borland.Janeva.Services.dll as a
reference.

prompt> csc /r:Borland.Janeva.Runtime.dll Client.cs

Deploying VisiBroker for .NET applications
To deploy applications using the VisiBroker for .NET technology you will
need to include the following items:

• Microsoft .NET Framework Redistributable Package

• VisiBroker for .NET runtime libraries

• VisiBroker for .NET deployment license key

38 VisiBroker for .NET Developer ’s Guide

Deploying VisiBroker for .NET appl icat ions

Microsoft .NET Framework Redistributable
Package
VisiBroker for .NET is a .NET product. As such, it requires the .NET
Framework Redistributable Package for execution, which is available as a
free download from the Microsoft Web site, or it may be included with your
IDE or operating system.

VisiBroker for .NET runtime libraries
For deployment, VisiBroker for .NET supports client applications on the front
end or ASP.NET server applications. You must install the following
VisiBroker for .NET runtime libraries on each machine that runs the
VisiBroker for .NET-powered applications.

• Borland.Janeva.Runtime.dll

• Borland.Janeva.Runtime.Private.dll

The following two need to be installed only if services such as security,
firewall, or transactions are being used:

• Borland.Janeva.Services.dll

• Borland.Janeva.Services.Private.dll

Depending on the application server being used, you will need to install one
or more of the following:

• Borland.Janeva.[BES|Oracle|WebLogic|WebSphere].dll

You can install them in one of two ways:

• Install the VisiBroker for .NET runtime libraries on the target machine
using the VisiBroker CD

• Package the runtime libraries from your VisiBroker for .NET development
installation in an application setup program

Clients (that make use of the VisiBroker for .NET runtime) on the same host
can share the VisiBroker for .NET runtime libraries if you install them in the
GAC.

VisiBroker for .NET deployment license key
The VisiBroker for .NET deployment license key is installed in the location
<install-dir>\VisiNet\client.slip. You can use the license in one of
three ways:

• Include the license as an embedded resource

• Copy the license to the application’s virtual root (for ASP.NET
deployment)

• Point to the license file location in the application configuration file

Important

Refer to your license agreement to determine what constraints exist on the
number and types of machines on which you can use your deployment
license.

VisiBroker for .NET Developer ’s Guide 39

Deploying Vis iBroker for .NET appl icat ions

Including the license as an embedded resource
The following procedures describe the steps to include the VisiBroker for
.NET deployment license as an embedded resource in your application using
Microsoft Visual Studio .NET.

To embed a resource using Visual Studio .NET:

1 Copy the license file (client.slip or server.slip) from the License directory
on the VisiBroker deployment CD-ROM to your project directory.

2 Rename the SLIP file to borland.slip.

3 Click Show All Files in the Solution Explorer.

4 Right-click the license file, and select Include In Project.

5 Right-click the license file, and select Properties.

6 Change the Build Action property to Embedded Resource.

Copying the license to the application virtual root
To include the VisiBroker for .NET deployment license in the application root
of an ASP.NET server application:

1 Copy the license file (client.slip or server.slip) from <install-dir>\
VisiNet\ directory to the application’s root installation directory.

2 Rename the SLIP file to borland.slip.

Modifying the application configuration file
To include the location of the VisiBroker for .NET deployment license in the
application configuration file:

1 Copy the license file (client.slip or server.slip) from the License directory
on the VisiBroker deployment CD-ROM to a directory on your network.

2 Modify the XML to include the <license> element as shown in the
following example.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="visinet” type="Janeva.Settings, Borland.Janeva.Runtime"/>

</configSections
<visinet>

<license dir=”C:\Program Files\Borland\Janeva”/>
</visinet>

</configuration>

The <license> dir value should be the absolute or relative path to the
file containing the Micro Focus license key.

40 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 41

Developing VisiBroker for
.NET Remoting servers
This chapter explains the process for developing a VisiBroker for .NET
Remoting server, and in particular it discusses how to implement a
MarshalByRefObject object in VisiBroker for .NET.

Introduction
This section introduces the concepts of .NET Remoting server and a
VisiBroker for .NET server.

About .NET Remoting
MarshalByRefObject objects are remote objects that run on the server
and accept method calls from clients. .NET Remoting
MarshalByRefObjects can be categorized into two groups:

• Server-activated objects (SAOs)

• Client-activated objects (CAOs)

SAOs can be marked as either Singleton or SingleCall. In the first case, one
instance serves requests of all clients in a multi-threaded fashion. When
using SAOs in SingleCall mode, a new object will be created for each
request and destroyed afterwards. Both Singleton and SingleCall SAO
modes are supported in VisiBroker for .NET. In addition to that, VisiBroker
for .NET supports transient MarshalByRefObject objects that run either
on a server, or on a client for server callback.

42 VisiBroker for .NET Developer ’s Guide

Introduct ion

About VisiBroker for .NET Server
A VisiBroker for .NET server always starts from an IDL interface definition.
An IDL interface defines the business logic that both the client and the
server abide by. For example, the following example IDL file defines three
interfaces:

• an AccountManager interface that follows the factory design pattern with
an open method for opening new bank accounts.

• an Account interface that has operations to query the balance, as well as
to do account debit and credit.

• a Callback interface for banking event notification.

// Bank.idl
module Bank {

interface Callback {
void notify(in string message);

};

interface Account {
float balance();
void credit(in float amount);
void debit(in float amount);

};

interface AccountManager {
Account open(in float balance, in Callback callback);

};
};

A server will implement both the AccountManager interface and the
Account interface. The client will provide the implementation for the
Callback interface so that the bank server can call back to notify the client
about all of the banking events.

The next two sections will walk through how to write the Bank server in
.NET Remoting style, as well as how to add the callback implementation to
the .NET Remoting style client.

VisiBroker for .NET Developer ’s Guide 43

Developing a server in .NET Remoting sty le

Developing a server in .NET Remoting style
A server needs to implement the business logic. For the bank example, the
bank server needs to provide implementation for both the AccountManager
interface and the Account interface. The following code snippet shows the
implementation of the AccountManager interface and the Account
interface at the server side:

namespace Server {
public class AccountImpl : MarshalByRefObject, Bank.Account {

private float _balance;
private Callback _callback;
internal AccountImpl(float balance, Callback callback) {

_balance = balance;
_callback = callback;
_callback.Notify("Created account with $" + _balance);

}
public float Balance() {

_callback.Notify("Current balance is $" + _balance);
return _balance;

}
public void Credit(float amount) {

_callback.Notify("Crediting account with $" + amount);
_balance += amount;

}
public void Debit(float amount) {

if(amount <= _balance) {
_callback.Notify("Debiting account by $" + amount);
_balance -= amount;

}
else {

_callback.Notify("Insufficient funds to debit $" + amount);
}

}
}
public class AccountManagerImpl : MarshalByRefObject, Bank.AccountManager

{
public AccountManagerImpl() {

Console.WriteLine("AccountManager created on : " +
System.DateTime.UtcNow.ToLongTimeString());

}
public Account Open(float balance, Callback callback) {

Console.WriteLine("Opening a new account with balance = $" + balance);
return new AccountImpl(balance, callback);

}
}

}

The Open() method of the AccountManagerImpl class takes in an initial
balance and a Callback object reference that is passed in by the client,
then creates a new instance of AccountImpl class.

The Balance() method of the AccountImpl class simply returns the
balance to the client; the Credit() method credits the passed in amount to
the account balance; the Debit() method debits the requested amount
from the account balance. All of these three account operation events are
notified to the client via the Callback object.

Now that the interface implementation is completed, the next step for the
server is to register the AccountManagerImpl object either as a well
known SingleCall service object or as a well known Singleton object to

44 VisiBroker for .NET Developer ’s Guide

Developing a server in .NET Remot ing sty le

the .NET Remoting system. AccountImpl objects are transient as they do
not outlive the process that created them.

Singleton object configuration
When a server implementation object is configured as a Singleton well
known service type, only one instance of the server implementation object
is created. It is this singleton instance that serves all requests coming from
all clients. The configuration can be done either explicitly using .NET
RemotingConfiguration APIs, or implicitly using a .NET Remoting
configuration file.

Explicit registration
Singleton server implementation objects are explicitly registered to the
Remoting system at the server side using the following statement:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(<TheServerImplClass>),

“<objectURI>”, WellKnownObjectMode.Singleton);

For the bank example, the following code snippet explicitly registers an
instance of AccountManagerImpl class as a well known Singleton service
type with AccountManager.iiop as its end point URI:

RemotingConfiguration.RegisterWellKnownServiceType(typeof(
Server.AccountManagerImpl),“AccountManager.iiop”,
WellKnownObjectMode.Singleton);

Implicit registration
Implicit registration of a server implementation object as a well known
Singleton service type is done through the <service> property in the
.NET Remoting configuration file as shown in the following example:

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="Singleton"
type="<namespace>.<implclassname>, <assembly>"
objectUri="<objectURI>"/>

</service>
</application>

</system.runtime.remoting>
</configuration>

and a call to .NET RemotingConfiguration to load in the configuration
file:

RemotingConfiguration.Configure(“<configfile>”);

For the bank example, the complete configuration file of the server is shown
below:

<configuration>
<configSections>

<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>
<visinet>

<agent port="24300" addr="localhost"/>
<server defaultPort=”10000”>

<remoting enabled="true"/>

VisiBroker for .NET Developer ’s Guide 45

Developing a server in .NET Remoting sty le

</server>
</visinet>
<system.runtime.remoting>

<application name="Server">
<channels>

<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>

</channels>
<service>

<wellknown mode="Singleton"
type="Server.AccountManagerImpl, Server"
objectUri="AccountManager.iiop"/>

</service>
</application>

</system.runtime.remoting>
<janeva.runtime.remoting>

<wellknown objectUri="AccountManager.iiop" jndi="a/b/c"/>
</janeva.runtime.remoting>

</configuration>

For more information on Janeva.Remoting.IiopChannel type and its
properties, see “Specifying the Remoting channel”.

SingleCall object configuration
When a server object is configured as a well known SingleCall object, the
server will create one instance per each client invocation of a method,
execute the method and then destroy the object again. Similar to the
Singleton mode, the configuration can be done either explicitly using .NET
RemotingConfiguration APIs, or implicitly using .NET Remoting
configuration file.

Explicit registration
To register a SingleCall server implementation object explicitly, use the
following codes:

RemotingConfiguration.RegisterWellKnownServiceType(typeof(
<TheServerImplClass>),

“<objectURI>”, WellKnownObjectMode.SingleCall);

46 VisiBroker for .NET Developer ’s Guide

Developing a server in .NET Remot ing sty le

Implicit registration
To register a SingleCall server implementation object implicitly, change
the <wellknown> property’s mode attribute to be SingleCall in the .NET
Remoting configuration file:

<configuration>
 <configSections>

<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>
<visinet>

<agent port="24300" addr="localhost"/>
<server defaultPort=”10000”>

<remoting enabled="true"/>
</server>

</visinet>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="SingleCall"
type="<namespace>.<implclassname>, <assembly>"
objectUri="<objectURI>"/>

</service>
</application>

</system.runtime.remoting>
</configuration>

If you compare the output of the bank server example between Singleton
and SingleCall mode, you’ll notice that in Singleton mode, the
AccountManagerImpl class constructor is invoked only once no matter how
many times a client tries to invoke the open method. While in SingleCall
mode, the constructor is invoked once every time when the client invokes
the open method.

VisiBroker for .NET Developer ’s Guide 47

Adding callbacks to a VisiBroker for .NET Remoting
client

Adding callback objects to a VisiBroker for .NET remoting client is straight
forward: implement the callback interface defined in the IDL file, then
create an instance of the callback object and pass it as object reference to a
server invocation method. Callback objects are transient objects in
VisiBroker for .NET.

The following code listing shows a complete client implementation of the
bank example:

using System;
using System.Runtime.Remoting;
using Bank;

namespace Client {

public class CallbackImpl : MarshalByRefObject, Callback {
public void Notify(string message) {

Console.WriteLine(" Callback: " + message);
}

}
public class Client {

static void Main(string[] args) {
try {

RemotingConfiguration.Configure("Client.config");
AccountManager manager = new AccountManagerRemotingProxy();
Callback callback = new CallbackImpl();
Account account = manager.Open(1000, callback);
Console.WriteLine("Balance = $" + account.Balance());
Console.WriteLine("Withdrawing $500");
account.Debit(500);
Console.WriteLine("balance = $" + account.Balance());
Console.WriteLine("Depositing $100");
account.Credit(100);
Console.WriteLine("Balance = $" + account.Balance());
Console.WriteLine("Withdrawing $700");
account.Debit(700);
Console.WriteLine("Balance = $" + account.Balance());

}
catch(Exception e) {

Console.WriteLine(e);
}
Console.WriteLine("Press enter key to stop the client...");
Console.ReadLine();

}
}

}

48 VisiBroker for .NET Developer ’s Guide

The .NET remoting configuration file Client.config used by the bank
client is listed below:

<configuration>
<system.runtime.remoting>

<application name="Client">
<channels>

<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>

</channels>
<client>

<wellknown type="Bank.AccountManagerRemotingProxy, Client"
url="janeva:corbaloc::localhost:10000/AccountManager.iiop"/>

</client>
</application>

</system.runtime.remoting>
</configuration>

Refer to “.NET Remoting configuration” for details on how write the Remoting
section of the VisiBroker for .NET Remoting configuration file. See
“Configuring properties” for information about configuring VisiBroker for .NET
properties in a configuration file.

Properties
By default, VisiBroker for .NET Remoting server and callback feature is
turned off. You will need to enable it explicitly for developing a VisiBroker
for .NET Remoting server and/or add callback objects into your Remoting
client. This is done by setting the janeva.server.remoting property to
true. See “Configuring properties” for information about configuring VisiBroker
for .NET properties in a configuration file.

VisiBroker for .NET Developer ’s Guide 49

Using hints and custom
marshaling
This chapter explains how to use hints to control java2cs code generation
for valuetypes in VisiBroker for .NET.

VisiBroker for .NET has a powerful mechanism that lets the user customize
the code generation for Java valuetypes. Valuetypes are value classes that
are implemented in Java (typically extending java.io.Serializable
directly or indirectly). These classes have state and are intended to be
marshaled over the wire as state.

VisiBroker for .NET code generation—an example
In order to fully understand the use of hints and how they affect java2cs
code generation, the following example shows a simple Java type called
User.

public class User implements java.io.Serializable {
public String name;
private String password;
public User (String name, String password) {

this.name = name;
this.password = password;

}
}

Obviously this example class is not realistic as it does not allow access to
initialize or in any way use the private state of this object. However, we are
skipping a real implementation of this object (with appropriate constructors
and methods) for the sake of simplicity. For this discussion methods in Java
classes are irrelevant.

Note:

We are generating a C# class corresponding to the Java class. The methods
in Java classes are irrelevant because porting the methods would involve
essentially reverse engineering the Java class, and so the porting of
methods is not supported. If you would like to have the same or similar
methods in your C# class corresponding to the Java version of your
valuetype, you will have to implement the C# equivalent yourself. Later
sections in this document will explain how that is done.

50 VisiBroker for .NET Developer ’s Guide

Vis iBroker for .NET code generat ion—an example

The important sections of the C# code that is generated from the example
Java class, User, are shown below.

[System.Serializable] public class User {

private string _Name;

public virtual string Name {
get { return this._Name; }
set { this._Name = value; }

}

private string _Password;

public virtual string Password {
get { return this._Password; }
set { this._Password = value; }

}

// Other common object methods omitted
}

The C# type User represents the Java class User. As is apparent, this is
incorrect in a few ways.

• It provides public accessors to the private field (password, _Password in
C#). This will happen regardless of whether the Java type provides the
same accessors or not. As mentioned, the compiler will not look at the
Java methods.

• This class demotes the access modifier of the field name (_Name in C#)
from public to private, but a public property is provided for access.

• The C# object has no constructors or methods generated from the Java
type.

In short, this class is not very usable. However, it provides you a starting
point from which you can build your real valuetype. You can cut this code
from the generated code, add it to your source, and add all the useful
constructors and methods. We will show you later how to avoid generating
this class again, and instead use your version.

ValueFactory class
Now let us look at the generated ValueFactory class for User. This class is
responsible for creating and initializing an instance of the C# type User
when it reads an instance of the Java class User from the network. it is also
responsible for writing the correct data to the network when you pass an
instance of the C# class User to a remote server. It is important to note
that the ValueFactory is associated with the corresponding Java type. That
is, each distinct Java type will have a distinct factory. This allows more than
one Java type to map to a given C# type.

VisiBroker for .NET Developer ’s Guide 51

VisiBroker for .NET code generat ion—an example

ValueFactory methods
The ValueFactory class has many methods, but the following example
highlights the most significant ones that you will need to know.

public class UserValueFactory : CORBA.ValueFactory {

public virtual CORBA.TypeCode GetTypeCode() {
return UserHelper.GetTypeCode();

}
public virtual System.Type GetValueType() {

return typeof(User);
}
public virtual User CreateObject() {

return new User();
}
public virtual void InitObject(UserValueData src_data, User dst_object) {

dst_object.Name = src_data.Name;
dst_object.Password = src_data.Password;

}
public virtual void InitData(User src_object, UserValueData dst_data) {

dst_data.Name = src_object.Name;
dst_data.Password = src_object.Password;

}
}

Note that UserValueData is a class that contains as public data members
every instance member of the User class as shown in the following
example.

public class UserValueData {
public string Name;
public string Password;

}

The following table describes the ValueFactory methods:

Based on the above table, you see that the ValueData class represents the
data that is marshaled on the wire, irrespective of how the data is stored or
maintained in the C# type.

Notice that the ValueFactory created the object in one step
(CreateObject) and read the data in another step (InitObject). There is
a good reason for this. When unmarshaling or marshaling a type that is
inherited from other stateful types, each type's factory is normally
responsible for marshaling and unmarshaling only the state at its level in
the hierarchy. To achieve this, the infrastructure will first instantiate an

Method name Description
GetValueType Returns the type of the class that maps to the Java type

MyValue.
CreateObject Returns a new instance of the C# type corresponding to the

Java type MyValue
InitObject Used when reading a Java MyValue. The C# type created by

CreateObject is passed to it as well as the ValueData class.
When the call to InitObject is made, the data for MyValue
has already been unmarshaled into the ValueData class. The
InitObject merely assigns the fields from the ValueData
class to the C# MyValue class. We will see the usefulness of
this pattern later.

InitData Used when writing the C# MyValue to the stream. This
method merely transfers the state of the members of the C#
MyValue to the ValueData class. The infrastructure will then
marshal the state from the ValueData class.

52 VisiBroker for .NET Developer ’s Guide

An int roduct ion to h ints

instance of the type that is being unmarshaled, but will pass it to the factory
corresponding to each type in the hierarchy, starting from the base, to
unmarshal the relevant state and work its way up the hierarchy. When
writing, the same process is repeated, this time using the InitData
methods.

An introduction to hints
The hints file is an XML file that provides hints to the java2cs compiler
allowing the user to customize the code that is generated.

The following is an example of a simple hints.xml file.

<?xml version=”1.0” ?>
<hints>

<hint>
<java-class>User</java-class>
<cs-impl-type>UserData</cs-impl-type>

</hint>
</hints>

To run the java2cs compiler with the above hints file, enter the following at
the command line:

java2cs -hint_file hints.xml -o User.cs User

Supplying the implementation of a value type
Running the compiler with the following hint will cause the compiler to stop
generating the User class.

<?xml version=”1.0” ?>
<hints>

<hint>
<java-class>User</java-class>
<cs-impl-type>User</cs-impl-type>

</hint>
</hints>

You can now write your implementation of the User class as desired and
compile it with the generated code.

VisiBroker for .NET Developer ’s Guide 53

An int roduct ion to hints

Replacing the default implementation with a
custom implementation
Running the compiler with the following hint will change the name of the C#
type from User to UserData.

<?xml version=”1.0” ?>
<hints>

<hint>
<java-class>User</java-class>
<cs-impl-type>UserData</cs-impl-type>

</hint>
</hints>

Using the above hint, the compiler no longer generates the User class or
the UserData class. However, all of the other classes are generated with
the assumption that you will implement the UserData class.

Notice that after generating code using the example hints file, the
ValueFactory no longer refers to the User class. Rather, it refers to the
UserData class.

public virtual System.Type GetValueType() {
return typeof(UserData);

}

public virtual UserData CreateObject() {
return new UserData();

}

public virtual void InitObject(UserValueData src_data,
UserData dst_object) {

dst_object.Name = src_data.Name;
dst_object.Password = src_data.Password;

}

public virtual void InitData(UserData src_object,
UserValueData dst_data) {

dst_data.Name = src_object.Name;
dst_data.Password = src_object.Password;

}

54 VisiBroker for .NET Developer ’s Guide

An int roduct ion to h ints

You could now write a UserData class (as shown in the following example)
and use it with the generated code.

[System.Serializable] public class UserData {

private string _Name;
private string _Password;

public UserData() {
}

public UserData(string name, string password) {
_Name = name;
_Password = password;

}

internal void Init(string name, string password) {
_Name = name;
_Password = password;

}

public string Name {
get {

return _Name;
}

}

public string Password {
get{

return _Password;
}

}
}

You cannot use this class as is. In order for this class to compile, you will
need to expose visible properties (or fields) to InitObject and InitData
called Name and Password (See the code for InitObject and InitData in
the generated ValueFactory class).

To fix this you can either add visible properties or change the field names to
be Name and Password and make them visible to the generated code.

While this is straightforward, you may not want to expose the class fields.
Rather you might want to keep your class as shown above. This means you
need to take over the work of InitObject and InitData and rewrite the
hints file.

<?xml version=”1.0” ?>
<hints>

<hint>
<java-class>User</java-class>
<cs-impl-type>UserData</cs-impl-type>
<mode>custom</mode>

</hint>
</hints>

VisiBroker for .NET Developer ’s Guide 55

Mapping inter faces wi th methods

The only difference between this hint file and the previous one is that the
mode is set to custom. The generated code changes very little. In fact the
only difference is in the InitObject and InitData methods. They are
generated as follows:

public abstract class UserValueFactory :
CORBA.ValueFactory {

public abstract void InitObject(UserValueData src_data,
UserData dst_object);

public abstract void InitData(UserData src_object,
UserValueData dst_data);

}

Notice that the class and these methods are no longer concrete. You will
need to provide a factory for the User type now, but it is a trivial
implementation:

public class UserFactory: UserValueFactory {

public override void InitObject(UserValueData src_data,
UserData dst_object) {

dst_object.Init(src_data.Name, src_data.Password);
}

public override void InitData(UserData src_object,
UserValueData dst_data) {

dst_data.Name = src_object.Name;
dst_data.Password = src_object.Password;

}
}

This ValueFactory will automatically be registered as the ValueFactory for
the User Java class as long as one of the Helper classes in the generated
code is used. To explicitly register a ValueFactory you can either call
ORB.RegisterValueFactory(), or you can call
ORB.RegisterAssembly() which will register all of the factories in the
provided assembly.

Mapping interfaces with methods
Consider the Java interface:

public interface Principal {
public String getUserName();

}

and the Java class:

public class User implements Principal,
java.io.Serializable {

private String name;
private String password;

public User(String name, String password) {
this.name = name;
this.password = password;

}

public String getUserName() {
return name;

}
}

56 VisiBroker for .NET Developer ’s Guide

Mapping interfaces with methods

Running the compiler on this interface and class, without hints for both the
interface and the class, will result in the following warning:

java2cs: (warning)The type Principal requires a mapping
hint to be fully valid (e.g., method signatures will be
ignored).

java2cs: (warning)The type User requires a mapping hint to
be fully valid (e.g., method signatures will be ignored).

This warning indicates that the interface (which is not a remote interface)
has methods that are ignored by the java2cs compiler. The compiler
ignores these methods as it is not possible for the compiler to map methods
that are not designed to be invoked remotely. This is due to the fact that
the parameters that such methods take may be valid only in the local
contexts. If you look at the generated code, the compiler will generate the
following code for Principal:

public interface Principal {
}

and the following code for User:

[System.Serializable] public class User : Principal {
 ...
}

The compiler ignored the generating the code for the getUserName method.
The compiler warnings suggest that this is most likely not what is expected,
and therefore you must use a hint to map this to an appropriate .NET
interface.

Let's say that we use the following hint file (note that we are not providing a
hint for User):

<hints>
<hint>

<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>

</hint>
</hints>

This maps the interface Principle to the C# interface IPrinciple (which
the compiler will not generate). Let us say we also add the
IAuthenticatable to our .NET code as follows (note that you could use an
existing interface, such as System.Security.Principals.IPrincipal):

public interface IPrincipal {
string GetName();

}

Now, this works better. The generated User extends IPrincipal:

[System.Serializable] public class User : IPrincipal {
...

}

The compiler would have still generated the warning:

java2cs: (warning)The type User requires a mapping hint to
be fully valid (e.g., method signatures will be ignored).

Now it is obvious why this warning is generated. The User class that is
generated cannot possibly know that the IPrincipal has a method called
GetName that needs to be implemented. And even if it did, it could not
possibly know how the method was implemented.

VisiBroker for .NET Developer ’s Guide 57

Using signature type to hide implementat ion detai ls

The rule here, therefore, is that whenever the compiler generates a value
class, which it knows contains methods that need to be implemented, it will
generate the warning.

Using signature type to hide implementation details
In the above case the User type implemented an interface. There are many
cases where we develop classes that implement interfaces but our classes
are private implementations that are never exposed to the user. For
example, consider an Iterator of any collection. While the Iterator
interface is public, all implementations of it are typically hidden and are
never exposed to the user.

For example, if User were one such type, you do not want your
ValueFactories actually exposing the type in its signatures because
ValueFactories are public classes. To avoid this you can use the signature
type in the hint to control what is exposed by the ValueFactory.

The following hint:

<hints>
<hint>

<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>

</hint>
<hint>

<java-class>User</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
<cs-impl-type>UserData</cs-impl-type>
<mode>custom</mode>

</hint>
</hints>

generates the following ValueFactory:

public abstract class UserValueFactory : CORBA.ValueFactory {

public virtual System.Type GetValueType() {
return typeof(UserData);

}
public virtual IPrincipal CreateObject() {

return new UserData();
}
public abstract void InitObject(UserValueData src_data, IPrincipal

dst_object);
public abstract void InitData(IPrincipal src_object, UserValueData

dst_data);
}

Note that while the implementation that the factory uses is UserData, all of
the signatures use IPrincipal.

58 VisiBroker for .NET Developer ’s Guide

Expl ic i t factory code

Explicit factory code
Sometimes it is just convenient to write all the factory code yourself. To do
this, use the following hints:

<hints>
<hint>

<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>

</hint>
<hint>

<java-class>User</java-class>
<cs-sig-type>UserData</cs-sig-type>
<mode>custom</mode>

</hint>
</hints>

The only changes from the previously generated code are the
GetValueType and CreateObject methods which are also abstract now.

public abstract System.Type GetValueType();

public abstract UserData CreateObject();

The key here is that cs-sig-type element is used in the hint rather than
cs-impl-type. This instructs the compiler to exclude all references to the
implementation class.

Notice that you can still tweak the other aspects of the hints to change
other code generation aspects. For example the following hint:

<hints>
<hint>

<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>

</hint>
<hint>

<java-class>User</java-class>
<cs-sig-type>UserData</cs-sig-type>

</hint>
</hints>

still results in the InitObject and InitData methods being generated as
shown below:

public virtual void InitObject(UserValueData src_data,
UserData dst_object) {

dst_object.Name = src_data.Name;
dst_object.Password = src_data.Password;

}

public virtual void InitData(UserData src_object,
UserValueData dst_data) {

dst_data.Name = src_object.Name;
dst_data.Password = src_object.Password;

}

VisiBroker for .NET Developer ’s Guide 59

Immutables

Immutables
Consider the earlier example of the UserData class with one slight
modification. In the following example we removed the init method and
the default void constructor:

[System.Serializable] public class UserData {

private string _Name;
private string _Password;

public UserData(String name, string password) {
_Name = name;
_Password = password;

}

public string Name {
get {

return _Name;
}

}

public string Password {
get{

return _Password;
}

}
}

This is an example of a class that cannot be created without initializing its
fields. Also notice that once created there is no way to initialize its fields.
There are no methods to set the Name and Password fields, but here we are
reading the state of the object from the network and we need to set the
object's state to the exact values we read.

However, our ValueFactory creates the object in the CreateObject method
and initializes it in another step (InitObject). This obviously will not work
for us. To support this case, we provide the immutable mode in the hint.

Using this hint:

<hints>
<hint>

<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>

</hint>
<hint>

<java-class>User</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
<cs-impl-type>UserData</cs-impl-type>
<mode>immutable</mode>

</hint>
</hints>

results in the following signature for InitObject:

public abstract IPrincipal InitObject(UserValueData src_data);

Also, the CreateObject call is no longer generated (abstract or otherwise).

Notice here how the InitObject returns an IPrincipal rather than
receiving one as argument. This allows you to write a ValueFactory that
creates a UserData with the value data that has already been unmarshaled
and return it.

60 VisiBroker for .NET Developer ’s Guide

Custom marshal ing

Such a ValueFactory might look like this:

public class UserFactory: UserValueFactory {

public override IPrincipal InitObject(UserValueData src_data);
return new UserData(src_data.Name, src_data.Password);

}
public override void InitData(UserData src_object, UserValueData dst_data)
{

dst_data.Name = src_object.Name;
dst_data.Password = src_object.Password;

}
}

Be aware that with the immutable mode you are responsible for using all
the state in the data object (which will include all the data for all of the base
classes as well) to initialize your immutable object as appropriate.

Custom marshaling
When writing passwords to the network you may want to encrypt them to
prevent passwords from being sent in the clear. To do this you should have
the Java class use custom marshaling.

Consider the following version of the Java User class:

public class User implements Principal,
java.io.Serializable {

private String name;
transient private String password;

public User(String name, String password) {
this.name = name;
this.password = password;

}

public String getUserName() {
return name;

}

private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
s.writeObject(encrypt(password));

}

private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
password = encrypt((String) s.readObject());

}

private String encrypt(String val) {
char[] result = new char[val.length()];
for (int 1 = 0; i < val.length(); i++) {

result[i] = (char) (((byte) val.charAt(i)) ^ 0x77);
}
return new String(result);

}
}

This is a custom marshaled Java Serializable class. The default code
generation for this class (with no hints) shows some changes. The value
class is no longer generated. This is because the compiler knows that your

VisiBroker for .NET Developer ’s Guide 61

Custom marshal ing

class is custom marshaled, so it cannot possibly generate the appropriate
fields in your class. However, it does know to generate the ValueData class,
as that represents the fields (the non-transient fields) that would be
marshaled if the class used default marshaling. As show in the code sample
above, the class also marshals some additional data.

The ValueData is generated as follows:

public class UserValueData {
public string Name;

}

The ValueFactory is generated as follows:

public abstract System.Type GetValueType();

public abstract User CreateObject();

public abstract void ReadObject(UserValueData data,
CORBA.ObjectInputStream input,
User obj);

public abstract void WriteObject(User obj,
UserValueData data,
CORBA.ObjectOutputStream output);

public static void DefaultReadValueData(UserValueData
data,

CORBA.ObjectInputStream input) {
...

}

public static void WriteValueData(UserValueData data,
CORBA.ObjectOutputStream output) {

...
}

Notice that the GetValueType and CreateObject methods are now
abstract. The compiler requires you to provide the implementation for these
as it does not know the name of your C# class. Second, note that you no
longer have the InitObject and InitData methods. Instead, you have
two new methods: ReadObject and WriteObject. You will have to
implement these methods to provide the appropriate custom marshaling
logic. As you can see, the ValueData object and the value class are still
passed to the method, but in addition a Stream is also passed. This allows
the custom marshaling logic to be written. And finally some additional
methods (DefaultReadValueData and WriteValueData) are generated to
allow the user to read or write default marshaled data.

In Java, a common use of custom marshaling is to lazy-compute serializable
fields at the time of marshaling and to lazy-initialize transient fields at the
time of unmarshaling. The actual marshaling remains identical. Sometimes,
the custom marshaling reads and writes the default fields but adds some
additional data at the end of the stream.

A sample value factory for the above Java class is shown below, using this
implementation of UserData.

[System.Serializable] public class UserData {

private string _Name;
private string _Password;

public UserData() {
}

public UserData(string name, string password) {
_Name = name;

62 VisiBroker for .NET Developer ’s Guide

Custom marshal ing

_Password = password;
}

internal Init(string name, string password) {
_Name = name;
_Password = password;

}

public string Name {
get {

return _Name;
}

}

public string Password {
get{

return _Password;
}

}
}

The ValueFactory:

public class UserFactory : UserValueFactory {

public override System.Type GetValueType() {
return typeof(UserData);

}

public override UserData CreateObject() {
return new UserData();

}

public string Encrypt(string val) {
char[] ersult = new char[val.Length];
for(int i = 0; i < val.Length; i++) {

result[i] = (char) (((byte) val[i] ^ 0x77);
}
return new string(result);

}

public override void ReadObject(UserValueData data,
CORBA.ObjectInputStream input,
User obj) {

DefaultReadValueData(data, input);
obj.Init(data.Name, Encrypt(input.ReadString()));

}

public override void WriteObject(User obj,
UserValueData data,
CORBA.ObjectOutputStream output) {

data.Name = obj.Name;
DefaultWriteValueData(data, output);
output.WriteObject(Encrypt(obj.Password));

}
}

As shown earlier, you may modify the name of the value object and change
the signature that is exposed using the other hint techniques. You may also
write additional data after the DefaultWriteValueData and read the same
addition after the DefaultReadValueData. In addition, calling
DefaultWrite/ReadValueData is not required.

VisiBroker for .NET Developer ’s Guide 63

Hints f i le schema

Hints file schema
The hints file schema is as follows:

<?xml version="1.0" ?>
<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/XMLSchema">
<xsd:element name="hints">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="hint" type="hintType" minOccurs="1"
maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="hintType">

<xsd:sequence>
<xsd:element name="java-class" type="xsd:string"/>
<xsd:element name="cs-sig-type" type="xsd:string" minOccurs="0"/>
<xsd:element name="cs-impl-type" type="xsd:string" minOccurs="0"/>
<xsd:element name="mode" type="modeType" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="modeType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="automatic"/>
<xsd:enumeration value="custom"/>
<xsd:enumeration value="immutable"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

64 VisiBroker for .NET Developer ’s Guide

One-to-many marshaling precedence
VisiBroker for .NET has a set of built-in value factories, that have a
predetermined precedence. When there is an ambiguity about how to
marshal a particular type, the default behavior is as follows:

// we need a deterministic ordering for value factories, so that the user
// knows how types are marshaled by default. The marshaling preference is
// based on registration order, with highest priority going to the last
// factory registered...

CORBA.ValueFactory[] factories = {

// Lowest priority goes to JDK 1.4 types, since these
// are meaningless to older JDKs...
new J2EE.Factories.LinkedHashMapValueFactory(),
new J2EE.Factories.LinkedHashSetValueFactory(),
// Next in priority are the JDK 1.0 and 1.1 types,
// which are no longer in fashion...
new J2EE.Factories.HashtableValueFactory(),
new J2EE.Factories.PropertiesValueFactory(),
new J2EE.Factories.StackValueFactory(),
new J2EE.Factories.VectorValueFactory(),

// Next, we have the JDK 1.2 types (note that there
// are no relevant JDK 1.3 types)...
// First we have the "less popular" types...
new J2EE.Factories.LinkedListValueFactory(),
new J2EE.Factories.TreeMapValueFactory(),
new J2EE.Factories.TreeSetValueFactory(),

// Then we have the "most popular" types...
new J2EE.Factories.HashMapValueFactory(),
new J2EE.Factories.HashSetValueFactory(),

// And finally ArrayList wins the overall popularity contest!
new J2EE.Factories.ArrayListValueFactory(),

};
foreach(CORBA.ValueFactory factory in factories) {

orb.RegisterValueFactory(factory);
}

Items lower in the array take precedence over items higher in the array. Of
course, that may not be what you require. In cases where you require a
different precedence, you need to manually override the default behavior.
The simplest way to do this is to register your preferred ValueFactories
explicitly in your main program. If you want java.util.Hashtable to take
precedence over competing types (such as java.util.HashMap), then
your main program would contain:

CORBA.ORB orb = CORBA.ORB.Init();
orb.RegisterValueFactory(J2EE.Util.HashtableValueFactory.GetSingleton());

The ORB.Init is setting up all the default ORB behavior, including doing
the ValueFactory registration shown above. This default has the HashMap
ValueFactory taking precedence over the Hashtable ValueFactory. But
then after initializing the ORB, we explicitly register the Hashtable
ValueFactory, which will cause this to take precedence over all the previous
ValueFactory registrations.

VisiBroker for .NET Developer ’s Guide 65

Using Quality of Service
Quality of Service (QoS) utilizes policies to define and manage the
connection between your client applications and the servers to which they
connect.

Understanding Quality of Service
Quality of Service policy management is performed through operations
accessible in the following contexts:

• The ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current
Policy overrides. Policies set at the ORB level override system defaults.

• Thread level policies are set through PolicyCurrent, which contains
operations for viewing and setting Policy overrides at the thread level.
Policies set at the thread level override system defaults and values set at
the ORB level.

• Object level policies can be applied by accessing the base Object
interface's quality of service operations. Policies applied at the Object
level override system defaults and values set in at the ORB or thread
level.

Setting policies per CORBA object
Use the CORBA.ObjectOperations methods in order to set QoS policies per
CORBA object. To set QoS policies per CORBA object, one needs to cast the
CORBA object to CORBA.ObjectOperations and call the method
SetPolicyOverrides_() as shown in the following example.

// Set exclusive connection policy
bool deferBind = true;
Any policyValue = orb.CreateAny();
policyValue.InsertBoolean(deferBind);
Policy policies = orb.CreatePolicy(EXCLUSIVE_CONNECTION_POLICY_TYPE.Value,

policyValue);

Calc.VisiCalc calc = Calc.VisiCalcHelper.Narrow(
((CORBA.ObjectOperations)objRef).SetPolicyOverrides_(

new Policy [] {orb.CreatePolicy(
QoSExt.EXCLUSIVE_CONNECTION_POLICY_TYPE.Value, policyValue)},
SetOverrideType.SET_OVERRIDE));

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a CORBA.INV_POLICY exception is raised.

QoS interfaces
The following interfaces are used to get and set QoS policies.

66 VisiBroker for .NET Developer ’s Guide

QoS inter faces

Object
VisiBroker for .NET extends CORBA.Object to provide additional QoS
support as defined in the OMG Messaging specification. This means that
there are two exposed Object interfaces.

Object methods
The CORBA.Object interface contains the following methods used to get
the effective policy and get or set the policy override.

GetClientPolicy_

CORBA.Policy GetClientPolicy_(int type)

Returns the effective overriding Policy for the object reference. The effective
override is obtained by first checking for an override of the given
PolicyType at the Object scope, then at the Current scope, and finally at
the ORB scope. If no override is present for the requested PolicyType, the
system-dependent default value for that PolicyType is used. Portable
applications are expected to set the desired defaults at the ORB scope since
default Policy values are not specified.

The effective Policy is the one that would be used if a request were made.
This Policy is determined first by obtaining the effective override for the
PolicyType as returned by GetClientPolicy_.

The effective override is then compared with the Policy as specified in the
IOR. The effective Policy is the intersection of the values allowed by the
effective override and the IOR-specified Policy. If the intersection is empty,
the system exception INV_POLICY is raised. Otherwise, a Policy with a
value legally within the intersection is returned as the effective Policy. The
absence of a Policy value in the IOR implies that any legal value may be
used. Invoking NonExistent_ or ValidateConnection_ on an object
reference prior to GetPolicy_ ensures the accuracy of the returned
effective Policy.

If GetPolicy_ is invoked prior to the object reference being bound, the
returned effective Policy is implementation dependent. In that situation, a
compliant implementation may do any of the following: raise the exception
CORBA.BAD_INV_ORDER, return some value for that PolicyType which may
be subject to change once a binding is performed, or attempt a binding and
then return the effective Policy.

Note that if the RebindPolicy has a value of TRANSPARENT,
VB_TRANSPARENT, or VB_NOTIFY_REBIND, the effective Policy may change
from invocation to invocation due to transparent rebinding.

Parameter Description
type The type of policy requested

VisiBroker for .NET Developer ’s Guide 67

QoS inter faces

GetPolicy_

CORBA.Policy GetPolicy_(int policy_type)

Returns the effective policy for an object reference—a Policy object of the
type specified by the policy_type parameter.

GetPolicyOverrides_

CORBA.Policy[] GetPolicyOverrides_(int[] types)

Returns the list of Policy overrides (of the specified policy types) set at the
Object scope. If the specified sequence is empty, all Policy overrides at this
scope will be returned. If none of the requested PolicyTypes are
overridden at the Object scope, an empty sequence is returned.

SetPolicyOverrides_

CORBA.Object SetPolicyOverrides_(CORBA.Policy[] policies,
CORBA.SetOverrideType set_add)

Returns a new Object with the given policies either replacing any existing
policies in this Object or with the given policies added to the existing ones,
depending on the value of the given SetOverrideType object.

This method works in a way similar to the CORBA.PolicyManager method
of the same name. However, it updates the current set of policies of an
Object, thread, or ORB with the requested list of Policy overrides. In
addition, this method returns a CORBA.Object whereas other methods of
the same name return void.

ValidateConnection_

bool ValidateConnection_(out CORBA.Policy[]
inconsistent_policies)

Returns a boolean value based on whether the current effective policies for
the object will allow an invocation to be made. It returns the value TRUE if
the current effective policies for the Object allow an invocation to be made.
If the object reference is not yet bound, a binding occurs as part of this
operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer
valid, a rebind is attempted regardless of the setting of any RebindPolicy
override.

The ValidateConnection_ operation is the only way to force such a rebind
when implicit rebinds are disallowed by the current effective RebindPolicy.
The attempt to bind or rebind may involve processing GIOP
LocateRequests by the ORB. Returns the value FALSE if the current

Parameter Description
policy_type The type of policy to obtain

Parameter Description
types The policy types queried for

Parameter Description
policies an array of Policy objects containing the policies to be

added or to be used as replacements
set_add either SetOverrideType.SET_OVERRIDE, indicating

that the given policies will replace any existing ones, or
SetOverrideType.ADD_OVERRIDE, indicating that the
given policies should be added to any existing ones

68 VisiBroker for .NET Developer ’s Guide

QoS inter faces

effective policies would cause an invocation to raise the system exception
INV_POLICY.

If the current effective policies are incompatible, the out parameter
inconsistent_policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy
overrides, the appropriate system exception is raised.

PolicyManager
The CORBA.PolicyManager interface provides methods for getting and
setting Policy overrides at the ORB level.

PolicyManager methods

GetPolicyOverrides

CORBA.Policy[] GetPolicyOverrides(int[] ts)

This method returns a PolicyList sequence of all the overridden policies
for the requested PolicyTypes. If the specified sequence is empty (that is,
if the length of the list is zero), all Policy overrides at the current context
level will be returned. If none of the requested PolicyTypes are overridden
at the target PolicyManager, an empty sequence is returned.

SetPolicyOverrides

void SetPolicyOverrides(CORBA.Policy[] policies,
CORBA.SetOverrideType set_add)

This method modifies the current set of policy overrides with the requested
list of Policy overrides. Invoking SetPolicyOverrides with an empty
sequence of policies and a mode of SET_OVERRIDE removes all overrides
from a PolicyManager.

The first input parameter, policies, is a sequence of references to Policy
objects. The second parameter, set_add, of type
CORBA.SetOverrideType indicates whether these policies should be
added onto any other overrides that already exist in the PolicyManager
using ADD_OVERRIDE, or they should be added to a PolicyManager that
doesn't contain any overrides using SET_OVERRIDES.

Only certain policies that pertain to the invocation of an operation at the
client end can be overridden using this operation. Should you attempt to
override policies that do not apply to your client, a CORBA.NO_PERMISSION
exception will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or

Parameter Description
inconsistent_p
olicies

out parameter that returns the list of inconsistent policies
that prevent the invocation from being made

VisiBroker for .NET Developer ’s Guide 69

QoS inter faces

added, and an InvalidPolicies exception is raised. There is no
evaluation of compatibility with policies set within other PolicyManagers.

PolicyCurrent
The CORBA.PolicyCurrent interface derives from PolicyManager and
Current without adding new methods. Therefore all operations on the
PolicyManager interface are also available in PolicyCurrent. See
“PolicyManager” for a description of these methods.

PolicyCurrent provides access to the policies overridden at the thread
level. A reference to a thread's PolicyCurrent is obtained by invoking
ResolveInitialReferences and specifying an identifier of
PolicyCurrent.

DeferBindPolicy
The QoSExt.DeferBindPolicy determines if the ORB will attempt to
contact the remote object when it is first created, or to delay this contact
until the first invocation is made. By default, the ORB connects to the
(remote) object when on a Bind or a StringToObject call.

The valid values for DeferBindPolicy are TRUE and FALSE. If
DeferBindPolicy is set to TRUE, all binds will be deferred until the first
invocation of a binding instance. The default value is FALSE.

If you create a client object, and DeferBindPolicy is set to true, you may
delay the server startup until the first invocation. This option existed before
as an option to the Bind method on the generated helper classes.

DeferBindPolicy properties

Value

bool Value

Returns the current setting of the DeferBindPolicy.

Example

The code sample below illustrates an example for creating a
DeferBindPolicy and setting the policy on the ORB.

public class DeferBindClient {
static void Main(string[] args) {

try {
CORBA.ORB orb = CORBA.ORB.Init(args);

// Initialize the flag and the references
bool deferMode = true;
Any policyValue = orb.CreateAny();
policyValue.InsertBoolean(deferMode);

Parameter Description
policies A sequence of references to Policy objects.

set_add A parameter of type CORBA.SetOverrideType that indicates
whether these policies should be added (ADD_OVERRIDE) to any
other overrides that already exist in the PolicyManager, or
added to a clean PolicyManager free of any other overrides
(SET_OVERRIDE). If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are
changed or added, and an InvalidPolicies exception is raised.

70 VisiBroker for .NET Developer ’s Guide

QoS inter faces

Policy policies =
orb.CreatePolicy(DEFER_BIND_POLICY_TYPE.Value, policyValue);

// Get a reference to the thread manager
PolicyManager orbManager =

PolicyManagerHelper.Narrow(
orb.ResolveInitialReferences("ORBPolicyManager"));

// Set the policy on the ORB level
orbManager.SetPolicyOverrides(new Policy[] {policies},

SetOverrideType.SET_OVERRIDE);

// Get the binding method
byte[] managerId = orb.StringToObjectId("BankManager");

Bank.AccountManager manager =
Bank.AccountManagerHelper.Bind("/qos_poa", managerId);

// use Jack B. Quick as the account name.
string name = "Jack B. Quick";

// Request the account manager to open a named account.
Bank.Account account = manager.Open(name);

// Get the balance of the account.
float balance = account.Balance();

// Print out the balance.
Console.WriteLine(

"\n The balance in " + name + "'s account is $" + balance);
}
catch (Exception e) {

Console.WriteLine(e);
}

}
}

ExclusiveConnectionPolicy
The QoSExt.ExclusiveConnectionPolicy is a VisiBroker for .NET-
specific policy that gives you the ability to establish an exclusive (non-
shared) connection to the specified server object. This policy can have a
boolean value of TRUE or FALSE. If the policy is TRUE, connections to the
server object are exclusive. If the policy is FALSE, existing connections are
reused if possible, and a new connection is opened only if reuse is not
possible. The default value is FALSE.

ExclusiveConnectionPolicy properties

Value

bool Value

Returns the current setting of the ExclusiveConnectionPolicy.

RelativeConnectionTimeoutPolicy
The QoSExt.RelativeConnectionTimeoutPolicy indicates a timeout
after which attempts to connect to an object using one of the available
endpoints is aborted. The timeout situation is likely to happen with objects
protected by firewalls, where HTTP tunneling is the only way to connect to
the object.

VisiBroker for .NET Developer ’s Guide 71

QoS inter faces

Note

This Policy is not enforced for in-process communications.

The policy value of type unsigned long long specifies the timeout in 100s
of nanoseconds. It is applied to every endpoint that the ORB tries to
connect to. Therefore, if multiple connection attempts are made, the
elapsed time will be a multiple of the configured timeout. The accuracy is
also limited by the Java virtual machine implementation.

RelativeConnectionTimeoutPolicy methods

RelativeExpiry

long RelativeExpiry()

Gets the timeout in multiples of 100 nanoseconds.

Example

The following code examples illustrates how to create
RelativeConnectionTimeoutPolicy.

public class ConnClient {
static void Main(string [] args) {

try {
// Initialize the ORB.
ORB orb = ORB.Init(args);

// Get the manager Id
byte[] managerId = orb.StringToObjectId("BankManager");

string name = "Jack B. Quick";

// Specify the timeout in 100s of Nanosecs.
// To set a timeout of 20 secs, set 20 * 10^7 nanosecs
int connTimeout = 20;
Any ctopolicyValue = orb.CreateAny();

ctopolicyValue.InsertUlonglong(connTimeout * 10000000);
Policy ctoPolicy = orb.CreatePolicy(

RELATIVE_CONN_TIMEOUT_POLICY_TYPE.Value, ctopolicyValue);

PolicyManager orbManager = PolicyManagerHelper.Narrow(
orb.ResolveInitialReferences("ORBPolicyManager"));

orbManager.SetPolicyOverrides(new Policy [] {ctoPolicy},
SetOverrideType.SET_OVERRIDE);

// Locate an account manager. Give the full POA name and
// the servant ID.
AccountManager source =

AccountManagerHelper.Bind("/qos_poa", managerId);

Account account = source.Open(name);
float balance = account.Balance();
Console.WriteLine("The balance in {0}'s account is {1}$", name,

balance);
}
catch (Exception e) {

Console.WriteLine(e);
}

}
}

72 VisiBroker for .NET Developer ’s Guide

QoS inter faces

RebindPolicy
The Messaging.RebindPolicy determines how the client-side ORB
handles closed connections, GIOP location-forward messages and object
failures. The ORB handles fail-overs, rebinds, and reconnections by looking
at the effective policy at the CORBA.Object instance.

The OMG-defined Policy values determine whether the ORB may
transparently rebind once it is successfully bound to a target server. The
extended policy values determine whether the ORB may transparently
failover once it is successfully bound to a target Object.

The RebindPolicy is a client-side-only policy.

Note

The RebindPolicy is enforced only after being successfully bound to an
object. For GIOP-based protocols an object reference is considered bound
once it is in a state where a LocateRequest message would result in a
LocateReply message with status OBJECT_HERE.

The RebindPolicy is set only on the client side. It can have one of six
values that determines the behavior in the case of a disconnection, an
object forwarding request, or an object failure. The RebindPolicy accepts
the following constants to define the behavior of the client when rebinding.

The currently supported values are:

• Messaging.TRANSPARENT—allows the ORB to silently handle object-
forwarding and necessary reconnections during the course of making a
remote request.

• Messaging.NO_REBIND—allows the ORB to silently handle reopening of
closed connections while making a remote request, but prevents any
transparent object-forwarding that would cause a change in client-visible
effective QoS policies. When RebindMode is set to NO_REBIND, only
explicit rebind is allowed.

• Messaging.NO_RECONNECT—prevents the ORB from silently handling
object-forwards or the reopening of closed connections. You must
explicitly rebind and reconnect when RebindMode is set to
NO_RECONNECT.

• QoSExt.VB_TRANSPARENT—is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both
implicit and explicit binding.

• QoSExt.VB_NOTIFY_REBIND—throws an exception if a rebind is
necessary. The client catches this exception, and binds on the second
invocation.

• QoSExt.VB_NO_REBIND—does not enable failover. It only allows the
client ORB to reopen a closed connection to the same server; it does not
allow object forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_TRANSPARENT and
your client is working with servers that hold state data, VB_TRANSPARENT
could connect the client to a new server without the client being aware of
the change of server, any state data held by the original server will be lost.

VisiBroker for .NET Developer ’s Guide 73

QoS inter faces

The following table lists the behavior of the different RebindMode types.

The appropriate CORBA exception will be thrown in the case of a
communication problem or an object failure.

Example

The following example creates a RebindPolicy of type TRANSPARENT and
sets the policy on the ORB, thread, and object levels.

using System;
using System.IO;
using CORBA;
using QoSExt;
using Messaging;
using Bank;

public class TransparentClient {
static void Main(string[] args) {

try {
short rebindMode = Messaging.TRANSPARENT.Value;

// initialize the ORB
CORBA.ORB orb = CORBA.ORB.Init(args);

// get the object Id
byte[] managerId = orb.StringToObjectId("BankManager");

// locate an account manager; give the full POA name and the object Id
Bank.AccountManager manager =

Bank.AccountManagerHelper.Bind("/qos_poa", managerId);
string s = orb.ObjectToString(manager);
CORBA.Object obj = orb.StringToObject(s);

// Create the client side policy so that we can receive TRANSIENT
// exception thrown by the server side orb.
Any policyValue = orb.CreateAny();
RebindModeHelper.Insert(policyValue, rebindMode);
Policy myRebindPolicy =

orb.CreatePolicy(REBIND_POLICY_TYPE.Value, policyValue);

// Set the policy on the AccountManager object.
Bank.AccountManager manager = Bank.AccountManager.Narrow(

((CORBA.ObjectOperations)obj.SetPolicyOverrides_(
new Policy [] {orb.CreatePolicy(

QoSExt.EXCLUSIVE_CONNECTION_POLICY_TYPE.Value,
policyValue)},

SetOverrideType.SET_OVERRIDE));

RebindMode type

Reestablish closed
connection to the
same object?

Allow object
forwarding? Object failover?

NO_RECONNECT No, throws REBIND
exception.

No, throws REBIND
exception.

No

NO_REBIND Yes Yes, if policies match.
No, throws REBIND
exception.

No

TRANSPARENT Yes Yes No

VB_NOTIFY_REBIND Yes Yes Yes. VB_NOTIFY_REBIND
throws an exception after
failure detection, and then
tries a failover on
subsequent requests.

VB_TRANSPARENT Yes Yes Yes, transparently.

74 VisiBroker for .NET Developer ’s Guide

QoS inter faces

//get a reference to the ORB policy manager
PolicyManager orbManager = null;
try {

orbManager =
PolicyManagerHelper.Narrow(orb.ResolveInitialReferences(

"ORBPolicyManager"));
}
catch (CORBA.ORBNS.InvalidName e) {
}

//get a reference to the per-thread manager
CORBA.PolicyManager current = null;
try {

current =
PolicyManagerHelper.Narrow(orb.ResolveInitialReferences(

"PolicyCurrent"));
}
catch (CORBA.ORBNS.InvalidName e) {
}

//set the policy on the orb level
try {

orbManager.SetPolicyOverrides(new Policy[] {myRebindPolicy},
SetOverrideType.SET_OVERRIDE);

}
catch (CORBA.InvalidPolicies e) {
}

// set the policy on the Thread level
try {

current.SetPolicyOverrides(new Policy[] {myRebindPolicy},
SetOverrideType.SET_OVERRIDE);

}
catch (CORBA.InvalidPolicies e) {
}
CORBA.Object oldObjectReference =

Bank.AccountManagerHelper.Bind("/qos_poa", managerId);
CORBA.Object newObjectReference =

((CORBA.ObjectOperations)oldObjectReference).SetPolicyOverrides_(
new Policy [] {myRebindPolicy}, SetOverrideType.SET_OVERRIDE);

}
catch (Exception e) {

Console.WriteLine(e);
}

}
}

VisiBroker for .NET Developer ’s Guide 75

QoS inter faces

RebindForwardPolicy
The QoSExt.RebindForwardPolicy determines whether the client ORB
attempts to rebind in the case of a failure to connect during a
LOCATION_FORWARD. When the client is forwarded to a new object, an
attempt is made to connect to a new destination object. If this attempt fails,
the ORB transparently connects back to the original object (the source of
the forward), under the following circumstances:

• The total number of forwards at this point have not exceeded the value
for forward_count specified in this policy.

• This is not the second consecutive attempt to connect to the same
destination object.

The vbroker.orb.rebindForward property sets the value for forward_count at
the ORB level. You can override the value for forward_count at the
ORB, thread or object level programmatically, as in any QoS policy.
The default value of 0 (zero) for the property indicates that no limit has
been specified.

RebindForwardPolicy methods

ForwardCount

short ForwardCount()

Returns the current setting for forward_count of the RebindForward
policy.

RelativeRequestTimeoutPolicy
The Messaging.RelativeRequestTimeoutPolicy indicates the relative
amount of time which a Request or its responding Reply may be delivered.
After this amount of time, the Request is canceled. This policy applies to
both synchronous and asynchronous invocations. Assuming the request
completes within the specified timeout, the Reply will never be discarded
due to timeout. Timeout value is specified in 100s of nanoseconds.

Example

The following code illustrates how to create
RelativeRequestTimeoutPolicy.

public class RequestTimeoutClient {
static void Main(string[] args) {

try {
CORBA.ORB orb = CORBA.ORB.Init(args);

// get the object Id
byte[] managerId = orb.StringToObjectId("BankManager");

// locate an account manager; give the full POA name and the object Id
Bank.AccountManager manager =

Bank.AccountManagerHelper.Bind("/qos_poa", managerId);

string s = orb.ObjectToString(manager);

// Specify the timeout in 100s of Nanosecs.
// To set a timeout of 50 secs, set 50 * 10^7 nanosecs
int reqTimeout = 20;
CORBA.Any policyValue = orb.CreateAny();
policyValue.InsertUlonglong(reqTimeout * 10000000);

76 VisiBroker for .NET Developer ’s Guide

QoS inter faces

//set the RelativeRequestTimeoutPolicy
CORBA.Policy reqPolicy = orb.CreatePolicy(

RELATIVE_REQ_TIMEOUT_POLICY_TYPE.Value, policyValue);

// Get a reference to the thread manager
PolicyManager orbManager = PolicyManagerHelper.Narrow(

orb.ResolveInitialReferences("ORBPolicyManager"));

//Set the policy on the ORB level
orbManager.SetPolicyOverrides(new Policy[] {reqPolicy},

SetOverrideType.SET_OVERRIDE);
}

catch (Exception e) {
Console.WriteLine(e);

}
}

}

RelativeRoundTripTimeoutPolicy
The Messaging.RelativeRoundtripTimeoutPolicy specifies the relative
amount of time for which a Request or its corresponding Reply may be
delivered. If a response has not yet been delivered after this amount of
time, the Request is canceled. Also, if a Request had already been delivered
and a Reply is returned from the target, the Reply is discarded after this
amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout,
the Reply will never be discarded due to timeout. Timeout value is specified
in 100s of nanoseconds.

Example

The following code illustrates how to create
RelativeRoundTripTimeoutPolicy.

public class RoundtripTimeoutClient {
static void Main(string[] args) {

try {
CORBA.ORB orb = CORBA.ORB.Init(args);

// get the object Id
byte[] managerId = orb.StringToObjectId("BankManager");

// locate an account manager; give the full POA name and the object Id
Bank.AccountManager manager =

Bank.AccountManagerHelper.Bind("/qos_poa", managerId);
string s = orb.ObjectToString(manager);

// Specify the timeout in 100s of Nanosecs.
// To set a timeout of 20 secs, set 20 * 10^7 nanosecs
int rttTimeout = 50;
Any policyValue = orb.CreateAny();
policyValue.InsertUlonglong(rttTimeout * 10000000);

// Create Policy
CORBA.Policy rttPolicy =

orb.CreatePolicy(RELATIVE_RT_TIMEOUT_POLICY_TYPE.Value,policyValue);

// Get a reference to the thread manager
PolicyManager orbManager = PolicyManagerHelper.Narrow(

orb.ResolveInitialReferences("ORBPolicyManager"));

// Set the policy on the ORB level

VisiBroker for .NET Developer ’s Guide 77

QoS inter faces

orbManager.SetPolicyOverrides(new Policy[] {rttPolicy},
SetOverrideType.SET_OVERRIDE);

}

catch (Exception e) {
Console.WriteLine(e);

}
}

}

SyncScopePolicy
The Messaging.SyncScopePolicy defines the level of synchronization for
a request with respect to the target. This interface is a local object derived
from CORBA.Policy.

Values of type SyncScope are used in conjunction with a SyncScopePolicy
to control the behavior of one-way operations. It is applied to one-way
operations to indicate the synchronization scope with respect to the target
of that operation request. It is ignored when any non-one-way operation is
invoked.

This policy is also applied when the DII is used with a flag of
INV_NO_RESPONSE since the implementation of the DII is not required to
consult an interface definition to determine if an operation is declared one
way.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT.

Applications must explicitly set an ORB-level SyncScopePolicy to ensure
portability across ORB implementations. When instances of
SyncScopePolicy are created, a value of type Messaging.SyncScope is
passed to CORBA.ORB.CreatePolicy. This policy is only applicable as a
client-side override.

78 VisiBroker for .NET Developer ’s Guide

The following table lists the behavior of the different SyncScope values:

QoS exceptions
• CORBA.INV_POLICY is raised when there is an incompatibility between

Policy overrides.

• CORBA.REBIND is raised when the RebindPolicy has a value of
NO_REBIND, NO_RECONNECT, or VB_NOTIFY_REBIND and an invocation on
a bound object references results in an object-forward or location-
forward message.

• CORBA.PolicyError is raised when the requested Policy is not
supported.

• CORBA.InvalidPolicies can be raised when an operation is passed a
PolicyList sequence. The exception body contains the policies from the
sequence that are not valid, either because the policies are already
overridden within the current scope, or are not valid in conjunction with
other requested policies.

SyncScope type Description
SYNC_WITH_TRANSPORT Default. The ORB returns control to the client only after the transport has

accepted the request message. There is no guarantee that the request will
be delivered, but provides a useful degree of assurance given knowledge
of the characteristics of the transport. Since no reply is returned from the
server, no location-forwarding can be done with this level of
synchronization.

SYNC_NONE The ORB returns control to the client (e.g. returns from the method
invocation) before passing the request message to the transport protocol.
The client is guaranteed not to block. Since no reply is returned from the
server, no location-forwarding can be done with this level of
synchronization.

SYNC_WITH_SERVER The server-side ORB is to send a reply before invoking the target
implementation. If a reply of NO_EXCEPTION is sent, any necessary
location-forwarding has already occurred. Upon receipt of this reply, the
client-side ORB shall return control to the client application. The client
blocks until all location-forwarding has been completed. For a server using
a POA, the reply would be sent after invoking any ServantManager, but
before delivering the request to the target Servant.

SYNC_WITH_TARGET Equivalent to a synchronous, non-one way operation in CORBA 2.2. The
server-side ORB will only send the reply message after the target has
completed the invoked operation. Note that any LOCATION_FORWARD
reply will already have been sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime (depending on the
semantics of the exception). Even though it was declared one way, the
operation actually behaves like a synchronous operation. This form of
synchronization guarantees that the client knows that the target has seen
and acted upon a request. As with CORBA 2.2, only with this highest level
of synchronization can the OTS be used. Any operations invoked with
lesser synchronization precludes the target from participating in the
client's current transaction.

VisiBroker for .NET Developer ’s Guide 79

Using the dynamically
managed types
The DynAny interface provides a way to dynamically create basic and
constructed data types at runtime. It also allows information to be
interpreted and extracted from an Any object, even if the type it contains
was not known to the server at compile-time. The use of the DynAny
interface enables you to build powerful client and server applications that
create and interpret data types at runtime.

DynAny types
A DynAny object has an associated value that may either be a basic data
type (such as bool, int, or float) or a constructed data type. The DynAny
interface provides methods for determining the type of the contained data
as well as for setting and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which
are all derived from DynAny. Each of these interfaces provides its own set of
methods that are appropriate for setting and extracting the values it
contains.

Usage restrictions
A DynAny object may only be used locally by the process which created it.
Any attempt to use a DynAny object as a parameter on an operation request
for a bound object or to externalize it using the ObjectToString method
will cause a MARSHAL exception to be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII
request will cause a NO_IMPLEMENT exception to be raised.

Creating a DynAny
A DynAny object is created by invoking an operation on a DynAnyFactory
object. First obtain a reference to the DynAnyFactory object, and then use
that object to create the new DynAny object.

Interface TypeCode Description
DynArray _tk_array An array of values with the same data type

that has a fixed number of elements.
DynEnum _tk_enum A single enumeration value.

DynFixed _tk_fixed Not supported.

DynSequence _tk_sequence A sequence of values with the same data
type. The number of elements may be
increased or decreased.

DynStruct _tk_struct A structure.

DynUnion _tk_union A union.

DynValue _tk_value Not supported.

80 VisiBroker for .NET Developer ’s Guide

Constructed data types

Initializing and accessing the value in a
DynAny
The DynAny.Insert<Type> methods in VisiBroker for .NET allow you to
initialize a DynAny object with a variety of basic data types, where <Type>
is bool, octet, char, and so on. Any attempt to insert a type that does not
match the TypeCode defined for the DynAny will cause an TypeMismatch
exception to be raised.

The DynAny.Get<Type> methods in VisiBroker for .NET allow you to access
the value contained in a DynAny object, where <Type> is bool, octet,
char, and so on. Any attempt to access a value from a DynAny component
which does not match the TypeCode defined for the DynAny will cause a
TypeMismatch exception to be raised.

The DynAny interface also provide methods for copying, assigning, and
converting to or from an Any object.

Constructed data types
The following types are derived from the DynAny interface and are used to
represent constructed data types.

Traversing the components in a constructed data type
Several of the interfaces that are derived from DynAny actually contain multiple
components. The DynAny interface provides methods that allow you to iterate through
these components. The DynAny-derived objects that contain multiple components
maintain a pointer to the current component.

DynEnum
This interface represents a single enumeration constant. Methods are
provided for setting and obtaining the value as a string or as an integral
value.

DynStruct
This interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of
NameValuePair objects. Each NameValuePair object contains the
member's name and an Any containing the member's type and value.

DynAny method Description
Rewind Resets the current component pointer to the first

component. Has no effect if the object contains only one
component.

Next Advances the pointer to the next component. If there are
no more components or if the object contains only one
component, false is returned.

CurrentComponent Returns a DynAny object, which may be narrowed to the
appropriate type, based on the component's TypeCode.

Seek Sets the current component pointer to the component
with the specified, zero-based index. Returns false if
there is no component at the specified index. Sets the
current component pointer to -1 (no component) if
specified with a negative index.

VisiBroker for .NET Developer ’s Guide 81

Constructed data types

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the members in the structure. Methods are provided for setting
and obtaining the structure's members.

DynUnion
This interface represents a union and contains two components. The first
component represents the discriminator and the second represents the
member value.

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the components. Methods are provided for setting and obtaining
the union's discriminator and member value.

DynSequence and DynArray
A DynSequence or DynArray represents a sequence of basic or constructed
data types without the need of generating a separate DynAny object for
each component in the sequence or array. The number of components in a
DynSequence may be changed, while the number of components in a
DynArray is fixed.

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the members in a DynArray or DynSequence.

82 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 83

Using Portable Interceptors
This chapter provides an overview of Portable Interceptors. Portable
Interceptor example code is available in your VisiBroker for .NET
installation.

Portable Interceptors overview
VisiBroker for .NET provides a set of interfaces known as interceptors which
provide a framework for plugging-in additional ORB behavior such as
security, transactions, or logging. These interceptor interfaces are based on
a callback mechanism. For example, using the interceptors, you can be
notified of communications between clients and servers, and modify these
communications if you wish, effectively altering the behavior of the ORB.

At its simplest usage, the interceptor is useful for tracing through code.
Because you can see the messages being sent between clients and servers,
you can determine exactly how the ORB is processing requests.

If you are building a more sophisticated application such as a monitoring
tool or security layer, interceptors give you the information and control you
need to enable these lower-level applications. For example, you could
develop an application that monitors the activity of various servers and
performs load balancing.

Types of Portable Interceptors
There are two kinds of Portable Interceptors defined by the OMG
specification:

• Request Interceptors can enable the ORB services to transfer context
information between clients and servers. Request Interceptors are further
divided into Client Request Interceptors and Server Request Interceptors.

• An IOR interceptor is used to enable an ORB service to add information
in an IOR describing the server's or object's ORB-service-related
capabilities. For example, a security service (like SSL) can add its tagged
component into the IOR so that clients recognizing that component can
establish the connection with the server based on the information in the
component.

Portable Interceptor classes and interfaces
All Portable Interceptors implement one of the following base interceptor
API classes which are defined and implemented by VisiBroker for .NET:

• ClientRequestInterceptor

• ServerRequestInterceptor

• IORInterceptor

Interceptor class
All the interceptor classes mentioned above are derived from a common
class: Interceptor. This Interceptor class has defined common
methods that are available to its inherited classes.

84 VisiBroker for .NET Developer ’s Guide

Portable Interceptor c lasses and inter faces

Request Interceptor
A request interceptor is used to intercept flow of a request/reply sequence
at specific interception points so that services can transfer context
information between clients and servers. For each interception point, the
ORB gives an object through which the Interceptor can access request
information. There are two kinds of request interceptors and their
respective request information interfaces:

• ClientRequestInterceptor and ClientRequestInfo

• ServerRequestInterceptor and ServerRequestInfo

ClientRequestInterceptor
ClientRequestInterceptor has its interception points implemented on
the client side. There are five interception points defined in
ClientRequestInterceptor by OMG as shown in the following table.

Client-side rules

The following are the client-side rules:

• The starting interception points are: SendRequest and SendPoll. On any
given request/reply sequence, one and only one of these interception
points is called.

• The ending interception points are: ReceiveReply, ReceiveException
and ReceiveOther.

• There is no intermediate interception point.

• An ending interception point is called if and only if SendRequest or
SendPoll runs successfully.

• A ReceiveException is called with the system exception
BAD_INV_ORDER with a minor code of 4 (ORB has shutdown) if a request
is canceled because of ORB shutdown.

Interception
Points Description
SendRequest Lets a client-side Interceptor query a request and modify

the service context before the request is sent to the server.
SendPoll Lets a client-side Interceptor query a request during a

Time-Independent Invocation (TII)1 polling get reply
sequence.

ReceiveReply Lets a client-side Interceptor query the reply information
after it is returned from the server and before the client
gains control.

ReceiveException Lets a client-side Interceptor query the exception's
information, when an exception occurs, before the
exception is sent to the client.

ReceiveOther Lets a client-side Interceptor query the information which
is available when a request result other than normal reply
or an exception is received.

1TII is not implemented in VisiBroker for .NET. As a result, the
SendPoll() interception point will never be invoked.

VisiBroker for .NET Developer ’s Guide 85

Portable Interceptor c lasses and inter faces

• A ReceiveException is called with the system exception TRANSIENT
with a minor code of 3 if a request is canceled for any other reason.

ServerRequestInterceptor
ServerRequestInterceptor has its interception points implemented on the
server-side. There are five interception points defined in
ServerRequestInterceptor. The following table shows the
ServerRequestInterceptor Interception points.

Server-side rules

The server-side rules are listed as below:

• The starting interception point is: ReceiveRequestServiceContexts.
This interception point is called on any given request/reply sequence.

• The ending interception points are: SendReply, SendException and
SendOther. On any given request/reply sequence, one and only one of
these interception points is called.

• The intermediate interception point is ReceiveRequest. It is called after
ReceiveRequestServiceContexts and before an ending interception
point.

• On an exception, ReceiveRequest may not be called.

• An ending interception point is called if and only if
ReceiveRequestServiceContext runs successfully.

• A SendException is called with the system exception BAD_INV_ORDER
with a minor code of 4 (ORB has shutdown) if a request is canceled
because of ORB shutdown.

Successful invocations SendRequest is followed by ReceiveReply - a
start point is followed by an end point

Retries SendRequest is followed by ReceiveOther - a
start point is followed by an end point

Interception Points Description
ReceiveRequestService
Contexts

Lets a server-side Interceptor get its service
context information from the incoming request
and transfer it to
PortableInterceptor.Current's slot.

ReceiveRequest Lets a server-side Interceptor query request
information after all information, including
operation parameters, is available.

SendReply Lets a server-side Interceptor query reply
information and modify the reply service context
after the target operation has been invoked and
before the reply is returned to the client.

SendException Lets a server-side Interceptor query the
exception's information and modify the reply
service context, when an exception occurs,
before the exception is sent to the client.

SendOther Lets a server-side Interceptor query the
information which is available when a request
result other than normal reply or an exception is
received.

86 VisiBroker for .NET Developer ’s Guide

Creat ing a Portable Interceptor

• A SendException is called with the system exception TRANSIENT with a
minor code of 3 if a request is canceled for any other reason.

IORInterceptor
IORInterceptor gives applications the ability to add information describing the
server's or object's ORB service related capabilities to object references to enable the
ORB service implementation in the client to function properly. This is done by calling
the interception point, EstablishComponents. An instance of IORInfo is passed
to the interception point.

PortableInterceptor (PI) Current
The PortableInterceptor.Current object (hereafter referred to as
PICurrent) is a table of slots that can be used by Portable Interceptors
implementations to associate thread-specific information with the currently
active request context. Use of PICurrent is optional, and would typically be
used if a client's thread-specific information is required within an
Interceptor.

PICurrent is obtained through a call to:

ORB.ResolveInitialReferences("PICurrent");

Codec
The Codec provides a mechanism for interceptors to transfer components
between their IDL data types and their CDR encapsulation representations.

CodecFactory
This class is used to create a Codec object by specifying the encoding
format, the major and minor versions. CodecFactory can be obtained a
call to:

ORB.ResolveInitialReferences("CodecFactory");

Creating a Portable Interceptor
The generic steps to create a Portable Interceptor are:

1 The Interceptor must be inherited from one of the following Interceptor
interfaces:

• ClientRequestInterceptor

• ServerRequestInterceptor

• IORInterceptor

2 The Interceptor implements one or more interception points that are
available to the Interceptor.

Successful invocations The order of interception points:
ReceiveRequestServiceContexts,
ReceiveRequest, SendReply - a start point is
followed by an intermediate point which is followed
by an end point .

VisiBroker for .NET Developer ’s Guide 87

Register ing Portable Interceptors

3 The Interceptor can be named or anonymous. All names must be unique
among all Interceptors of the same type. However, any number of
anonymous Interceptors can be registered with the ORB.

Registering Portable Interceptors
Portable Interceptors must be registered with the ORB before they can be
used. To register a Portable Interceptor the janeva.orb.init property is
provided.

-janeva.orb.init pi_class_name[,assembly_name]

Note, that it is possible to specify a list of janeva.pi.init settings to
configure multiple Portable Interceptors:

-janeva.orb.init pi_1 -janeva.orb.init pi_2 -janeva.orb.init pi_n

Each janeva.orb.init instance does not overwrite the previous one, but
adds it to a Portable Interceptor list.

VisiBroker for .NET extensions to Portable
Interceptors

POA scoped Server Request Interceptors
Portable Interceptors specified by OMG are scoped globally. VisiBroker for
.NET has defined "POA scoped Server Request Interceptor", a public
extension to the Portable Interceptors, by adding a new module call
PortableInterceptorExt. This new module holds a local interface,
IORInfoExt, which is inherited from PortableInterceptor.IORInfo and
has additional methods to install POA scoped server request interceptor.

IORInfoExt Interface
using PortableInterceptor;

namespace PortableInterceptorExt {
public interface IORInfoExt : IORInfo {

void AddServerRequestInterceptor(
ServerRequestInterceptor interceptor);

string FullPoaName();
}

}

Limitations of the Portable Interceptors
Implementation
The following are limitations of the Portable Interceptor implementation.

ClientRequestInfo

• Arguments, Result, Exceptions, Contexts, and OperationContexts
are only available for DII invocations.

• ReceivedException and ReceivedExceptionId will always return a
CORBA.UNKNOWN exception and its respective repository id if a user
exception is thrown by the application.

88 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET extensions to Portable Interceptors

ServerRequestInfo

• Exceptions does not return any value; it will raise a
CORBA.NO_RESOURCES exception in both dynamic invocations and static
stub based invocation.

• Contexts returns the list of contexts that are available during operation
invocation.

• SendingException returns the correct user exception only in the case of
dynamic invocation (provided the user exception can be inserted into an
Any or its TypeCode information is available).

• Arguments, Result, Contexts, and OperationContexts are only
available for DSI invocations.

VisiBroker for .NET Developer ’s Guide 89

Using Portable Object
Adapters

What is a Portable Object Adapter?
The Portable Object Adapter (POA) is a service used to take incoming
requests from clients and map those requests to the appropriate object
implementations. For J2EE developers, it might be useful to think of a POA
as being similar to an EJB Container in that it is responsible for mapping
invocations to the set of objects it logically contains.

As with any container, you can think of the POA as having an external
perspective and an internal perspective. The internal model of the POA is in
terms of Servant objects: these are the objects that implement the user's
business logic. The external model of the POA is in terms of Object
References, which are references that can be used in distributed system
invocations (for example, these Object References are analogous to
instances of java.rmi.Remote in RMI/J2EE terminology, CORBA Object
References in CORBA terminology, or instances of MarshalByRefObject in
.NET Remoting terminology). The task of the POA is to map between
external Object References and internal Servant objects.

The POA is an intermediary between the implementation of an object and
the ORB. In its role as an intermediary, a POA routes requests to Servants
and, as a result may cause Servants to run and create child POAs if
necessary.

Servers can support multiple POAs. At least one POA must be present,
which is called the Root POA. The Root POA is created automatically for you.
The set of POAs is hierarchical; all POAs have the Root POA as their
ancestor.

Servant Managers locate and assign Servants to objects for the POA. When
an Object Reference is assigned to a Servant, it is called an active object
and the Servant is said to incarnate the active object. Every POA has one
Active Object Map which keeps track of the object IDs of active objects and
their associated active Servants.

90 VisiBroker for .NET Developer ’s Guide

What is a Portable Object Adapter?

POA terminology
Contained in the following table are definitions of some terms with which
you should become more familiar as you read through this section.

Steps for creating and using POAs
Although the exact process can vary, the basic steps that occur during a
POA life cycle are:

1 Define the POA's policies.

2 Create the POA.

3 Activate the POA through its POA manager.

4 Create and activate Servants.

5 Create and use Servant Managers.

6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For
example, you only have to activate the POA if you want it to process
requests.

Term Description
Active Object Map Table that maps active Object References (through their

object IDs) to Servants. There is one Active Object Map per
POA.

adapter activator Object that can create a POA on demand when a request is
received for a child POA that does not exist.

etherealize Remove the association between a Servant and an Object
Reference.

incarnate Associate a Servant with an Object Reference.
ObjectID Way to identify an Object Reference within the object adapter.

An ObjectID can be assigned by the object adapter or the
application and is unique only within the object adapter in
which it was created. Servants are associated with Object
References through ObjectIDs.

persistent object Object References that live beyond the server process that
created them.

POA manager Object that controls the state of the POA; for example,
whether the POA is receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and
the objects the POA manages.

Root POA Each ORB is created with one POA called the Root POA. You
can create additional POAs (if necessary) from the Root POA.

Servant Any code that implements the methods of an Object
Reference, but is not the Object Reference itself.

Servant Manager An object responsible for managing the association of objects
with Servants, and for determining whether an object exists.
More than one Servant Manager can exist.

transient object An Object Reference that lives only within the process that
created it.

VisiBroker for .NET Developer ’s Guide 91

POA pol ic ies

POA policies
Each POA has a set of policies that define its characteristics. When creating
a new POA, you can use the default set of policies or use different values to
suit your requirements. You can only set the policies when creating a POA;
you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

The following sections list the POA policies, their values, and the default
value (used by the Root POA).

Thread policy
The thread policy specifies the threading model to be used by the POA. The
valid values for the thread policy are described in the following table.

Lifespan policy
The lifespan policy specifies the lifespan of the objects implemented in the
POA. The valid values for the lifespan policy are listed in the following table.

Object ID Uniqueness policy
The Object ID Uniqueness policy allows a single Servant to be shared by
many Object References. The valid values for the Object ID Uniqueness
policy are listed in the following table.

Value Description
ORB_CTRL_MODEL (Default) The default POA threading model is multi-threaded, meaning that

concurrent invocations are dispatched to multiple threads concurrently.
Note that this means that Servant implementations must be thread-safe. If
Servants are not thread safe, they must either be made so (using
appropriate locking) or a different threading policy must be used for non-
thread-safe Servants.

SINGLE_THREAD_MODEL The POA processes requests sequentially. In a multi-threaded environment,
all calls made by the POA to Servants and Servant Managers are thread-
safe.

MAIN_THREAD_MODEL Calls are processed on a distinguished main thread. Requests for all main-
thread POAs are processed sequentially. In a multi-threaded environment,
all calls processed by all POAs with this policy are thread-safe. The
application programmer designates the main thread by calling ORB.Run()
or ORB.PerformWork(). For more information about these methods, see
“Activating objects”.

Value Description
TRANSIENT (Default) A transient object activated by a POA cannot outlive

the POA that created it. Once the POA is deactivated, an
OBJECT_NOT_EXIST exception occurs if an attempt is made
to use any object references generated by the POA.

PERSISTENT A persistent object activated by a POA can outlive the process
in which it was first created. Requests invoked on a persistent
object may result in the implicit activation of a process, a POA
and the Servant that implements the object.

Value Description
UNIQUE_ID (Default) Activated Servants support only one Object ID.

MULTIPLE_ID Activated Servants can have one or more Object IDs. The
Object ID must be determined within the method being
invoked at run time.

92 VisiBroker for .NET Developer ’s Guide

POA pol ic ies

ID Assignment policy
The ID assignment policy specifies whether object IDs are generated by
server applications or by the POA. The valid values for the ID Assignment
policy are listed in the following table.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient
objects. If you want to use SYSTEM_ID for persistent objects, you can
extract them from the Servant or Object Reference.

Servant Retention policy
The Servant Retention policy specifies whether the POA retains active
Servants in the Active Object Map. The valid values for the Servant
Retention policy are listed in the following table.

ServantActivators and ServantLocators are types of Servant Managers. For
more information on Servant Managers, see “Using Servants and Servant
Managers”.

Request Processing policy
The Request Processing policy specifies how requests are processed by the
POA. The valid values for the Request Processing policy are listed in the
following table.

Value Description
USER_ID Objects are assigned object IDs by the application.

SYSTEM_ID (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique
across all instantiations of the same POA.

Value Description
RETAIN (Default) The POA tracks Object Reference activations in the

Active Object Map. RETAIN is usually used with
ServantActivators or explicit activation methods on POA.

NON_RETAIN The POA does not retain active Servants in the Active Object
Map. NON_RETAIN must be used with ServantLocators.

Value Description
USE_ACTIVE_OBJECT_MAP_ONLY (Default) If the Object ID is not listed in the Active Object Map,

an OBJECT_NOT_EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT If the Object ID is not listed in the Active Object Map or the
NON_RETAIN policy is set, the request is dispatched to the
default Servant. If no default Servant has been registered, an
OBJ_ADAPTER exception is returned. The POA must also use
the MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER If the Object ID is not listed in the Active Object Map or the
NON_RETAIN policy is set, the Servant Manager is used to
obtain a Servant.

VisiBroker for .NET Developer ’s Guide 93

Creat ing POAs

Implicit Activation policy
The Implicit Activation policy specifies whether the POA supports implicit
activation of Servants. The valid values for the Implicit Activation policy are
listed in the following table.

Bind Support policy
The Bind Support policy (a VisiBroker-specific policy) controls the
registration of POAs and active objects with the VisiBroker Smart Agent
(osagent). If you have several thousands objects, it is not feasible to
register all of them with the osagent. Instead, you can register the POA
with the osagent. When a client request is made, the POA name and the
object ID is included in the bind request so that the osagent can correctly
forward the request. The valid values for the Bind Support policy are listed
in the following table.

Note:

The Root POA is created with the NONE activation policy.

Creating POAs
To implement objects using the POA, at least one POA object must exist on
the server. To ensure that a POA exists, a Root POA is provided during the
ORB initialization. This POA uses the default POA policies described earlier in
this section.

Once the Root POA is obtained, you can create child POAs that implement a
specific server-side policy set.

POA naming convention
Each POA keeps track of its name and its full POA name (the full hierarchical
path name.) The hierarchy is indicated by a slash (/). For example, /A/B/C
means that POA C is a child of POA B, which in turn is a child of POA A. The

Value Description
IMPLICIT_ACTIVATION The POA supports implicit activation of Servants. There are two ways

to activate the Servants as follows:

• Converting them to an Object Reference with
PortableServer.POA.ServantToReference().

• Invoking This_() on the Servant.

The POA must also use the SYSTEM_ID and RETAIN policies with this
value.

NO_IMPLICIT_ACTIVATION (Default) The POA does not support implicit activation of Servants.

Value Description
BY_INSTANCE All active objects are registered with the osagent. The POA

must also use the PERSISTENT and RETAIN policy with this
value.

BY_POA (Default) Only POAs are registered with the osagent. The POA
must also use the PERSISTENT policy with this value.

NONE Neither POAs nor active objects are registered with the smart
agent.

94 VisiBroker for .NET Developer ’s Guide

Creat ing POAs

first slash indicates the Root POA. If the BindSupport:BY_POA policy is set
on POA C, then /A/B/C is registered and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker
for .NET precedes these characters with a double back slash (\\) when
recording the names internally.

Obtaining the Root POA
The following code sample illustrates how a server application can obtain its
Root POA.

// Initialize the ORB.
CORBA.ORB orb = CORBA.ORB.Init(args);

// get a reference to the Root POA
PortableServer.POA rootPOA =

POAHelper.Narrow(orb.ResolveInitialReferences("RootPOA"));

Note:

The ResolveInitialReferences method returns a value of type
CORBA.Object. You are responsible for narrowing the returned object
reference to the desired type, which is PortableServer.POA in the previous
example.

Setting the POA policies
Policies are not inherited from the parent POA. If you want a POA to have a
specific characteristic, you must identify all the policies that are different
from the default value. For more information about POA policies, see “POA
policies”.

CORBA.Policy[] policies = {
rootPOA.CreateLifespanPolicy(LifespanPolicyValue.PERSISTENT),
rootPOA.CreateRequestProcessingPolicy(

RequestProcessingPolicyValue.USE_DEFAULT_SERVANT),
rootPOA.CreateIdUniquenessPolicy(IdUniquenessPolicyValue.MULTIPLE_ID)

};

Creating and activating the POA
A POA is created using CreatePOA on its parent POA. You can name the
POA anything you like; however, the name must be unique with respect to
all other POAs with the same parent. If you attempt to give two POAs the
same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use CreatePOA as follows:

CreatePOA(“ThePOAName”, thePOAManager, thePolicyList);

The POA manager (<POAManager>) controls the state of the POA (for
example, whether it is processing requests). If null is passed to CreatePOA
as the POA manager name, a new POA manager object is created and
associated with the POA. Typically, you will want to have the same POA
manager for all POAs. For more information about the POA manager, see
“Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created.
Use Activate() to activate the POA manager associated with your POA.

VisiBroker for .NET Developer ’s Guide 95

Act ivat ing objects

The following code sample is an example of creating a POA and activating
the POA manager.

// Create policies for our persistent POA
CORBA.Policy[] policies = {

rootPOA.CreateLifespanPolicy(LifespanPolicyValue.PERSISTENT)
};

// Create myPOA with the right policies
PortableServer.POA myPOA =

rootPOA.CreatePOA("bank_agent_poa",
rootPOA.ThePOAManager, policies);

// Activate the POA manager
rootPOA.ThePOAManager.Activate();

Activating objects
When Object References are associated with an active Servant, if the POA's
Servant Retention Policy is RETAIN, the associated object ID is recorded in
the Active Object Map and the object is activated. Activation can occur in
one of several ways:

• Explicit activation—The server application itself explicitly activates
objects by calling ActivateObject or ActivateObjectWithId.

• On-demand activation—The server application instructs the POA to
activate objects through a user-supplied Servant Manager. The Servant
Manager must first be registered with the POA through
SetServantManager.

• Implicit activation—The server activates objects solely by in response
to certain operations. If a Servant is not active, there is nothing a client
can do to make it active (for example, requesting for an inactive object
does not make it active.)

• Default Servant—The POA uses a single Servant to implement all of its
objects.

Activating objects explicitly
By setting IdAssignmentPolicy.SYSTEM_ID on a POA, objects can be
explicitly activated without having to specify an object ID. The server
invokes ActivateObject on the POA which activates, assigns and returns
an object ID for the object. This type of activation is most common for
transient objects. No Servant Manager is required since neither the object
nor the Servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common
scenario is during server initialization where the user invokes
ActivateObjectWithId to activate all the objects managed by the server.
No Servant Manager is required since all the objects are already activated.
If a request for a non-existent object is received, an OBJECT_NOT_EXIST
exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

96 VisiBroker for .NET Developer ’s Guide

Act ivat ing objects

This code sample is an example of explicit activation using
ActivateObjectWithId.

// Create the account manager Servant.
Servant managerServant = new AccountManagerImpl(rootPoa);

// Activate the newly created Servant.
byte[] managerId = orb.StringToObjectId(“BankManager”);
testPoa.ActivateObjectWithId(managerId, managerServant);

// Activate the POAs
testPoa.ThePOAManager.Activate();

Activating objects on demand
On-demand activation occurs when a client requests an object that does not
have an associated Servant. After receiving the request, the POA searches
the Active Object Map for an active Servant associated with the object ID. If
none is found, the POA invokes Incarnate on the Servant Manager which
passes the object ID value to the Servant Manager. The Servant Manager
can do one of three things:

• Find an appropriate Servant which then performs the appropriate
operation for the request.

• Raise an OBJECT_NOT_EXIST exception that is returned to the client.

• Forward the request to another object.

The POA policies determine any additional steps that may occur. For
example, if RequestProcessingPolicy.USE_SERVANT_MANAGER and
ServantRetentionPolicy.RETAIN are enabled, the Active Object Map is
updated with the Servant and object ID association. if
RequestProcessingPolicy.USE_SERVANT_MANAGER and
ServantRetentionPolicy.RETAIN are enabled, the Active Object Map is
updated with the Servant and object ID association.

Activating objects implicitly
A Servant can be implicitly activated by certain operations if the POA has
been created with ImplicitActivationPolicy.IMPLICIT_ACTIVATION,
IdAssignmentPolicy.SYSTEM_ID, and
ServantRetentionPolicy.RETAIN. Implicit activation can occur with:

• POA.ServantToReference method

• POA.ServantToId method

• This_() Servant method

If the POA has IdUniquenessPolicy.UNIQUE_ID set, implicit activation
can occur when any of the above operations are performed on an inactive
Servant.

If the POA has IdUniquenessPolicy.MULTIPLE_ID set,
ServantToReference and ServantToId operations always perform
implicit activation, even if the Servant is already active.

Activating with the default Servant
Use the RequestProcessing.USE_DEFAULT_SERVANT policy to have the
POA invoke the same Servant no matter what the object ID is. This is useful
when little data is associated with each object.

VisiBroker for .NET Developer ’s Guide 97

Act ivat ing objects

This is an example of activating all objects with the same Servants

using System;
using System.IO;
using PortableServer;
using CORBA;

public class Server {
static void Main(string [] args) {

try {
// initialize the ORB
ORB orb = ORB.Init(args);

// get a reference to the root POA
POA rootPOA =

POAHelper.Narrow(orb.ResolveInitialReferences("RootPOA"));

// create policies for our persistent POA
Policy[] policies = {

rootPOA.CreateLifespanPolicy(
LifespanPolicyValue.PERSISTENT),

rootPOA.CreateRequestProcessingPolicy(
RequestProcessingPolicyValue.USE_DEFAULT_SERVANT),

rootPOA.CreateIdUniquenessPolicy(
IdUniquenessPolicyValue.MULTIPLE_ID)

};

// create myPOA with the right policies
POA myPOA = rootPOA.CreatePOA("bank_default_servant_poa",

rootPOA.ThePOAManager,
policies);

// create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
myPOA.SetServant(managerServant);

// Activate the POA manager
rootPOA.ThePOAManager.Activate();

// Generate the reference and write it out. One for each
// Checking and Savings account type. Note that we are not
// creating any servants here and just manufacturing a
// reference which is not yet backed by a servant.
// Write out checking object ID
try {

CORBA.Object objref = myPOA.CreateReferenceWithId(
orb.StringToObjectId("CheckingAccountManager"),
"IDL:Bank/AccountManager:1.0");

StreamWriter writer = new StreamWriter("cref.dat");
writer.WriteLine(orb.ObjectToString(objref));
writer.Close();

}

catch (Exception e) {
Console.WriteLine("Error writing the IOR for

CheckingAccountManager to file");
Console.WriteLine(e);

}

try {
// Write out savings object ID
CORBA.Object objref = myPOA.CreateReferenceWithId(

orb.StringToObjectId("SavingsAccountManager"),
"IDL:Bank/AccountManager:1.0");

StreamWriter writer = new StreamWriter("sref.dat");

98 VisiBroker for .NET Developer ’s Guide

Using Servants and Servant Managers

writer.WriteLine(orb.ObjectToString(objref));
writer.Close();

}

catch (Exception e) {
Console.WriteLine("Error writing the IOR for

SavingsAccountManager to file");
Console.WriteLine(e);

}
Console.WriteLine("DefaultServantServer is ready.");
// Wait for incoming requests
orb.Run();

}
catch(Exception e) {

Console.WriteLine(e);
}

}
}

Deactivating objects
A POA can remove a Servant from its Active Object Map. This may occur, for
example, as a form of garbage-collection scheme. When the Servant is
removed from the map, it is deactivated. You can deactivate an object using
DeactivateObject(). When an object is deactivated, it doesn't mean this
object is lost forever. It can always be reactivated at a later time.

Using Servants and Servant Managers
Servant Managers perform two types of operations: find and return a
Servant, and deactivate a Servant. They allow the POA to activate objects
when a request for an inactive object is received. Servant Managers are
optional. For example, Servant Managers are not needed when your server
loads all objects at startup. Servant Managers may also inform clients to
forward requests to another object using the ForwardRequest exception.

A Servant is an active instance of an implementation. The POA maintains a
map of the active Servants and the object IDs of the Servants. When a
client request is received, the POA first checks this map to see if the object
ID (embedded in the client request) has been recorded. If it exists, then the
POA forwards the request to the Servant. If the object ID is not found in the
map, the Servant Manager is asked to locate and activate the appropriate
Servant. This is only an example scenario; the exact scenario depends on
what POA policies you have in place.

There are two types of Servant Managers: Servant Activator and Servant
Locator. The type of policy already in place determines which type of
Servant Manager is used. For more information on POA policy, see “POA
policies”. Typically, a Servant Activator activates persistent objects and a
Servant Locator activates transient objects.

To use Servant Managers,
RequestProcessingPolicy.USE_SERVANT_MANAGER must be set as well
as the policy which defines the type of Servant Manager
(ServantRetentionPolicy.RETAIN for Servant Activator or
ServantRetentionPolicy.NON_RETAIN for Servant Locator.)

VisiBroker for .NET Developer ’s Guide 99

Using Servants and Servant Managers

ServantActivators
ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER are set.

Servants activated by this type of Servant Manager are tracked in the
Active Object Map.

The following events occur while processing requests using Servant
Activators:

1 A client request is received (client request contains POA name, the object
ID, and a few others.)

2 The POA first checks the Active Object Map. If the object ID is found
there, the operation is passed to the Servant, and the response is
returned to the client.

3 If the object ID is not found in the Active Object Map, the POA invokes
Incarnate on a Servant Manager. Incarnate passes the object ID and
the POA in which the object is being activated.

4 The Servant Manager locates the appropriate Servant.

5 The Servant ID is entered into the active object map, and the response is
returned to the client.

Note:

The Etherealize and Incarnate method implementations are user-
supplied code.

At a later date, the Servant can be deactivated. This may occur from
several sources, including the DeactivateObject operation, deactivation
of the POA manager associated with that POA, and so forth. More
information on deactivating objects is described in “Deactivating objects”.

The following is the implementation of the ServantActivator.

using System;
using System.Threading;
using System.Collections;
public class

AccountManagerActivator : PortableServer.ServantActivator {
private Hashtable _objectMap = new Hashtable();
public AccountManagerActivator() {

Console.WriteLine("AccountManagerActivator() called.");

// Populate the Object Map.
_objectMap.Add("SavingsAccountManager",

new SavingsAccountManagerImpl());
_objectMap.Add("CheckingAccountManager",

new CheckingAccountManagerImpl());
}
public PortableServer.Servant Incarnate(byte[] oid,

PortableServer.POA adapter) {

try {
Console.WriteLine(

"AccountManagerActivator.Incarnate() called.");
string accountType = CORBA.ORB.Init().ObjectIdToString(oid);
Console.WriteLine("\nAccountManagerActivator.Incarnate()

called with ID = " + accountType);
new ObjectDeactivator(adapter, oid);
return (PortableServer.Servant) _objectMap[accountType];

100 VisiBroker for .NET Developer ’s Guide

Using Servants and Servant Managers

}
catch (Exception e) {

Console.WriteLine(e);
}
return null;

}

public void Etherealize(byte[] oid,
PortableServer.POA adapter,
PortableServer.Servant serv,
bool cleanupInProgress,
bool remainingActivations) {

Console.WriteLine("Etheralize() called.");

try {
string accountType = CORBA.ORB.Init().ObjectIdToString(oid);
Console.WriteLine("\nAccountManagerActivator.Etherealize()

called with ID = " + accountType);
}
catch (Exception e) {

Console.WriteLine(e);
}

}

private const int ONE_SECOND = 1000;

private class ObjectDeactivator {
private PortableServer.POA _adapter;
private byte[] _oid;

public ObjectDeactivator(PortableServer.POA adapter, byte[] oid) {
_adapter = adapter;
_oid = oid;
new Thread(new ThreadStart(Deactivate)).Start();

}

public void Deactivate() {
Console.WriteLine("Deactivate() called.");
try {

Thread.Sleep(ONE_SECOND * 15);
Console.WriteLine("\nDeactivating the object with ID = " +
CORBA.ORB.Init().ObjectIdToString(_oid));
_adapter.DeactivateObject(_oid);

}

catch (Exception e) {
Console.WriteLine(e);

}
}

}
}

The following is a server implementation similar to the code example in
“Activating with the default Servant”. In this example we highlight the differences
for activating Servants with the ServantActivator.

// create policies for our persistent POA
CORBA.Policy[] policies = {

rootPOA.CreateLifespanPolicy(
LifespanPolicyValue.PERSISTENT),

rootPOA.CreateRequestProcessingPolicy(
RequestProcessingPolicyValue.USE_SERVANT_MANAGER)

};

VisiBroker for .NET Developer ’s Guide 101

Using Servants and Servant Managers

// create myPOA with the right policies
POA myPOA =

rootPOA.CreatePOA("bank_servant_activator_poa",
rootPOA.ThePOAManager,
policies);

// Create the servant activator servant and get its
// reference
ServantActivator sa = new AccountManagerActivator(orb);

// Set the servant activator on our POA
myPOA.SetServantManager(sa);

// Activate the POA manager
rootPOA.ThePOAManager.Activate();

ServantLocators
In many situations, the POA's Active Object Map could become quite large
and consume memory. To reduce memory consumption, a POA can be
created with RequestProcessingPolicy.USE_SERVANT_MANAGER and
ServantRetentionPolicy.NON_RETAIN, meaning that the Servant-to-
object association is not stored in the Active Object Map. Since no
association is stored, Servant Locator Servant Managers are invoked for
each request.

The following events occur while processing requests using Servant
Locators:

1 A client request, which contains the POA name and the object id, is
received.

2 Since ServantRetentionPolicy.NON_RETAIN is used, the POA does
not search the Active Object Map for the object ID.

3 The POA invokes Preinvoke on a Servant Manager. Preinvoke passes
the object ID, the POA in which the object is being activated, and a few
other parameters.

4 The Servant Locator locates the appropriate Servant.

5 The operation is performed on the Servant and the response is returned
to the client.

6 The POA invokes Postinvoke on the Servant Manager.

Note:

The Preinvoke and Postinvoke method implementations are user-
supplied code.

102 VisiBroker for .NET Developer ’s Guide

Using Servants and Servant Managers

The following is the implementation of the ServantLocator.

using System;
using CORBA;
using PortableServer;
using PortableServer.ServantLocatorNS;

public class AccountManagerLocator : ServantLocator {
private ORB _orb;

public AccountManagerLocator(ORB orb) {
_orb = orb;

}

public Servant Preinvoke (byte[] oid, POA adapter,
string operation, out object theCookie) {

string accountType = _orb.ObjectIdToString(oid);
theCookie = null;

Console.WriteLine("\nAccountManagerLocator.preinvoke
called with ID = {0}\n", accountType);

if (accountType.Equals("SavingsAccountManager")) {
return new SavingsAccountManagerImpl();

}

return new CheckingAccountManagerImpl();
}

public void Postinvoke (byte[] oid,
POA adapter,
string operation,
object theCookie,
Servant theServant) {
string id = _orb.ObjectIdToString(oid);
Console.WriteLine("\nAccountManagerLocator.postinvoke

called with ID = {0}\n", id);
}

}

The following is a server implementation similar to the code example in
“Activating with the default Servant”. This example highlights the differences for
activating Servants using the ServantLocator.

// Create policies for our POA. We need persistence life
// span, use servant manager request processing policies
// and non retain retention policy. This non retain policy
// will let us use the servant locator instead of servant
// activator
CORBA.Policy[] policies = {

rootPOA.CreateLifespanPolicy(
LifespanPolicyValue.PERSISTENT),

rootPOA.CreateServantRetentionPolicy(
ServantRetentionPolicyValue.NON_RETAIN),

rootPOA.CreateRequestProcessingPolicy(
RequestProcessingPolicyValue.USE_SERVANT_MANAGER)

};

// create myPOA with the right policies
POA myPOA = rootPOA.CreatePOA("bank_servant_locator_poa",

rootPOA.ThePOAManager, policies);

// Create the servant locator servant and get its
// reference
ServantLocator sl = new AccountManagerLocator(orb);

// Set the servant activator on our POA

VisiBroker for .NET Developer ’s Guide 103

Managing POAs wi th the POA manager

myPOA.SetServantManager(sl);

// Activate the POA manager
rootPOA.ThePOAManager.Activate();

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued
or discarded), and can deactivate the POA. Each POA is associated with a
POA manager object. A POA manager can control one or several POAs.

A POA manager is associated with a POA when the POA is created. You can
specify the POA manager to use, or specify null to have a new POA manager
created.

The following is an example of naming the POA and its POA manager:

POA myPOA = rootPOA.CreatePOA("MyPOA",
rootPOA.ThePOAManager, policies);

POA myPOA = rootPOA.CreatePOA("MyPOA", null, policies);

A POA manager is “destroyed” when all its associated POAs are destroyed.

A POA manager can have the following four states:

• Holding

• Active

• Discarding

• Inactive

These states in turn determine the state of the POA. They are each
described in detail in the following sections.

Getting the current state
To get the current state of the POA manager, use

State state = manager.GetState();

Holding state
By default, when a POA manager is created, it is in the Holding state.
When the POA manager is in the Holding state, the POA queues all
incoming requests.

Requests that require an adapter activator are also queued when the POA
manager is in the Holding state.

To change the state of a POA manager to Holding, use

manager.HoldRequests(waitForCompletion);

waitForCompletion is Boolean. If false, this operation returns
immediately after changing the state to Holding. If true, this operation
returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than
Holding. AdapterInactive is the exception raised if the POA manager
was in the Inactive state prior to calling this operation.

Note:

POA managers in the Inactive state cannot change to the Holding state.

104 VisiBroker for .NET Developer ’s Guide

Managing POAs with the POA manager

Any requests that have been queued but not yet started will continue to be
queued during the Holding state.

Active state
When the POA manager is in the Active state, its associated POAs process
requests.

To change the POA manager to the Active state, use

manager.Activate();

AdapterInactive is the exception raised if the POA manager was in the
Inactive state prior to calling this operation.

Note:

POA managers currently in the Inactive state can not change to the
Active state.

Discarding state
When the POA manager is in the Discarding state, its associated POAs
discard all requests that have not yet started. In addition, the adapter
activators registered with the associated POAs are not called. This state is
useful when the POA is receiving too many requests. You need to notify the
client that their request has been discarded and to resend their request.
There is no inherent behavior for determining if and when the POA is
receiving too many requests. It is up to you to set up thread monitoring if
so desired.

To change the POA manager to the Discarding state, use

manager.DiscardRequests(waitForCompletion);

The waitForCompletion option is Boolean. If false, this operation returns
immediately after changing the state to Holding. If true, this operation
returns only when all requests started prior to the state change have
completed or when the POA manager is changed to a state other than
Discarding. AdapterInactive is the exception raised if the POA manager
was in the Inactive state prior to calling this operation.

Note:

POA managers currently in the Inactive state can not change to the
Discarding state.

Inactive state
When the POA manager is in the Inactive state, its associated POAs reject
incoming requests. This state is used when the associated POAs are to be
shut down.

Note:

POA managers in the Inactive state cannot change to any other state.

To change the POA manager to the Inactive state, use

manager.Deactivate(etherealizeObjects, waitForCompletion);

After the state changes, if etherealizeObjects is true, then all associated POAs
that have ServantRetentionPolicy.RETAIN and

VisiBroker for .NET Developer ’s Guide 105

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

RequestProcessingPolicy.USE_SERVANT_MANAGER set call
Etherealize on the Servant Manager for all active objects. If
etherealizeObjects is false, then Etherealize is not called. The
waitForCompletion option is Boolean. If false, this operation returns
immediately after changing the state to Inactive. If true, this operation
returns only when all requests started prior to the state change have
completed or Etherealize has been called on all associated POAs (that
have ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER). AdapterInactive
is the exception raised if the POA manager was in the Inactive state prior
to calling this operation.

Listening and Dispatching: Server Engines, Server
Connection Managers, and their properties

Note:

Policies that cover listener and dispatcher features are not supported by
POAs. In order to provide these features, a VisiBroker for .NET-specific
policy (ServerEnginePolicy) can be used.

VisiBroker for .NET provides a very flexible mechanism to define and tune
endpoints for VisiBroker for .NET servers. An endpoint in this context is a
destination for a communication channel for clients to communicate with
servers. A Server Engine is a virtual abstraction for connection endpoint
provided as a configurable set of properties.

A Server Engine abstraction can provide control in terms of:

• types of connection resources

• connection management

• threading model and request dispatching

Server Engine and POAs
A POA on VisiBroker for .NET can have many-to-many relationship with a
Server Engine. A POA can be associated with many Server Engines and
vice-versa. The manifestation of this fact is that a POA, and hence the
Object References on the POA, can support multiple communication
channels.

The simplest case is where POAs have their own unique single server
engine. Here, requests for different POAs arrive on different ports. A POA
can also have multiple server engines. In this scenario, a single POA
supports requests coming from multiple input ports.

Notice that POAs can share server engines. When server engines are
shared, the POAs listen to the same port. Even though the requests for
(multiple) POAs arrive at the same port, they are dispatched correctly
because of the POA name embedded in the request. This scenario occurs,
for example, when you use a default server engine and create multiple
POAs (without specifying a new server engine during the POA creation).

Server Engines are identified by a name and is defined the first time its
name is introduced. By default VisiBroker for .NET defines three Server
Engine names. They are:

• iiop_tp: TCP transport with thread pool dispatcher

• iiop_ts: TCP transport with thread per session dispatcher

106 VisiBroker for .NET Developer ’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

• iiop_tm: TCP transport with main thread dispatcher

Associating a POA with a Server Engine
The default Server Engine associated with POA can be changed by using the
property vbroker.se.default. For example, setting

vbroker.se.default=MySE

defines a new server engine with the name MySE. The Root POA and all
child POAs created will be associated with this Server Engine by default.

A POA can also be associated with a particular ServerEngine explicitly by
using the SERVER_ENGINE_POLICY_TYPE POA policy. For example:

// create ServerEngine policy value
Any seAny = orb.CreateAny();
StringSequenceHelper.Insert(seAny, new String []
{"mySE"});
Policy sePolicy = orb.CreatePolicy(

PortableServerExt.SERVER_ENGINE_POLICY_TYPE.Value,
seAny);

// create POA policies
Policy [] policies = {

rootPOA.CreateLifespanPolicy(LifespanPolicyValue.PERSISTEN
T),

sePolicy
};

// create POA with policies
POA myPOA = rootPOA.CreatePOA("bank_se_policy_poa",

rootPOA.ThePOAManager,
policies);

The POA has an IOR template, profiles for which, are obtained from the
Server Engines associated with it.

If you don't specify a server engine policy, the POA assumes a server
engine name of iiop_tp and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop_tp

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the
components of the new server engine. For example:

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscm1,cobscm2
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscm1

Defining Hosts for Endpoints for the Server Engine
Since Server Engines help define a connection's endpoints, the following
properties are provided to specify their hosts:

• vbroker.se.<se-name>.host=<host-URL>
(vbroker.se.mySE.host=host.borland.com, for example.)

VisiBroker for .NET Developer ’s Guide 107

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

• vbroker.se.<se-name>.proxyHost=<proxy-host-URL-or-IP-
address> (vbroker.se.mySE.proxyHost=proxy.borland.com, for
example.)

The proxyHost property can also take an IP address as its value. Doing so
replaces the default hostname in the IOR with this IP address.

The endpoint abstraction of a Server Engine is further fine-grained in terms
of configurable set of entities referred to as Server Connection Managers
(SCM). A Server Engine can have multiple SCMs. SCMs are not shareable
between Server Engines. SCMs are also identified using a name and are
defined for a Server Engine using:

vbroker.se.<se-name>.scms=<SCM-name>[,<SCM-name>,...]

Server Connection Managers
The Server Connection Manager defines the configurable components of an
endpoint. Its responsibilities are connection resource management,
listening for requests, and dispatching requests to its associated POA. Three
logical entities, defined through property groups, are provided by the SCM
to fulfill these responsibilities:

• Manager

• Listener

• Dispatcher

Each SCM has one Manager, Listener, and Dispatcher. All three, when
defined, form a single endpoint definition allowing clients to contact servers.

Manager
Manager is a set of properties defining the configurable portions of a
connection resource. VisiBroker for .NET provides a manager of type
Socket.

vbroker.se.<se-name>.scm.<scm-name>.manager.type=Local|
Socket

You can specify the maximum number of concurrent connections acceptable
to the server endpoint using the connectionMax property:

vbroker.se.<se-name>.scm.<scm-
name>.manager.connectionMax=<integer>

Setting connectionMax to 0 (zero) indicates that there is no restriction on
the number of connections, which is the default setting.

You specify the maximum number of idle seconds using the
connectionMaxIdle property:

vbroker.se.<se-name>.scm.<scm-
name>.manager.connectionMaxIdle=<seconds>

Setting connectionMaxIdle to 0 (zero) indicates that there is no timeout,
which is the default setting.

Garbage collection time can also be specified for the Manager to garbage-
collect idled connections. (Connections can idle after the
connectionMaxIdle time until they are garbage-collected.) You can use
the garbageCollectTimer property to specify the period of garbage
collection in seconds:

vbroker.se.<se-name>.scm.<scm-
name>.manager.garbageCollectTimer=<seconds>

108 VisiBroker for .NET Developer ’s Guide

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

Garbage collection time is specified through the following property:

vbroker.orb.gcTimeout=<seconds>

A value of 0 (zero) means that the connection will never be garbage
collected.

Listener
The Listener is the SCM component that determines how and where the
SCM listens for messages. Like the Manager, the Listener is also a set of
properties. VisiBroker for .NET defines a IIOP listener for the TCP
connections.

Since listeners are close to the actual underlying transport mechanism,
their properties are not portable across listener types. Each listener type
has its own set of properties, defined below.

IIOP listener properties
IIOP listeners need to define a port and (if desired) a proxy port in
conjunction with their hosts. These are set using the port and proxyPort
properties, as follows:

vbroker.se.<se-name>.scm.<scm-name>.listener.port=<port>
vbroker.se.<se-name>.scm.<scm-
name>.listener.proxyPort=<proxy-port>

Note:

If you do not set the port property (or set it to 0 [zero]), a random port will
be selected. A 0 value for the proxyPort property means that the IOR will
contain the actual port (defined by the listener.port property or selected
by the system randomly). If it is not required to advertise the actual port,
set the proxy port to a non-zero (positive) value.

Setting properties to define standard TCP socket options is also supported
for send|receive buffer sizes, socket lingering time, and whether or not to
keep inactive sockets alive. The following properties are provided for these
mechanisms:

vbroker.se.<se-name>.scm.<scm-
name>.listener.rcvBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-
name>.listener.sendBuffSize=<bytes>
vbroker.se.<se-name>.scm.<scm-
name>.listener.socketLinger=<seconds>
vbroker.se.<se-name>.scm.<scm-
name>.listener.keepAlive=true|false

If for any reason you wish to simply use your system's defaults for the TCP
socket properties, simply set the appropriate property to a value of 0
(zero).

VisiBroker for .NET additionally supports a property allowing you to specify
your GIOP version:

vbroker.se.<se-name>.scm.<scm-
name>.listener.giopVersion=<version>

Dispatcher
The Dispatcher defines a set of properties that determine how the SCM
dispatches requests to threads. Three types of dispatchers are provided:

VisiBroker for .NET Developer ’s Guide 109

Listening and Dispatching: Server Engines, Server Connect ion Managers, and their propert ies

ThreadPool, ThreadSession, and MainThread. You set the dispatcher
type with the type property:

vbroker.se.<se-name>.scm.<scm-
name>.dispatcher.type=ThreadPool|ThreadSession|MainThread

Further control is provided through the SCM for the ThreadPool dispatcher
type. The ThreadPool defines the minimum and maximum number of
threads that can be created in the thread pool, as well as the maximum
time in seconds after which an idled thread is destroyed. These values are
controlled with the following properties:

vbroker.se.<se-name>.scm.<scm-
name>.dispatcher.threadMin=<integer>
vbroker.se.<se-name>.scm.<scm-
name>.dispatcher.threadMax=<integer>
vbroker.se.<se-name>.scm.<scm-
name>.dispatcher.threadMaxIdle=<seconds>

When to use these properties
There are many times where you need to change some of the server engine
properties. The method for changing these properties depends on what you
need. For example, suppose you want to change the port number. You
could accomplish this by:

• Changing the default listener.port property

• Creating a new server engine

Changing the default listener.port property is the simplest method, but
this affects all POAs that use the default server engine. This may or may not
be what you want.

If you want to change the port number on a specific POA, then you'll have
to create a new server engine, define the properties for this new server
engine, and then reference the new server engine when creating the POA.

The previous sections show how to update the server engine properties. The
following code shows how to create a POA with a user-defined server engine
policy:

using System;
using System.IO;
using PortableServer;
using CORBA;

public class Server {
static void Main(string [] args) {

try {
// initialize the ORB
ORB orb = ORB.Init(args);

// get a reference to the root POA
POA rootPOA =
POAHelper.Narrow(orb.ResolveInitialReferences("RootPOA"));

// Create our server engine policy
Any seAny = orb.CreateAny();
StringSequenceHelper.Insert(seAny, new String [] {"mySe"});
Policy sePolicy = orb.CreatePolicy(

PortableServerExt.SERVER_ENGINE_POLICY_TYPE.Value, seAny);

// create policies for our persistent POA
Policy [] policies = {

rootPOA.CreateLifespanPolicy(

110 VisiBroker for .NET Developer ’s Guide

LifespanPolicyValue.PERSISTENT), sePolicy
};

// create myPOA with the right policies
POA myPOA = rootPOA.CreatePOA("bank_se_policy_poa",

rootPOA.ThePOAManager, policies);

// create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();

// Decide on the ID for the servant
byte [] managerId = orb.StringToObjectId("BankManager");

// Activate the servant
myPOA.ActivateObjectWithId(managerId, managerServant);

// Obtain the reference
CORBA.Object objRef = myPOA.ServantToReference(managerServant);

// Now write out the IOR
try {

StreamWriter writer = new StreamWriter("ior.dat");
writer.WriteLine(orb.ObjectToString(objRef));
writer.Close();

}
catch (Exception e) {

Console.WriteLine("Error writing the IOR to file ior.dat");
Console.WriteLine(e);

}

// Activate the POA manager
rootPOA.ThePOAManager.Activate();
Console.WriteLine("{0} is ready.", objRef);

// Wait for incoming requests
orb.Run();

}
catch(Exception e) {

Console.WriteLine(e);
}
Console.ReadLine();

}
}

Adapter activators
Adapter activators are associated with POAs and provide the ability to
create child POAs on-demand. This can be done during the FindPOA
operation, or when a request is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA
(or one of its children), or when FindPOA is called with an activate
parameter value of true. A server that creates all its needed POAs at the
beginning of execution does not need to use or provide an adapter
activator; it is necessary only for the case in which POAs need to be created
during request processing.

While a request from the POA to an adapter activator is in progress, all
requests to objects managed by the new POA (or any descendant POAs) will
be queued. This serialization allows the adapter activator to complete any
initialization of the new POA before requests are delivered to that POA.

VisiBroker for .NET Developer ’s Guide 111

Processing requests
Requests contain the Object ID of the target object and the POA that
created the target object reference. When a client sends a request, the ORB
first locates the appropriate server, or starts the server if needed. It then
locates the appropriate POA within that server.

Once the ORB has located the appropriate POA, it delivers the request to
that POA. How the request is processed at that point depends on the
policies of the POA and the object's activation state. For information about
object activation states, see “Activating objects” on page 95.

• If the POA has ServantRetentionPolicy.RETAIN, the POA looks at the
Active Object Map to locate a Servant associated with the Object ID from
the request. If a Servant exists, the POA invokes the appropriate method
on the Servant.

• If the POA has ServantRetentionPolicy.NON_RETAIN or has
ServantRetentionPolicy.RETAIN but did not find the appropriate
Servant, the following may take place:

• If the POA has RequestProcessingPolicy.USE_DEFAULT_SERVANT, the
POA invokes the appropriate method on the default Servant.

• If the POA has RequestProcessingPolicy.USE_SERVANT_MANAGER, the
POA invokes Incarnate or Preinvoke on the Servant Manager.

• If the POA has RequestProcessingPolicy.USE_OBJECT_MAP_ONLY, an
exception is raised.

If a Servant Manager has been invoked but can not incarnate the object,
the Servant Manager can raise a ForwardRequest exception.

112 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 113

Using the Transaction
service
This chapter describes how to use transactions with VisiBroker for .NET. For
more details on each of the APIs see the VisiBroker for .NET API
documentation.

Configuring VisiBroker for .NET for transactions
To run with transactions, you must do the following steps:

1 Add a Reference to the Services DLL in your application. This is also
required in order to access the CosTransations namespace, which is
defined in that DLL.

2 When executing your application set the janeva.transactions
property to true.

Creating VisiBroker for .NET-managed transactions
With VisiBroker for .NET-managed transactions you are using the Current
interface for all transaction management. You are beginning transactions
using Current and you are using Current for the implicit transaction
propagation. This means that you will always originate your transactions
using Current.Begin().

Current is an object that is valid for the entire process and manages the
association of each thread's transaction context. Each thread has its own
independent, isolated association with a transaction context.

In VisiBroker for .NET-managed transactions, transaction participants share
the same transaction context because the transaction service transparently
forwards the transaction context to each participant. This means that the
state of a transaction is maintained as the originator calls on other objects
to perform actions, which may in turn call other objects.

114 VisiBroker for .NET Developer ’s Guide

Looking at the CosTransact ions module

Obtaining a Current object reference
To gain access to a VisiBroker for .NET-managed transaction, you must
obtain an object reference to the Current object. The Current object
reference is valid throughout the process. The following steps describe the
general process for obtaining a reference to a Current object, and are
include code examples.

1 Call the orb.ResolveInitialReferences() method. This method
obtains a reference to the Current object.

2 Narrow the returned object to a CosTransactions.Current object.

For example:

CORBA.ORB orb = ...;
CosTransactions.Current current =
CosTransactions.CurrentHelper.Narrow(

orb.ResolveInitialReferences("TransactionCurrent"));

When you narrow to CosTransactions.Current, you specify your use of
the original set of methods provided by the CosTransactions module.

Looking at the CosTransactions module
The CosTransactions module is the Transaction Service IDL that conforms to
the final OMG Transaction Service document. This is the module to use to
restrict yourself strictly to CORBA-compliant methods. The IDL for this
module is contained in the file CosTransactions.idl.

Transaction service classes and interfaces

Current interface
The Current interface defines methods to:

• Enable a program to manage transactions.

• Use implicit transaction propagation.

• Obtain information about the current transaction.

• Register Resources and Synchronization objects.

Current methods
The following sections describe the important Current methods. For more
details, see the VisiBroker for .NET API documentation.

Begin

This method creates a new transaction. Because nested transactions are not
supported, this is always a top-level transaction.

The transaction context of the client thread is modified so that the thread is
associated with the new transaction. If the client thread is already
associated with a transaction, the
CosTransactions.SubtransactionsUnavailable exception is raised.

VisiBroker for .NET Developer ’s Guide 115

Transact ion service c lasses and inter faces

Commit

This method commits the transaction associated with the client thread. The
effect of this method is equivalent to calling the Commit method on the
corresponding Terminator object.

If this transaction has been marked for rollback, or any Resource votes for
Rollback, this call raises CORBA.TRANSACTION_ROLLEDBACK. If there is no
current transaction, a CosTransactions.NoTransaction exception is
raised. If the caller is not the transaction originator, Commit raises the
exception CORBA.NO_PERMISSION.

Checks are made to ensure checked behavior.

On return from this method, the client thread is no longer associated with a
transaction. Any attempt to use Current, as if there were a transaction, will
raise an exception, such as NoTransaction or
CORBA.TRANSACTION_REQUIRED, or will return a null object reference.

This method does not return until the transaction is complete, and all
related Synchronization objects have been notified.

GetControl

This method returns a Control object reference that represents the
transaction context currently associated with the client thread.

If the client thread is not associated with a transaction, a null object
reference is returned.

GetStatus

This method returns an enumerated value (enum Status) that represents
the status of the transaction associated with the client thread.

Calling this method is equivalent to calling the GetStatus method on the
corresponding Coordinator object. If there is no transaction associated
with the current thread, then the method returns
CosTransactions.StatusNoTransaction.

The possible return values are:

Return value Description
StatusActive A transaction is associated with the target object and it is

in the active state. The transaction service returns this
status after a transaction has been started and prior to a
Coordinator issuing any prepare statements, unless
the transaction has been marked for rollback or timed
out.

StatusMarkedRollback A transaction is associated with the target object and has
been marked for rollback, perhaps as the result of the
RollbackOnly method.

StatusPrepared A transaction is associated with the target object and has
been prepared.

StatusCommitted A transaction is associated with the target object and has
been committed. It is likely that heuristics exist,
otherwise the transaction would have been quickly
destroyed and StatusNoTransaction returned.

StatusRolledBack A transaction is associated with the target object and the
outcome has been determined as rollback. It is likely that
heuristics exist, otherwise the transaction would have
been quickly destroyed and StatusNoTransaction
returned.

116 VisiBroker for .NET Developer ’s Guide

Transact ion service c lasses and interfaces

GetTransactionName

This method returns a printable string that is a descriptive name for the
transaction. This method is intended to assist in diagnostics and debugging.

The effect of this method is equivalent to calling the GetTransactionName
method on the corresponding Coordinator object. If there is no
transaction associated with the client thread, an empty string is returned.

Resume

Associates the client thread with the specified transaction. Typically, this is
used to either

• Associate a transaction context with a thread for use in implicit
transaction propagation, or

• Resume a transaction that was previously suspended by a Suspend
method.

The client thread becomes associated with the specified transaction. If the
client thread was already associated with a transaction, the previous
transaction context is forgotten. If Resume is invoked with a NULL control,
no transaction is associated with the current thread, and the transaction
context is forgotten.

Caution

Any transaction context you set via Resume is propagated back to the
invoking object.

Rollback

Rolls back the transaction associated with the client thread. This is
equivalent to calling the Rollback method on the corresponding
Terminator object. This method does not return until the transaction is
complete, and all related Synchronization objects have been notified. On
return from this method, the client thread is no longer associated with a

StatusUnknown A transaction is associated with the target object, but the
transaction service cannot determine its current status.
This is a transient condition, and a subsequent invocation
will ultimately return a different status.

StatusNoTransaction No transaction is currently associated with the target
object. This will occur after a transaction has completed.

StatusPreparing A transaction is associated with the target object and it is
in the process of preparing. The transaction service
returns this status if the transaction has started
preparing, but has not yet completed the process,
perhaps because it is waiting for responses to prepare
from one or more Resources.

StatusCommitting A transaction is associated with the target object and is in
the process of committing. The transaction service
returns this status if the transaction has begun to
commit, but has not yet completed the process, perhaps
because it is waiting for responses from one or more
Resources.

StatusRollingBack A transaction is associated with the target object and it is
in the process of rolling back. The transaction service
returns this status if the transaction is being rolled back,
but has not yet completed the process, perhaps because
it is waiting for responses from one or more Resources.

Return value Description

VisiBroker for .NET Developer ’s Guide 117

Transact ion service c lasses and inter faces

transaction. Any attempt to use Current, as if there were a transaction, will
raise an exception, such as CosTransactions.NoTransaction or
CORBA.TRANSACTION_REQUIRED, or return a null object reference. If a
heuristic occurs, this method will not throw a heuristic-related exception.

If the caller is not the transaction originator, Rollback raises the exception
CORBA.NO_PERMISSION.

RollbackOnly

The method modifies the transaction associated with the client thread so
that Rollback is the only possible transaction outcome. The effect of this
request is equivalent to calling the RollbackOnly method on the
corresponding Coordinator object. A client that is restricted from
performing the Rollback operation, can nonetheless call RollbackOnly.

SetTimeout

This method establishes a new time-out for transactions started by
subsequent calls to the Current.Begin method in all threads within this
program.

To establish a new time-out, use these values of the seconds parameter:

Note

When a transaction, created by a subsequent call to Begin in any thread in
the process, takes longer to start transaction completion than the
established time-out, it will be rolled back. If the time-out occurs before the
transaction enters the completion stage (begins two-phase or one-phase
processing) the transaction will be rolled back. Otherwise, the time-out is
ignored.

Suspend

This method suspends the transaction currently associated with the client
thread and returns a Control object for that transaction. If the client
thread is not associated with a transaction, a null object reference is
returned.

The Control object can be passed to the Resume method to reestablish this
context in the same thread or a different thread.

After the call to Suspend, no transaction is associated with the client
thread. Any attempt to use Current, as if there were a transaction, will
raise an exception, such as CosTransactions.NoTransaction or
CORBA.TRANSACTION_REQUIRED, or return a null object reference.

TransactionFactory interface
The TransactionFactory interface defines methods that enable a program to
initiate non-VisiBroker for .NET-managed transactions. The
TransactionFactory interface gives programs direct control over the
propagation of transaction context.

Value Effect
= 0 Sets any subsequent transaction that is begun to the default

transaction time-out for the transaction service instance that it uses.
> 0 Sets the new time-out to the specified number of seconds. If the

seconds parameter exceeds the maximum time-out valid for a
transaction service instance being used, then the new time-out is set
to that maximum, to bring it in range.

118 VisiBroker for .NET Developer ’s Guide

Transact ion service c lasses and interfaces

You acquire a TransactionFactory object the way you do any CORBA object;
for example, by binding.

TransactionFactory methods
The following sections describe the important TransactionFactory methods.
For more details, see the VisiBroker for .NET API documentation.

Create

This method accepts a time-out parameter (time_out) and creates a new
transaction. It returns a Control object. The Control object can be used to
manage or to control participation in the new transaction. The Control
object can be used by any thread and passed around explicitly, just like any
other CORBA object.

Note

Checked behavior cannot be provided for transactions that use this method.

To establish a new time-out, use the following values of the time_out
parameter.

The new time-out applies only to the transaction created on this call. If a
transaction does not start transaction completion (begin two-phase or one-
phase processing) before the time-out expires, it will be rolled back.

Recreate

This method creates a new Control object using its PropagationContext
parameter. The Control object can be used to manage or to control
participation in the transaction. Applications will not normally call this
method.

To get a transaction's PropagationContext, invoke the
CosTransactions.CoordinatorOperations.GetTxcontext method on
the transaction's Coordinator object.

Control interface
The Control interface enables a program to explicitly manage or propagate
a transaction context. A Control object is implicitly associated with one
specific transaction.

The Control interface defines two methods: GetCoordinator and
GetTerminator. The GetCoordinator method returns a Coordinator
object, which supports methods used by participants in the transaction. The
GetTerminator method returns a Terminator object, which supports
methods to complete the transaction. The Terminator and Coordinator
objects support methods that are typically performed by different parties.
Providing two objects enables each set of methods to be made available
only to the parties that require those methods.

Value Effect
= 0 Sets any subsequent transaction that is begun to the default transaction

time-out for the transaction service instance that it uses.
> 0 Sets the new time-out to the specified number of seconds. If the

seconds parameter exceeds the maximum time-out valid for a
transaction service instance being used, then the new time-out is set to
that maximum, to bring it in range.

VisiBroker for .NET Developer ’s Guide 119

Transact ion service c lasses and inter faces

You can obtain a Control object by using one of the methods of the
TransactionFactory (see “TransactionFactory interface”). You can also obtain a
Control object for the current transaction (associated with a thread)
through methods of the Current object. See descriptions of the GetControl
or Suspend methods in “Current interface”.

Control methods
The following sections describe the important Control methods. For more
details, see the VisiBroker for .NET API documentation.

GetCoordinator

This method returns a Coordinator object. The Coordinator provides
methods that are called by participants in a transaction. These participants
are typically either recoverable objects or agents of recoverable objects.

GetTerminator

This method returns a Terminator object. The Terminator can be used to
rollback or commit the transaction associated with the Control. The
CosTransactions.Unavailable exception is raised if the Control cannot
provide the requested object due to the inability of the Terminator object to
be transmitted to or be used in other execution environments.

Terminator interface
The Terminator interface supports methods to commit or roll back a
transaction. Typically, these methods are used by the transaction
originator, but any program that has access to a Terminator object for that
transaction can commit or roll back the transaction.

Terminator methods
The following sections describe the important Terminator methods. For
more details, see the VisiBroker for .NET API documentation.

Commit

Before committing the transaction, this method performs some checks. If
the transaction has not been marked rollback only, and all of the
participants in the transaction agree to commit, the transaction is
committed and the operation terminates normally. Otherwise, the
transaction is rolled back and the CORBA.TRANSACTION_ROLLEDBACK
standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will
report inconsistent or possibly inconsistent outcomes using the
CosTransactions.HeuristicMixed and
CosTransactions.HeuristicHazard exceptions when appropriate.
Information about the Resources involved in a heuristic outcome will be
written to a heuristic log file corresponding to the instance of the
Transaction Service.

When a transaction is committed, all changes to recoverable objects made
in the scope of this transaction are made permanent and visible to other
transactions or clients.

120 VisiBroker for .NET Developer ’s Guide

Transact ion service c lasses and interfaces

Rollback

This method rolls back the transaction. When a transaction is rolled back, all
changes to recoverable objects made in the scope of this transaction are
rolled back. All Resources locked by the transaction are made available to
other transactions as appropriate to the degree of isolation enforced by the
Resources.

This method does not return until the transaction is complete and all related
Synchronization objects have been notified.

Coordinator interface
The Coordinator interface provides methods that are used by participants in
a transaction. These participants are typically either recoverable objects or
agents of recoverable objects. Each Coordinator is implicitly associated with
a single transaction.

Several of the Coordinator methods are equivalent, that is, they return the
same result.

• GetStatus

• GetTopLevelStatus

• GetParentStatus

Similarly, certain methods return TRUE only when the target object and the
parameter refer to the same Coordinator object. Therefore, the following
methods are also equivalent:

• IsSameTransaction

• IsRelatedTransaction

• IsAncestorTransaction

• IsDescendantTransaction

And, the following methods are equivalent:

• HashTransaction

• HashTopLevelTran

Coordinator methods
The following sections describe the important Coordinator methods. For
more details, see the VisiBroker for .NET API documentation.

GetStatus

This method returns the status of the transaction associated with the target
object, as an enumerated value (enum Status). If there is no transaction
associated with the target object, then the method returns the value
StatusNoTransaction.

Because VisiBroker for .NET does not support nested transactions, the
GetStatus, GetTopLevelStatus and GetParentStatus methods return
the same result.

The following are the possible return values, as defined in
CosTransactions.idl:

• StatusActive

• StatusMarkedRollback

• StatusPrepared

VisiBroker for .NET Developer ’s Guide 121

Transact ion service c lasses and inter faces

• StatusCommitted

• StatusRolledBack

• StatusUnknown

• StatusNoTransaction

• StatusPreparing

• StatusCommitting

• StatusRollingBack

For information about each Status value, see “GetStatus”.

GetTransactionName

This method returns a printable string that is a descriptive name for the
transaction. This method is intended to assist with diagnostics and
debugging. If there is no transaction associated with the client thread, an
empty string is returned.

GetTxcontext

The GetTxcontext method returns a PropagationContext, which can be
used by one Transaction Service domain to export a transaction to a new
Transaction Service domain.

HashTransaction

This method returns a hash code for the transaction associated with the
target object. Each transaction has a single hash code. The hash code can
be used to efficiently compare Coordinators for inequality against the hash
codes of other transactions. If the hash codes of two Coordinators are not
equal, then they represent different transactions. If two hash codes are
equal, then IsSameTransaction must be used to guarantee equality or
inequality, because two Coordinators might have the same hash code but,
in fact, represent two different transactions.

IsSameTransaction

This method returns true if, and only if, the target object and the parameter
object both refer to the same transaction.

RegisterResource

This method registers the specified Resource as a participant in the
transaction associated with the target object. When the transaction is
terminated, the Resource will receive requests to prepare, commit, or
rollback the updates performed as part of the transaction. For information
on Resource methods, see “Resource interface”.

This method returns a RecoveryCoordinator that can be used by this
Resource during recovery.

RegisterSynchronization

This method registers the specified Synchronization object so that it will be
notified to perform the necessary processing before and after completion of
the transaction. Such methods are described in the description of the
Synchronization interface; see “Synchronization interface”.

122 VisiBroker for .NET Developer ’s Guide

Transact ion service c lasses and interfaces

RegisterSubtranAware

Because VisiBroker for .NET does not support nested transactions, this
method always raises CosTransactions.SubtransactionsUnavailable.

RollbackOnly

This method modifies the transaction associated with the Coordinator so
that rollback is the only possible transaction outcome.

RecoveryCoordinator interface
When a Resource is registered with the Coordinator, a RecoveryCoordinator
is returned. The RecoveryCoordinator is implicitly associated with a single
Resource registration request and can only be used by that Resource. In
case recovery is necessary, the Resource can use the RecoveryCoordinator
during the recovery process.

Also, the Resource can use the RecoveryCoordinator if it needs to know the
current status of the transaction. For example, the Resource can set its own
time-out, and if commit or rollback does not occur within the time-out, the
Resource can invoke ReplayCompletion to determine the status of the
transaction.

RecoveryCoordinator methods
The following section describes the RecoveryCoordinator methods. For more
details, see the VisiBroker for .NET API documentation.

ReplayCompletion

This method notifies the Transaction Service that the Resource is available.
This method is typically used during recovery, and can be used by the
Resource to determine the status of the transaction.

Note

This method does not initiate completion.

Resource interface
VisiBroker for .NET uses a two-phase commit protocol to complete a top-
level transaction with each Resource registered with it, that is, with each
Resource that might change during the transaction. The Resource interface
defines the methods invoked by the Transaction Service on each Resource.
Each object supporting the Resource interface is implicitly associated with a
single top-level transaction.

VisiBroker for .NET provides the Resource interface in the
CosTransactions.idl file, but you must provide the implementation in your
Resource. A typical application does not implement a Resource.

Resource methods
The following sections describe the important Resource methods. For more
details, see the VisiBroker for .NET API documentation.

Commit

This method attempts to commit all changes associated with the Resource.
If a heuristic outcome exception is raised, the Resource must keep the

VisiBroker for .NET Developer ’s Guide 123

Transact ion service c lasses and inter faces

heuristic decision in persistent storage until the Forget method is
performed so that it can return the same outcome in case Commit is
invoked again during recovery. Otherwise, the Resource can immediately
forget all knowledge of the transaction.

CommitOnePhase

This method requests the Resource to commit all changes made as part of
the transaction. This method is an optimization for use when a transaction
has only one participating Resource. This method can be called on the
Resource, instead of first calling Prepare and then Commit or Rollback.

If a heuristic outcome exception is raised, the Resource must keep the
heuristic decision in persistent storage until the Forget method is
performed. This enables the Resource to return the same outcome in case
CommitOnePhase is performed again during recovery. Otherwise, the
Resource immediately forgets all knowledge of the transaction.

If a failure occurs during CommitOnePhase, it is called again when the
failure is repaired. Since there is only a single Resource, the
HeuristicHazard exception is used to report heuristic decisions related to
that Resource.

Forget

When VisiBroker for .NET receives a heuristic exception, it records the
exception. The Transaction Service will ultimately call Forget on the
Resource. This means that the Resource can discard all information about
the transaction that raised the heuristic exception. This method is called
only if a heuristic exception was raised from Rollback, Commit, or
CommitOnePhase.

Prepare

This method performs the prepare operation, the first step in the two-phase
commit protocol for a Resource object. When finished, the method returns
one of these Vote values.

• VoteReadOnly—No persistent data associated with the Resource has been
modified by the transaction.

• VoteCommit—The following data has been saved to persistent storage:

All data changed as part of the transaction

A reference to the RecoveryCoordinator object

An indication that the Resource has been prepared

• VoteRollback—Some circumstance has caused the Resource to call for a
rollback, such as inability to save the relevant data, inconsistent
outcomes, or no knowledge of the transaction (which might happen after
a crash).

After returning VoteReadOnly or VoteRollback, the Resource can forget all
knowledge of the transaction.

If a heuristic outcome exception is raised, the Resource must save the
heuristic decision in persistent storage until the Forget method is called so
that it can return the same outcome in case Prepare is called again.

Rollback

This method rolls back all updates associated with the Resource object.

124 VisiBroker for .NET Developer ’s Guide

Transact ion service c lasses and interfaces

If a heuristic outcome exception is raised, the Resource must save the
heuristic decision in persistent storage until the Forget method is invoked.
This enables the Resource to return the same outcome in case Rollback is
called again during recovery. Otherwise, the Resource immediately forgets
all knowledge of the transaction.

Synchronization interface
The Synchronization interface defines methods that enable a transactional
object to be notified before the start of the two and one-phase commit
protocol, and after its completion. In the CosTransactions module, the
Synchronization interface provides two methods:

• BeforeCompletion—Ensures that BeforeCompletion is invoked before
starting to commit a transaction.

• AfterCompletion—Ensures a transactional object is notified after the
transaction has been completed. This applies to all transactions whether
they were committed or rolled back.

Here are two limitations you should be aware of:

• If the Transaction Service cannot contact your Synchronization object
while trying to call BeforeCompletion, then the transaction will be
rolled back. If a Synchronization object is unavailable after completion, it
will be ignored.

• When the Transaction Service instance recovers from a failure, it does not
remember Synchronization objects, and will only replay completion and
not Synchronization objects. If a failure occurs, the Synchronization
object will not be notified of how the transaction was completed by the
VisiTransact Transaction Service.

Notes

• In certain cases, AfterCompletion is called when BeforeCompletion
was not called. BeforeCompletion is called only if a transaction is still
continuing towards a commit at the outset of completion.
AfterCompletion is always called (unless the Transaction Service
crashes before the transaction completes).

• Synchronization objects are not recoverable. If an instance of a
Transaction Service fails, any transactions that are completed will not
involve Synchronization objects.

• Although the signatures of these methods are fixed by the
Synchronization interface, their implementations are user-defined. This
enables an application to do custom processing at key points in a
transaction, before and after transaction completion.

Synchronization methods
The following sections describe the important Synchronization methods. For
more details, see the VisiBroker for .NET API documentation.

AfterCompletion

This is a method that you write that performs customized processing after
the completion of the transaction. It is essentially a callback.

Note

The AfterCompletion method is always invoked during normal processing.

VisiBroker for .NET Developer ’s Guide 125

Transact ion service c lasses and inter faces

IDL for the Synchronization interface inherits from the TransactionalObject
interface. As a programmer, you are responsible for writing the
implementation of an AfterCompletion method that conforms to the IDL.

If AfterCompletion is to be called in processing a particular transaction,
the following actions must be taken:

1 A Synchronization object must be created by the transaction originator or
some other transaction participant.

2 The Synchronization object must be registered by getting the
transaction's Coordinator, and calling the RegisterSynchronization
method in Coordinator and Current. See the description for the
RegisterSynchronization method in “Coordinator interface”. Registration
must be done after the transaction is created and before the start of the
two-phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

The Transaction Service calls this method after the two-phase commit
protocol completes. As an example of its use, AfterCompletion can be
used by a transactional object to discover the outcome of the transaction.
This is particularly useful for transactional objects that are not also
recoverable objects, and so are not automatically notified of the outcome.

You can call GetStatus to see whether or not the transaction has been
marked for rollback.

Notice that because Synchronization inherits from TransactionalObject, the
transaction context will be available through the Current object.

All exceptions will be ignored.

BeforeCompletion

This is a method that you write to perform customized processing at the
onset of the completion of a transaction. It is called only if the transaction is
still continuing towards successful completion. It is essentially a callback.

Note: The BeforeCompletion method is invoked after the application
invokes commit, but before the Transaction Service begins transaction
completion. The BeforeCompletion method is not invoked for a rollback
request.

The IDL for the Synchronization interface inherits from the
TransactionalObject interface. As a programmer, you are responsible for
writing the implementation of a BeforeCompletion method that conforms
to the IDL.

If BeforeCompletion is to be called when processing a particular
transaction, the Synchronization object must be registered using the
RegisterSynchronization method in the Coordinator interface. Register
the Synchronization object from your transactional object or recoverable
server. See the description for the RegisterSynchronization method in
“Coordinator interface”. Registration must be done after the transaction is
created and before the start of the two-phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

The Transaction Service calls this method after the transaction work has
been done but before the two-phase commit protocol starts; that is, before
Prepare is called on the participating Resource. The transaction service
calls BeforeCompletion only if a transaction is still continuing towards a
commit at the outset of completion. This means that Terminator.Commit

126 VisiBroker for .NET Developer ’s Guide

was called and the transaction has not been marked for rollback. If
Terminator.Rollback was called, or the first of several Synchronization
objects marked the transaction for rollback, or the transaction was already
marked for rollback, BeforeCompletion calls will not be called again for
this transaction.

Within this method, you can ensure the transaction will be rolled back by
calling the RollbackOnly method. You can also call GetStatus to see
whether or not the transaction has been marked for rollback. At the time
the method is called, however, you cannot rely upon the status to indicate
whether or not the transaction will actually be committed.

Notice that because the Synchronization interface inherits from
TransactionalObject, the transaction context will be available through the
Current object. This means that BeforeCompletion can use all objects on
the Current object, such as GetStatus and GetControl.

All CORBA exceptions raised by your Synchronization objects will result in
the transaction being rolled back.

TransactionalObject interface
The TransactionalObject interface provides for the automatic propagation of
transaction context on method calls of transactional objects. The
TransactionalObject interface defines no methods.

Methods that work on transactions must have access to the transaction
context. The transaction context can be made available to such methods in
two ways:

• Explicit propagation—A method receives and passes the transaction
context as a Terminator, Control, Coordinator, or PropagationContext
structure.

• Implicit propagation—The transaction context is passed automatically
(and implicitly) on method calls.

Implicit propagation is the typical, and easiest, way. This is the capability
that the TransactionalObject interface provides to your transactional
objects. An instance of TransactionalObject can participate in implicit
propagation. Implicit propagation is where the transaction context
associated with the client thread is automatically propagated to
TransactionalObject instances through method calls.

To use VisiBroker for .NET-managed transactions, all of your transactional
objects must inherit from TransactionalObject. By using VisiBroker for .NET-
managed transactions, you benefit from checked behavior.

The transaction context is always passed implicitly to an object that inherits
from CosTransactions.TransactionalObject. In addition, a program
may be passed a transaction context explicitly, as a parameter.

VisiBroker for .NET Developer ’s Guide 127

Using the Security service
As more businesses deploy distributed applications and conduct operations
over the Internet, the need for high quality application security has grown.

Sensitive information routinely passes over Internet connections between
web browsers and commercial web servers; credit card numbers and bank
balances are two examples. For example, users engaging in commerce with
a bank over the Internet must be confident that:

• They are in fact communicating with their bank's server, not an impostor
that mimics the bank for illegal purposes.

• The data exchanged with the bank will be unintelligible to network
eavesdroppers.

• The data exchanged with the bank software will arrive unaltered. An
instruction to pay $500 on a bill must not accidentally or maliciously
become $5000.

VisiBroker for .NET Security lets the client authenticate the bank's server.
The bank's server can also take advantage of the secure connection to
authenticate the client. In a traditional application, once a secure
connection has been established, the client sends the user's name and
password to authenticate. This technique can be used once a VisiBroker for
.NET secure connection has been established, with the benefit that the user
name and password exchanges will be encrypted.

VisiBroker for .NET Security overview
VisiBroker for .NET Security lets you establish secure connections between
clients and servers, and it provides a framework for secure communication.
VisiBroker for .NET Security uses the Microsoft Windows Secure Channel
(Schannel) library for SSL and TLS (Transport Layer Security)
communications and the Microsoft CryptoAPI for cryptographic operations.

VisiBroker for .NET Security features include

• J2EE server and CORBA server interoperability: VisiBroker for .NET
Security seamlessly interoperates with EJB security via the underlying
CORBA Common Secure Interoperability specification (CSIv2).

• Microsoft Windows Certificate Store integration: VisiBroker for .NET
Security uses the Microsoft Windows Certificate Store for public and
private key management.

• ASP.NET integration: VisiBroker for .NET Security propagates the security
identities authenticated by ASP.NET applications to the J2EE server or
CORBA server.

• Secure Transport Layer: VisiBroker for .NET Security utilizes SSL and TLS
protocols as a secure transport layer. Both protocols provide message
confidentiality, message integrity, and certificate-based authentication
support through a trust model.

• GateKeeper integration: VisiBroker for .NET Security supports a secure
connection through GateKeeper. For details see “Using VisiBroker for .NET
with GateKeeper” and the VisiBroker GateKeeper Guide.

128 VisiBroker for .NET Developer ’s Guide

Enabl ing VisiBroker for .NET Secur i ty

Enabling VisiBroker for .NET Security
By default VisiBroker for .NET Security is disabled. To enable the VisiBroker
for .NET Security include the <security> section in the configuration file as
shown below:

<visinet>
<security enabled="true">
</security>

</visinet>

Alternatively, you can enable security by setting the janeva.security
property to true. See (properties chapter) for instructions.

Interoperating with J2EE servers and CORBA
servers

VisiBroker for .NET Security supports two kinds of user authentication:

• User name and password authentication

• Certificate-based authentication

VisiBroker for .NET Security supports the .NET Remoting API, a CORBA-
based API, and a configuration file method of setting up the security
identity. These methods are described in each of the following sections.

User name and password authentication
If the J2EE server or CORBA server requires user authentication, VisiBroker
for .NET Security provides multiple ways to set up the user credentials and
pass them to the server side. User name and password authentication lets a
VisiBroker for .NET client authenticate users by passing a user name and
password to the server. You can implement user name and password
authentication in one of the following ways: the .NET Remoting API, the
CORBA-based API, or the application configuration file.

VisiBroker for .NET Developer ’s Guide 129

Interoperat ing wi th J2EE servers and CORBA servers

Using the .NET Remoting API for user name and
password authentication
The following example shows you how to use the .NET Remoting API to do
user name and password authentication. The first step is to resolve the
Remoting proxy reference:

// creating the CartHomeRemotingProxy configured as
// a well-known remoting object in the config file
CartHome home = new CartHomeRemotingProxy();

The next step is to resolve the Sink Properties of this Remoting proxy
object:

// setup security credentials
IDictionary props =

System.Runtime.Remoting.Channels.ChannelServices.
GetChannelSinkProperties(

home);

Next, the application sets the user name and password properties:

props["username"] = "joeshopper";
props["password"] = "joepass";

Optionally, you can also set the realm.

props["realm"] = "myuprealm";

In the absence of the realm property, the realm defaults to default.

Note

Different application servers might have different names for the default
realm. You can set the default realm name in the configuration file. When
you need to override the default realm set in the configuration file you can
set the property in the command line or programmatically as shown above.
See “Configuring properties” for more information.

Once the properties are set you can invoke methods on the Remoting
proxy. The user name, password, and realm are passed transparently to the
server side as a part of the invocation context.

// creating a new instance of Cart session
Cart cart = home.Create(...);

Note that it is important to set the credentials before the first invocation on
the Remoting proxy, otherwise the credentials are not passed to the server.

Keep in mind that every object on the same server shares the same secure
connection. Once the first invocation is completed, any subsequent
invocation on the same or other objects located on the same server shares
the credentials established with the first invocation. To change the
credentials resolve the Sink Properties and set the username and password
properties again.

In the example below, you do not need to set up the credentials again for
the cart object. The cart uses the same credentials established by the
secure connection to the home object.

// adding a new book into the cart
Item book = new Book();
book.Title = "War and Peace";
book.Price = 20.99f;
cart.AddItem(book);

More example code is located in the <janeva_install_dir>\examples\
Advanced\Security\RemotingUsernameClient directory.

130 VisiBroker for .NET Developer ’s Guide

Interoperat ing wi th J2EE servers and CORBA servers

Using the CORBA-based API for user name and
password authentication
The following example shows how to use the CORBA-based API to establish
the user credentials.

The first step is to resolve the VisiBroker for .NET security context on the
orb instance. Janeva.Security.Context is the object which exposes the
API with which you manipulate the user's identity.

// initialize the ORB
CORBA.ORB orb = CORBA.ORB.Init(args);

// resolve the Securuty Context
Janeva.Security.Context context =

(Janeva.Security.Context)
orb.ResolveInitialReferences("SecurityContext");

Next, to set the user name, password and realm use the
Janeva.Security.IdentityWallet class as follows:

// create a wallet with the credentials
Janeva.Security.IdentityWallet wallet =

new Janeva.Security.IdentityWallet(
"joeshopper", "joepass".ToCharArray(), "myuprealm");

In the absence of the realm property, the realm defaults to default.

Note

Different application servers might have different names for the default
realm. You can set the default realm name in the configuration file. When
you need to override the default realm set in the configuration file you can
set the property in the command line or programmatically as shown above.
See “Configuring properties” for more information.

The last step is to call a Login method on the security context with the
wallet:

// login in to the security conext with the wallet
context.Login(wallet);

The Janeva.Security.Context object provides different login methods.
Please see the VisiBroker for .NET API reference for details.

Keep in mind that every object on the same server shares the same secure
connection. Once the first invocation is completed, any subsequent
invocation on the same or other objects located on the same server shares
the credentials established with the first invocation. To change the
credentials call Logout and then call Login again.

Once you set the credentials with the Login method you can invoke
methods on the sever:

// creating a new instance of Cart session
Cart cart = home.Create(...);

Once you login to the Janeva.Security.Context the same credentials are
used with any subsequent remote invocation:

// adding a new book into the cart
Item book = new Book();
book.Title = "War and Peace";
book.Price = 20.99f;
cart.AddItem(book);

VisiBroker for .NET Developer ’s Guide 131

Interoperat ing wi th J2EE servers and CORBA servers

Using a configuration file for user name and password
authentication
The following is an example of how to set security credentials using a
configuration file.

<configuration>
<visinet>

<security enabled="true">
<identity>

<username>joeshopper</username>
<password>joepass</password>
<realm>myuprealm</realm>

</identity>
</security>

</visinet>
</configuration>

Setting the identity in the configuration file has a global effect on the
application. The same identity is used for each remote invocation.

Certificate-based authentication
VisiBroker for .NET certificate support is based on the Microsoft Windows
Certificate Store. Before the certificate can be used with a VisiBroker for
.NET application it needs to be imported into the Certificate Store. Refer to
the Microsoft documentation for more information on how to issue and
manage certificates.

One of the optional certificate attributes is a friendly name. VisiBroker for
.NET uses the certificate's friendly name as the identifier to address a
particular certificate. If a certificate does not have a friendly name you can
set it in the Microsoft Windows Internet Options control panel.

Note:

When the certificate is used to authenticate the client, it is important that
the certificate have both public and private keys in it. This is the
requirement of the SSL/TLS protocol.

Using the .NET Remoting API for certificate-based
authentication
The following example shows you how to use the .NET Remoting API to
achieve certificate-based authentication.

The first step is to resolve the Remoting proxy reference:

// creating the CartHomeRemotingProxy configured as
// a well-known remoting object in the config file
CartHome home = new CartHomeRemotingProxy();

The next step is to resolve the SinkProperties of this Remoting proxy object:

// setup security credentials
IDictionary props =

System.Runtime.Remoting.Channels.ChannelServices.GetChanne
lSinkProperties(

home);

Next, set the certificate's friendly name:

props["certificate"] = "joeshopper";

132 VisiBroker for .NET Developer ’s Guide

Interoperat ing wi th J2EE servers and CORBA servers

Note

Instead of using the friendly name, you can also specify an asterisk (*) to
let VisiBroker for .NET decide which certificate to use.

Once the property is set you can invoke methods on the Remoting proxy.
The certificate is passed transparently to the server side as a part of the
invocation context.

// creating a new instance of Cart session
Cart cart = home.Create(...);

Note that it is important to set the credentials before the first invocation on
the Remoting proxy, otherwise the credentials will not be passed to the
server.

Keep in mind that every object on the same server shares the same secure
connection. Once the first invocation is completed, any subsequent
invocation on the same or other objects located on the same server shares
the credentials established with the first invocation. To change the
credentials resolve the Sink Properties and set the username and password
properties again.

In the example code below, you do not need to set up the credentials again
for the cart object. The cart uses the same credentials established by the
secure connection to the home object.

// adding a new book into the cart
Item book = new Book();
book.Title = "War and Peace";
book.Price = 20.99f;
cart.AddItem(book);

More example code is located in the <janeva_install_dir>\examples\
Advanced\Security\RemotingCertificateClient directory.

Using the CORBA-based API for certificate-based
authentication
The following example shows how to use the CORBA-based API to achieve
certificate-based authentication.

The first step is to resolve the VisiBroker for .NET security context on the
orb instance. The Janeva.Security.Context is the object which exposes
the API with which you manipulate the user's identity.

// initialize the ORB
CORBA.ORB orb = CORBA.ORB.Init(args);

// resolve the Securuty Context
Janeva.Security.Context context =

(Janeva.Security.Context)
orb.ResolveInitialReferences("SecurityContext");

Next, to set the certificate friendly name you need to use the
Janeva.Security.CertificateWallet class as follows:

// create a wallet with the credentials
Janeva.Security.CertificateWallet wallet = new

Janeva.Security.CertificateWallet("joeshopper",
CertificateWallet.CLIENT_AUTHENTICATION);

The second parameter defines the certificate usage. This parameter is set
differently when used for secure server (see “Enabling security for .NET
servers”). For details on the other values for this parameter see the
VisiBroker for .NET API reference.

VisiBroker for .NET Developer ’s Guide 133

ASP.NET integrat ion

Note

Instead of using the friendly name, you can also specify an asterisk (*) to
let VisiBroker for .NET decide which certificate to use.

Last step is to call a Login method on the security context with the wallet:

// login in to the security conext with the wallet
context.Login(wallet);

The Janeva.Security.Context object provides different login methods.
See the VisiBroker for .NET API reference for details.

Keep in mind that every object on the same server shares the same secure
connection. Once the first invocation is completed, any subsequent
invocation on the same or other objects located on the same server shares
the credentials established with the first invocation. To change the
credentials call Logout and then call Login again.

Once you set the credentials with the Login method you can invoke
methods on the object:

// creating a new instance of Cart session
Cart cart = home.Create(...);

Once you login to the Janeva.Security.Context the same credentials are
used with any subsequent remote invocation.

// adding a new book into the cart
Item book = new Book();
book.Title = "War and Peace";
book.Price = 20.99f;
cart.AddItem(book);

Using a configuration file for certificate-based
authentication
The following is an example of how to specify the certificate in a
configuration file.

<configuration>
<visinet>

<security enabled="true">
<identity>

<certificate>joeshopper</certificate>
</identity>

</security>
</visinet>

</configuration>

Setting the certificate in the configuration file has a global effect on the
application. The identity presented by the certificate is used for each remote
invocation.

ASP.NET integration
The VisiBroker for .NET Security integration with ASP.NET is based on the
concept of identity assertion. Whenever the VisiBroker for .NET runtime on
ASP.NET makes an outgoing call, it will propagate two identities to the
called server. It will identify itself to the called server and assert the caller's
identity.

The caller's identity is the identity that the browser or other clients use to
communicate with the ASP.NET tier. When VisiBroker for .NET asserts this

134 VisiBroker for .NET Developer ’s Guide

ASP.NET integrat ion

identity as the caller identity, it is, in fact, asserting to the called server that
this tier trusts that this caller is authenticated and it is performing this
request on behalf of this caller.

It is up to the called server to decide whether it will accept this assertion
from this tier. Since the ASP.NET tier identifies itself, it allows the called
server to authenticate and decide whether this tier has the privileges to
make this assertion.

Note

Some servers may need explicit configuration that defines which peer
identities (in this case, the identity of the ASP.NET tier) it will accept
assertions from. Refer to the server's documentation for more details.

ASP.NET configuration
Within an ASP.NET environment, VisiBroker for .NET implicitly detects
whether a user is authenticated and passes the user identity as the caller
identity to the server side. The peer identity is established explicitly using
the VisiBroker for .NET Security API as shown in the examples in
“Interoperating with J2EE servers and CORBA servers”.

The following is an example of how a configuration file can establish the
peer identity for an ASP.NET application. Note that this example is similar to
the example in “Using a configuration file for certificate-based authentication”.

<configuration>
<visinet>

<security enabled="true">
<identity>

<username>peer</username>
<password>pwd</password>

...
</configuration>

Note

You can also explicitly set the caller identity with the
Janeva.Security.Context.ImportIdentity() API. This allows you to
use the trust model outside of the ASP.NET environment. See the VisiBroker
for .NET API reference for details about
Janeva.Security.Context.ImportIdentity.

More example code is located in the <janeva_install_dir>\examples\
Advanced\Security\AspNetClient directory.

VisiBroker for .NET Developer ’s Guide 135

Enabl ing secur i ty for .NET servers

Enabling security for .NET servers
For secure .NET server applications VisiBroker for .NET Security can be
enabled on the server side by setting the janeva.security.server
property to true. The following is an example of how to set the property in
the application configuration file.

<configuration>
<visinet>

<security>
<server enabled="true" defaultPort="15000">

<certificate>cert_friendly_name</certificate>
</server>

...

You can set the port which the VisiBroker for .NET server will use for SSL/
TSL communication on the server side by setting the
janeva.security.server.defaultPort property. See the previous
example for how this is done in a configuration file.

The server side must be identified with a certificate per SSL/TSL protocol
requirement. You can do this using the CORBA-based API or a configuration
file property.

The following is an example of how to set the certificate identity in the
configuration file:

<configuration>
<visinet>

<security>
<server enabled="true" defaultPort="15000">

<certificate>cert_friendly_name</certificate>
</server>

...

The following is an example of how to set the certificate identity using the
CORBA-based API:

The first step is to resolve the VisiBroker for .NET security context on the
orb instance. The Janeva.Security.Context is the object which exposes
the API with which you manipulate the identity.

Janeva.Security.Context context =
(Janeva.Security.Context)

CORBA.ORB.Init().ResolveInitialReferences("SecurityContext
");

Next, to set the certificate you need to use the
Janeva.Security.CertificateWallet class as follows:

Janeva.Security.CertificateWallet wallet = new
Janeva.Security.CertificateWallet(

"joeshopper",
Janeva.Security.CertificateWallet.SERVER_AUTHENTICATION);

Note that the second parameter defines the certificate usage for the server.
For details on the other values for this parameter see the VisiBroker for
.NET API reference.

The last step is to call a Login method on the security context with the
wallet:

context.Login(wallet);

136 VisiBroker for .NET Developer ’s Guide

The Janeva.Security.Context object provides different login methods.
See the VisiBroker for .NET API reference for details.

Note

When using the CORBA-based API configuration method, the certificate
needs to be set up before the server starts listening for incoming requests,
that is, before calling the CORBA.ORB.Run() method in your code.

More example code is located in the <janeva_install_dir>\examples\
Advanced\Security\SslServer directory.

VisiBroker for .NET Developer ’s Guide 137

Using VisiBroker for .NET
with Partially Trusted
Applications
Code access security is a very powerful feature that allows systems to be
configured to execute partially trusted code without prompting the user.This
is, in fact, the default setting. Meanwhile, partially trusted code is only
allowed to do things appropriate to its level of trust.

The level of trust applied to a body of code depends on various pieces of
evidence that are provided to the security policy engine at runtime.
Evidence is provided at the granularity of an assembly. There are many
kinds of evidence. Some evidence is provided by the hosting CLR
environment such as the source of the assembly, the 'Zone' to which that
source belongs (much like Internet Explorer), and some evidence is
provided by the assembly itself, such as its Public Key Token. Based on the
evidence associated with an assembly, the assemblies are assigned to code
groups by the policy engine. Each code group can have a membership
condition (such as 'Assembly must be from the Intranet zone') and an
associated set of permissions.

Read the following documents to get a basic familiarity with Partially
Trusted Applications.

• .NET documentation on the MSDN web site for a detailed introduction to
Code Access Security (http://msdn.microsoft.com/en-us/library/
930b76w0(v=vs.90).aspx)

• An article that describes Partially Trusted Code and Partially Trusted
Environments located at http://msdn.microsoft.com/en-us/library/
ff664608(v=PandP.50).aspx.

Using VisiBroker for .NET in Partially Trusted
Environments

To use VisiBroker for .NET in partially trusted environments, VisiBroker for
.NET should be installed locally. Alternatively, you may also configure your
security policies such that VisiBroker for .NET DLLs are given full trust. This
is due to the fact that VisiBroker for .NET uses other assemblies (such as
Visual J#) that are not usable directly by partially trusted assemblies (PTAs)

Note

To be used by partially trusted code, an assembly must have the
AllowPartiallyTrustedCallersAttribute (APTCA) applied to it.

VisiBroker for .NET's public assemblies are marked with the APTCA to allow
partially trusted callers to load and call into it. However, VisiBroker for .NET
itself requires full trust to perform its functions.

Once VisiBroker for .NET is locally installed, partially trusted applications
can load VisiBroker for .NET and call methods on it. However, to
communicate with remote servers using VisiBroker for .NET, changes to the
local security policy are required to give appropriate permissions to the
partially trusted assemblies.

http://msdn.microsoft.com/en-us/library/930b76w0(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/930b76w0(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ff664608(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff664608(v=PandP.50).aspx

138 VisiBroker for .NET Developer ’s Guide

Permissions Required by Vis iBroker for .NET

For example, partially trusted assemblies do not have access to network.
Specifically, they do not have the ability to open sockets to arbitrary
servers. The only exception is for assemblies that are loaded from the
'LocalIntranet' zone. These are allowed to connect back to the site they
came from using the protocol they were downloaded with (or a protocol that
is more secure). This typically means that an assembly that is downloaded
using http (which is the most common scenario) is allowed to have http (or
https) access back to the host it came from.

When using VisiBroker for .NET, however, the assembly will communicate
using IIOP (and TCP/UDP sockets) and the default security policy does not
give the PTA, the permission to use sockets. VisiBroker for .NET will NOT
assert that permission as that will constitute a security hole. If VisiBroker
for .NET asserts that permission, then any partially trusted application can
access the remote host it came from, without restrictions, and this is not
recommended from a security perspective.

To enable VisiBroker for .NET clients to communicate remotely, make sure
that such applications do have the socket permission. The criteria for
determining which particular application (or PTA) has socket permissions to
connect to a given host or not is dependent on user requirements. Users
must configure the Code Access Security policies of the machine that is
executing the application such that the appropriate permissions are given to
the application. There are a few choices provided by the Microsoft security
framework. In addition, you may use custom code groups to fine tune the
security policy.

Permissions Required by VisiBroker for .NET
VisiBroker for .NET requires partially trusted application code the following
permissions to execute correctly. Note that the application may require
other permissions depending on what it actually does. For example, it may
need UI permissions if it is launching windows.

SecurityPermission.Execute: This permission is not required by
VisiBroker for .NET per-se but is required by any assembly that is partially
trusted to load and execute

DnsPermission.Unrestricted: The ability to resolve DNS names.
VisiBroker for .NET will not assert this permission. Otherwise, the code
could use VisiBroker for .NET to probe for valid hosts. The PTA must have
the ability to do DNS resolves.

SocketPermission: Code that uses VisiBroker for .NET is invariably calling
into remote servers. So, the PTA requires permissions to open sockets to
(or allow connections from, in the case of callbacks) the appropriate server
host and port. VisiBroker for .NET will not assert permissions even back to
the same host. This is because doing so, will allow arbitrary untrusted code
to connect back to its host. Note here that socket permissions given to the
application must allow the client to connect to the remote server that
VisiBroker for .NET code is accessing. This may not be the same as the host
that is serving the application assemblies.

See the documentation for Security Policy configuration and the caspol tool
for more details on how one can configure security policy.

Usage in No Touch Deployment environments
It is expected that client machines are configured with appropriate security
policies that give partially trusted code (based on appropriate evidence,

VisiBroker for .NET Developer ’s Guide 139

Usage in No Touch Deployment environments

such as Strong Name, Site, or URL) the appropriate permissions in order to
use VisiBroker for .NET. Once VisiBroker for .NET is installed, and these
security policies are in place, the application code that uses VisiBroker for
.NET can be deployed using No Touch Deployment techniques. If you
choose not to install VisiBroker for .NET, it is required that you give
VisiBroker for .NET DLLs Full Trust for VisiBroker for .NET to function
properly. It is recommended that you use StrongName membership
condition to give VisiBroker for .NET DLLs full trust unless other
membership conditions are deemed more appropriate for your
environment.

140 VisiBroker for .NET Developer ’s Guide

VisiBroker for .NET Developer ’s Guide 141

Using VisiBroker for .NET
with COM
This chapter presents a set of development techniques for using VisiBroker
for .NET to enable COM-based client applications to access server-side
components developed with RMI, EJB or CORBA.

Although in theory any object developed for the Common Language
Runtime (CLR) can be exposed to COM-based clients, in practice certain
development and deployment techniques will make such access simple,
flexible, and trouble-free. We discuss these various technique in this
chapter, and show you how to use VisiBroker for .NET to make COM access
work.

The first problem encountered when exposing managed objects to COM
clients is determining which objects to expose. In general, it is desirable to
expose the types which provide access to business logic, while hiding the
types which simply provide the “middleware infrastructure.” Following this
guideline, your component interfaces should be visible to COM, while your
marshaling stubs should be invisible.

When run with the -COM flag, the VisiBroker for .NET compiler adds the
ComVisible attribute to all public type declarations:

[System.Runtime.InteropServices.ComVisible(value)]

where value is true for types that are exposed to COM clients, and false
for all other types.

The following generated types are visible to COM clients:

• All remote interfaces:

• Interfaces defined in IDL

• Interfaces defined in Java using RMI

• Interfaces defined in Java using EJB

• Certain data types defined in IDL:

• structs

• unions

• enums

• valuetypes

• Certain data types defined in Java:

• Public classes (excluding direct or indirect extensions of
java.lang.Throwable)

• Public interfaces

The following generated types are invisible to COM clients:

• Certain data types defined in IDL:

• exceptions

• constants

• valueboxes

• Certain data types defined in Java:

142 VisiBroker for .NET Developer ’s Guide

Overr id ing COM Visib i l i ty

• Classes which extend (directly or indirectly) java.lang.Throwable
• All other generated classes and interfaces:

• The Helper class

• The ValueFactory and ValueData class

• The Operations interface

• The MarshalingStub and LocalStub classes

• The RemotingProxy class

• The POA and POATie classes

Overriding COM Visibility
Although the default COM visibility provided by the compiler is adequate for
most applications, there are cases where it may be desirable to fine-tune to
COM visibility of certain types. All ComVisible declarations include the fully-
scoped type name immediately prior to the visibility value of true or
false. It should be straightforward to write regular expressions to modify
the visibility of individual types. VisiBroker for .NET compilers do not
generate COM visibility attribute for type data members and you may need
to fine tune this to control visibility of class data members. Also note that
static and const members of a type are not COM visible.

ClassInterface attributes
By default, the following types will be annotated as requiring
ClassInterfaceType.AutoDual interface classes:

• Certain data types defined in IDL:

• structs

• unions

• valuetypes

• Certain data types defined in Java:

• Public classes (excluding direct or indirect extensions of
java.lang.Throwable)

In COM, an AutoDual interface class provides early binding COM clients with
type access to all the public methods and properties provided by a given
class. Unfortunately, AutoDual interface classes must be used with caution,
as they can lead to fragile COM clients. As such, if a class that is AutoDual is
modified, all the early binding COM clients that use that class must be
recompiled (or redefined, in the case of using interpreted languages like
Visual Basic). As such, it is strongly recommended that the AutoDual class
interface only be used in situations where the underlying type is immutable.
That is, newer versions of the types will not break existing COM clients.

However, the immutability requirement for using AutoDual in COM is
analogous to the immutability requirement for the above listed types
defined in IDL or Java. That is, if the user makes changes to the IDL
definition of a struct, union or valuetype (or if a user makes changes to the
serializable data fields of a class defined Java) it will lead to IIOP marshaling
errors.

In short, IDL and Java types must be immutable with respect to field layout
(which determines their marshaled format) in the same way that AutoDual

VisiBroker for .NET Developer ’s Guide 143

Def ining custom inter faces

types must be immutable with respect to their method and field layout. As
such, the default behavior of the VisiBroker for .NET compilers is to
annotate the above-mentioned types as AutoDual.

As with COM visibility, the AutoDual annotation of a given type (or all types)
can be fine-tuned if required.

Note

This behavior may change in the future. VisiBroker for .NET compilers may
choose to add ClassInterface.None and
ComInterfaceType.InterfaceIsDual for generated interfaces.

Defining custom interfaces
Microsoft recommends using user-defined interfaces as a more robust
alternative to using ClassInterfaceType.AutoDual on implementation
classes, where the implementation class is likely to change over time. It is
also suggested to mark the implementation classes with
ClassInterfaceType.None ClassInterface attribute to avoid generation of
the _<impl class> interface (which becomes the [default] interface
otherwise.) The user-defined interfaces can be inspected and appropriately
marked with ComInterfaceType.InterfaceIsDual InterfaceType
attribute if necessary to generate dual interface COM servers.

At this time VisiBroker for .NET compilers do not explicitly mark classes with
ClassInterfaceType.None. Neither are interfaces marked with
InterfaceIsDual. VisiBroker for .NET compilers generate AutoDual flags
for public implementation classes that are generated or Java based.

There are a number of different techniques that can be used, which we will
illustrate using the following Java class definition:

public class Quote implements java.io.Serializable {
 private String symbol;
 private float price;
 public Quote(String symbol, float price) {
 this.symbol = symbol;
 this.price = price;
 }
 public String getSymbol() {
 return symbol;
 }
 public float getPrice() {
 return price;
 }
}

This Java class represents a stock quote, and contains data fields
corresponding to the stock symbol and price. Note that this class allows
users to access the quote's symbol or price, but not to modify these values.
Ideally, we would like our C# type to be likewise read-only with respect to
the symbol and price fields.

By default, if we run the VisiBroker for .NET java2cs compiler over this
class (with the -COM flag enabled), we will produce the following C# class:

[Serializable]
[ComVisible(true)]
[ClassInterface(ClassInterfaceType.AutoDual)]
public class Quote {
 public Quote() {

144 VisiBroker for .NET Developer ’s Guide

Defining custom interfaces

 }
 public Quote(float Price, string Symbol) {
 this._Price = Price;
 this._Symbol = Symbol;
 }
 private float _Price;
 public virtual float Price {
 get { return this._Price; }
 set { this._Price = value; }
 }
 private string _Symbol;
 public virtual string Symbol {
 get { return this._Symbol; }
 set { this._Symbol = value; }
 }
}

This class has the following drawbacks:

1 It uses the AutoDual mode, which makes it immutable, in the sense that
most early bound clients need to recompile.

2 The Symbol and Price properties have public getters and setters. This is
at odds with our design guidelines, which indicate that Symbol and Price
should be read-only.

So, instead of using this generated class, we would like to introduce a user-
defined interface. Here is the user-defined C# interface representing a
Quote:

[System.Runtime.InteropServices.ComVisible(true)]
public interface Quote {
 string GetSymbol();
 float GetPrice();
}

This class is COM visible, and has getter methods for Symbol and Price.
Mark this interface with the appropriate ComInterfaceType attribute to
specify dual or dispatch interface or IUnknown as required.

The next step is to tell the VisiBroker for .NET compiler not to generate the
Quote interface, since we are providing our own implementation. This is
done by introducing a hint file, which contains the following hint:

<?xml version="1.0"?>
<hints>
 <hint>
 <java-class>Quote</java-class>
 <cs-sig-type>Quote</cs-sig-type>
 <cs-impl-type>QuoteImpl</cs-impl-type>
 <mode>automatic</mode>
 </hint>
</hints>

This hint indicates that the Java type Quote maps to a pair of C# types: a
signature type Quote, and an implementation type QuoteImpl. We also
specify that we will be using the automatic code-generation mode. (In
fact, the
<mode/> element can be omitted, as automatic is the default code-
generation mode.)

The XML element <cs-sig-type/> indicates the type name that will be used
when clients interact with a Quote. The XML element <cs-impl-type/>

VisiBroker for .NET Developer ’s Guide 145

Support for array-valued parameters and return values

indicates the type that will be used to implement the Quote (for example,
QuoteImpl).

The user must then provide implementations of both the public Quote type
and the internal QuoteImpl type. The Quote interface was listed above.
Below is the QuoteImpl:

internal class QuoteImpl : Quote {
 internal string Symbol;
 internal float Price;
 public string GetSymbol() {
 return Symbol;
 }
 public float GetPrice() {
 return Price;
 }
}

A few notes about this implementation class:

• Since this class is marked internal, we do not have to indicate its COM
visibility: only public types can be COM visible. This implementation
class is invisible to COM clients (which was our intent).

• The automatic code generation mode indicated in the hint file requires
that this class have fields corresponding to the serializable fields in the
Java class. The Java class has two serializable fields (symbol and price)
and thus our C# implementation class also has two such fields (Symbol
and Price). Obviously, we could have implemented these fields as
properties instead, if desired.

• The two serializable fields in QuoteImpl (Symbol and Price) must be
marked as internal (or public), since these fields are read/written by
the generated class QuoteValueFactory when marshaling a
QuoteImpl. These fields cannot be private or protected.

An alternate technique is available for implementing the QuoteImpl class, if
it is desirable to not have to “repeat” the serializable fields. In such cases, it
is possible to implement the QuoteImpl by extending the generated class
QuoteValueData:

internal class QuoteImpl : QuoteValueData, Quote {
 public string GetSymbol() {
 return Symbol;
 }
 public float GetPrice() {
 return Price;
 }
}

Note that this class does not declare the fields Symbol and Price, as these
fields are “inherited” from the base class QuoteValueData.

Support for array-valued parameters and return
values

There are known issues with respect to invoking methods from COM clients
on types implemented in managed code, where one or more of the
parameters or the return value of the method is an array type.

146 VisiBroker for .NET Developer ’s Guide

Avoiding ProgId col l is ions

To address these issues, when the -COM flag is specified, the VisiBroker for
.NET compilers generate an “overloaded” method for every such
problematic method.

Let's consider, as an example, the following method:

int[] GetLengths(string[] strings);

This method takes an array of strings as a parameter, and returns an
array of integers, where each element in the result indicates the length of
the corresponding input string. So, if this method is called as follows:

string[] strings = { "VisiBroker", "Rocks" };
int[] lengths = o.GetLengths(strings);

The result would be an array containing the elements 10 and 5.

Unfortunately, if we export this C# signature to COM, some COM clients will
not be able to invoke the method GetLengths. For example, if we run the
following Visual Basic code within an Excel spreadsheet:

Dim strings(1) As String
strings(0) = "VisiBroker"
strings(1) = "Rocks"
lengths = o.GetLengths(strings)

We will receive the following error:

Compile error: Function or interface marked as restricted,
or the function uses an Automation type not supported by
Visual Basic

To handle this problem, the VisiBroker for .NET compiler will output an
“overloaded” method with the following signature:

object GetLengthsForCom(object strings);

This method signature substitutes the type object for all array-valued
parameters and/or return values. (Note that this method is technically not
overloaded with respect to the original method GetLengths, since we
append the suffix ForCom to the original method name. We cannot use true
overloading because C# does not permit method signatures that are
overloaded based on return type.)

We can now use this generated method in our Visual Basic client:

Dim strings(1) As String
strings(0) = "VisiBroker"
strings(1) = "Rocks"
lengths = o.GetLengthsForCom(strings)

We will obtain a lengths value which is an array of 32-bit integers, where
the array elements contain the values 10 and 5, as expected.

Avoiding ProgId collisions
Microsoft's COM interoperation documentation indicates that problems may
occur when trying to export types with very long type names to COM
clients. In particular, if the C# type name exceeds 39 characters, COM
client may not be able to access the type unambiguously. Microsoft
recommends adding a ProgId annotation to long type names that would
otherwise be ambiguous. A simple workaround is to use regular expression-
based tools to modify the code generated by the VisiBroker for .NET
compiler.

VisiBroker for .NET Developer ’s Guide 147

Avoiding ProgId col l is ions

148 VisiBroker for .NET Developer ’s Guide

Avoiding ProgId col l is ions

VisiBroker for .NET Developer ’s Guide 149

Using VisiBroker for .NET
with GateKeeper
This chapter explains how to configure properties to use the VisiBroker
GateKeeper service with VisiBroker for .NET applications. Refer to the
VisiBroker GateKeeper Guide for information on using GateKeeper.

What is GateKeeper?
The VisiBroker GateKeeper is a CORBA General Inter-ORB Protocol (GIOP)
compliant GIOP Proxy Server that enables CORBA clients and servers to
communicate across networks while conforming to security restrictions
imposed by Internet browsers, firewalls, and Java sandbox security. In
effect, GateKeeper serves as a gateway or proxy for clients and servers
when security restrictions prevent clients from communicating with the
servers directly.

GateKeeper is often used when you do not want to expose the server
directly to clients or when a client's access to the server is restricted. In the
latter case, either the client is an unsigned applet or there is an intervening
firewall.

Enabling the VisiBroker for .NET Firewall feature
VisiBroker for .NET supports a firewall that is compliant with CORBA 2.6. By
default, the firewall feature is turned off in VisiBroker for .NET. If you are
developing a VisiBroker for .NET application to work with the VisiBroker
GateKeeper service, you will need to turn the firewall feature on explicitly
with the janeva.firewall property.

150 VisiBroker for .NET Developer ’s Guide

Vis iBroker for .NET server-s ide conf igurat ion

VisiBroker for .NET server-side configuration
In order to enable the client to communicate with the server through the
GateKeeper, the server has to export the firewall path to the client by
setting certain properties. The following table describes the properties
specific to server side configuration.

Property Valid values Description
vbroker.orb.exportFirewallPat
h

true

false (default)

When this property is set to true the firewall
path is embedded in the server’s IOR profile
component.

vbroker.orb.exportFirewallPath=t
rue

vbroker.se.iiop_tp.firewallPa
ths

<empty> (default)

<paths>

Use this property to declare all firewall paths.
<paths> is a set of user defined names for
the communication paths from the clients to
the servers, separated with commas.

vbroker.se.iiop_tp.firewallPaths
=x,y

vbroker.firewall-
path.<pathname>

<empty> (default)

<components>

Specifies the list of components in the firewall
path <pathname>.

vbroker.firewall-path.x=a,b
vbroker.firewall-path.y=c

vbroker.firewall.<component>.
type

<empty>

PROXY

TCP

Specifies the type of the components.

vbroker.firewall.a.type = PROXY
vbroker.firewall.b.type = TCP

vbroker.firewall.<component>.
ior

<empty>

<ior_filename>

<ior_URL>

IOR:<stringified_i
or>

Specifies the IOR of the component. This is
specified together with
vbroker.firewall.
<component.type>=PROXY.

1. file:C:/GateKeeper/
GateKeeper.ior

2. http://www.inprise.com/GK
GateKeeper.ior

3.
IOR:2398402841729073423497234234
234

vbroker.firewall.<component>.
host

<empty>

<fake host name>

Specifies a fake host name for the component
server. This is specified together with
vbroker.firewall.<component>.typ
e=TCP and the component is a TCP Firewall
with NAT.

vbroker.firewall.<component>.
iiop_port

<empty>

<fake IIOP Port>

Specifies a fake IIOP port for the component
server. This is specified together with
vbroker.firewall.<component>.typ
e=TCP and the component is a TCP Firewall
with NAT.

vbroker.firewall.<component>.
ssl_port

<empty> (default)

<fake SSL Port>

Specifies a fake SSL port for the component
server. This is specified together with
vbroker.firewall.<component>.typ
e=TCP and the component is a TCP Firewall
with NAT.

VisiBroker for .NET Developer ’s Guide 151

VisiBroker for .NET cl ient-s ide conf igurat ion

VisiBroker for .NET client-side configuration
The following table describes the properties specific to client side
configuration.

vbroker.firewall.<component>.
hiop_port

<empty> (default)

<fake HIOP Port>

Specifies a fake HIOP port for the component
server. This is specified together with
vbroker.firewall.<component>.typ
e=TCP and the component is a TCP Firewall
with NAT.

vbroker.orb.enableBiDir client

server

both

none (default)

If the client defines
vbroker.orb.enableBiDir=client,
and the server defines
vbroker.orb.enableBiDir=server,
the value of vbroker.orb.enableBiDir
in GateKeeper determines the state of the
connection.

If you set the
vbroker.se.exterior.scm.
ex--iiop.manager.importBiDir
property to true, GateKeeper will accept
bidirectional connections from the client.
Setting the
vbroker.se.exterior.scm.ex--
iiop.manager.
exportBiDir property to true causes
GateKeeper to request bidirectional
connections with the server.

Property Valid values Description

Property Valid values Description
vbroker.orb.gatekeeper.ior <empty> (default)

<ior_filename>

Specifies the URL of the GateKeeper IOR file.

vbroker.orb.alwaysProxy false (default)

true

Specifies whether the client must always
connect to the server via GateKeeper.

vbroker.locator.ior.ior <empty> (default)

<ior_filename>

Specifies the URL of the GateKeeper Locator
IOR file. GateKeeper provides limited location
services. It cannot forward location requests
to another GateKeeper.

vbroker.orb.alwaysTunnel false (default)

true

Specifies whether the client must always
make HTTP tunnel (IIOP wrapper)
connections to the server.

vbroker.orb.enableBiDir client

server

both

none (default)

You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client,
and the server defines
vbroker.orb.enableBiDir=server,
the value of vbroker.orb.enableBiDir
in GateKeeper determines the state of the
connection.

For example, if you set the
vbroker.se.exterior.scm.
ex--iiop.manager.importBiDir
property to true, GateKeeper will accept
bidirectional connections from the client.
Setting the vbroker.se.exterior.scm.
ex--iiop.manager.exportBiDir
property to true causes GateKeeper to
request bidirectional connections with the
server.

152 VisiBroker for .NET Developer ’s Guide

Cal lbacks wi th GateKeeper 's b id i rect ional support

Callbacks with GateKeeper's bidirectional support
With bidirectional IIOP, servers use the client-initiated connections to
transmit asynchronous information back to the clients. Servers need not
initiate any connections to the client.

Figure 4 Callback with GateKeeper's bidirectional support

In the figure above, GateKeeper sits between the client and server and
therefore it acts as a server for the client and as a client for the server. The
Client/GateKeeper and the GateKeeper/Server communication channels can
be set to unidirectional or bidirectional connections.

You can also selectively set the channels to unidirectional or bidirectional. If
the client defines vbroker.orb.enableBiDir=client and the server
defines vbroker.orb.enableBiDir=server, the following table describes
the type of channels for the different values of vbroker.orb.enableBiDir
for GateKeeper.

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the
absence of other security mechanisms, a malicious client may claim that its
connection is bidirectional for use with any host and port it chooses. In
particular, a client may specify the host and port of security-sensitive
objects not even resident on its host. In the absence of other security
mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated
the connection. Further, the server might gain access to other objects
accessible through the bidirectional connection. If there are any doubts as
to the integrity of the client, it is recommended that bidirectional IIOP not
be used. For security reasons, a server running VisiBroker for .NET will not
use bidirectional IIOP unless explicitly configured to do so.

vbroker.orb.enableBiDir= Client GateKeeper GateKeeper Server
client unidirectional bidirectional
server bidirectional unidirectional
both bidirectional bidirectional
none unidirectional unidirectional

VisiBroker for .NET Developer ’s Guide 153

Examples

Examples
The following example shows a client side configuration. The client always
communicates with the server via GateKeeper as a proxy.

<configuration>
<configSections>

<section name="visinet" type="Janeva.Settings,
Borland.Janeva.Runtime"/>

</configSections>
<visinet>

...
<firewall enabled="true"/>
<vbroker vbroker.orb.alwaysProxy="true"/>

</visinet>
</configuration>

154 VisiBroker for .NET Developer ’s Guide

The following example shows a server side configuration. It defines a
firewall path called “internet” with one node named “proxy”. This node is of
the PROXY type.

<configuration>
<configSections>

<section name="visinet" type="Janeva.Settings,
Borland.Janeva.Runtime"/>

</configSections>
<visinet>

...
<firewall enabled="true"/>
<server defaultPort="10000">

<remoting enabled="false"/>
</server>
<vbroker vbroker.orb.exportFirewallPath="true"

vbroker.se.iiop_tp.firewallPaths=”internet”
vbroker.firewall-path.internet=”proxy”
vbroker.firewall.proxy.type=”PROXY”
vbroker.firewall.proxy.ior=”http://localhost:9091/

gatekeeper.ior”/>
</visinet>

</configuration>

VisiBroker for .NET Developer ’s Guide 155

Compiler options
This chapter describes the options you can use with the VisiBroker for .NET
compilers.

Options are processed in order from left to right, giving the last value
precedence. All the options in the list are enabled by default.

Options are preceded by a hyphen (-). For some of the options you can use
the inverse of the default value by either using -[no_] or removing the
hyphen. For example, to display a “warning” if a #pragma is not recognized,
the default value is:

warn_unrecognized_pragmas

To turn off the default, type the following command:

-no_warn_unrecognized_pragmas

idl2cs[j]
The idl2cs tool compiles an IDL source file and creates a directory
structure containing the C# mappings for the IDL declarations. The idl2cs
and idl2csj tools are identical except that idl2csj will run in a Java-only
environment (allowing the compiler to be run on platforms without .NET,
including Unix and older Windows machines), while idl2cs will run in a C#-
only (.NET Framework) environment.

One IDL file maps to one C# file. The default output filename for Foo.idl is
Foo.cs. The output file can be specified using the -o option. Typically IDL
file names must end with the .idl extension.

Syntax
idl2cs [options] {source_file}

Example
idl2cs -no_Object_method Example.idl

Option Description
-D, -define foo[=bar] Defines a preprocessor macro foo, optionally

with a value bar. You can use this option more
than once.

-I, -include <dir> Specifies the full or relative path to the
directory for #include files. Used in searching
for include files. You can use this option more
than once.

-P, -no_line_directives Suppresses the generation of line number
information in the generated code. The default
is off.

-H, -list_includes Prints the full paths of included files on the
standard error output. The default is off.

-C, -retain_comments Retains comments from IDL file in the
preprocessor output. The default is off.

-U, -undefine foo Undefines a preprocessor macro foo.
-[no_]idl_strict Specifies strict adherence to OMG standard

interpretation of idl source. The default is off.
-[no_]builtin (TypeCode|
Principal)

Creates builtin type ::TypeCode or
::Principal. The default is on.

156 VisiBroker for .NET Developer ’s Guide

java2cs

java2cs
This command generates C# code from a Java class. java2cs translates a
remote interface defined in Java RMI into corresponding C#. It will translate

-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma
is not recognized. The default is on.

-[no_]back_compat_mapping Use mapping that is compatible with VisiBroker
3.x. The default is off.

-[no_]preprocess Preprocesses the input file before parsing. The
default is on.

-[no_]preprocess_only Stops parsing the input file after preprocessing.
The default is off.

-[no_]warn_all Turns all warnings on or off simultaneously.
The default is off.

-[no_]case_sensitive Treat identifiers in a case-sensitive manner.
The default is on.

-[no_]comments Suppresses the generation of comments in the
code. The default is on.

-gen_included_files Generates code for #included files. The default
is off.

-list_files Lists files written during code generation. The
default is off.

-root_dir <path> Specifies the directory in which the generated
files reside.

-[no_]servant Generates servant (server-side) code. The
default is on.

-[no_]tie Generates Tie classes. The default is on.
-[no_]warn_missing_define Warns if any forward declared interfaces were

not defined. The default is on.
-[no_]strict_reverse_mapping Use strict Java reverse mapping. The default is

off.
-o <file> Specifies the name of the output file, or “-” for

stdout.
-[no_]bind Generates the bind() code. The default is off.
-idl2namespace <IDL name> <ns> Overrides default namespace for a given IDL

container type.
-[no_]Object_method Generates all methods on Object. The default

is on.
-namespace <ns> Specifies the root namespace for generated

code.
-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates

its replacement.
-[no_]mixed_caps Converts methods to MixedCaps and members

to mixedCaps. The default is on.
-[no_]examples Generates sample implementations. The

default is off.
-hint_file <file_uri> Specifies a hint file URI for custom type

mappings. Only available to idl2csj.
-[no_]remoting_proxy Generates a Proxy class for use with .NET

Remoting. The default is on.
-h, -help, -usage, -? Prints option help information.
-version Displays the VisiBroker for .NET software

version number.
file1 [file2] ... Designates one or more files to process, or

“-” for stdin.

Option Description

VisiBroker for .NET Developer ’s Guide 157

java2cs

remote interfaces, EJB interfaces, and value classes into C#. Note that
java2cs will also translate types referred to directly or indirectly by the
input types.

You can use more than one Java class name (in Java byte code) as input. If
you enter more than one class name, make sure you include spaces in
between the class names. Use fully scoped class names. You can also
provide an EJB JAR or EAR or any library JAR as input.

Note

The java2cs compiler does not support overloaded methods on CORBA
interfaces.

If you use a class that extends org.omg.CORBA.IDLEntity in some Java
remote interface definition, it must have the following:

• an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks
all IDL data types mapped to Java.

• all related (supporting) classes according to the CORBA 2.4 IDL2Java
Specification from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA.IDLEntity in some Java
remote interface definition, use the -import <IDL files> directive in the
java2cs tool's command line.

For more information, refer to the CORBA 2.4 IDL2Java Specification
located at http://www.omg.org.

Syntax
java2cs [options] {input_class_name}

Example
java2cs -no_tie Account Client Server

Use java2cs if you have existing Java byte code that you wish to adapt to
use distributed objects or if you do not want to write IDL. By using
java2cs, you can generate the necessary container classes, client stubs,
and server skeletons from Java byte code.

Option Description
-D, define foo[=bar] Defines a preprocessor macro foo, optionally with a

value bar.
-I, -include <dir> Specifies the full or relative path to the directory for

#include files. Used in searching for include files.
-P, -no_line_directives Suppresses the generation of line number information in

the generated code. The default is off.
-H, -list_includes Prints the full paths of included files on the standard error

output. The default is off.
-C, -retain_comments Retains comments from Java file when the C# code is

generated. Otherwise, the comments will not appear in
the C# code. The default is off.

-U, -undefine foo Undefines a preprocessor macro foo.
-[no_]idl_strict Specifies strict adherence to OMG standard interpretation

of IDL source. The default is off.
-[no_]builtin (Typecode|Principal) Creates builtin type ::TypeCode or ::Principal.

The default is on.
-[no_]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not

recognized. The default is on.

http://www.omg.org

158 VisiBroker for .NET Developer ’s Guide

java2cs

-[no_]back_compat_mapping Uses mapping that is compatible with VisiBroker 3.x. The
default is off.

-[no_]preprocess Preprocesses the input file before parsing. The default is
on.

-[no_]preprocess_only Stops parsing the input file after preprocessing. The
default is off.

-[no_]warn_all Turns all warnings on or off simultaneously. The default is
off.

-[no_]idlentity_array_mapping Maps array of IDLEntity to boxedIDL in boxedRMI. The
default is off.

-exported <pkg> Specifies an exported package.
-[no_]export_all Exports all packages. The default is off.
-import <IDL file name> Loads extra IDL definitions.
-imported <pkg> <IDL file name> Specifies the name of an imported package.
-gen_hints <file-name> Produces a template hint file. The default is off.
-show_ignored Prints out all warnings about unloadable classes. The

default is off.
-list_classes Prints out classes which are compiled. The default is off.
-[no_]ignore <class>|<package> Ignores a class (or all classes in a package) and all

classes that depend on it.
-[no_]case_sensitive Treats identifiers in a case-sensitive manner. The default

is on.
-[no_]comments Places comments in generated code. The default is on.
-gen_included_files Generates code for #included files. The default is off.
-list_files Lists files written during code generation. The default is

off.
-root_dir <path> Specifies the directory in which the generated files

reside.
-[no_]servant Generates servant (server-side) code. The default is on.
-[no_]tie Generates tie classes. The default is on.
-[no_]warn_missing_define Warns if any forward declared names were never defined.

The default is on.
-[no_]strict_reverse_mapping Uses strict Java reverse mapping. The default is off.
-o <file> Specifies the name of the output file, or “-” for stdout.
-[no_]bind Generates the bind() code. The default is off.
-idl2namespace <IDL name> <ns> Overrides default namespace for a given IDL container

type.
-[no_]Object_method Generates all methods defined in java.lang.Object

methods, such as string and equals. The default is on.
-namespace <ns> Specifies the root namespace for generated code.
-map_keyword <kwd> <replacement> Specifies the keyword to avoid and designates its

replacement.
-[no_]mixed_caps Converts methods to MixedCaps and members to

mixedCaps. The default is on.
-[no_]examples Generates sample implementations. The default is off.
-hint_file <file-uri> Specifies a hint file URI for custom type mappings.
-[no_]remoting_proxy Generates a Proxy class for use with .NET Remoting. The

default is on.
-h, -help, -usage, -? Prints option help information.
-version Displays the VisiBroker for .NET software version

number.
[file.jar] [file.ear] ... Optional list of J2EE archives (JAR or EAR) to process.
[class1] [class2] ... Optional list of Java classes to process. Note that is no

target Java classes are specified, they will be determined
automatically from the specified J2EE archive.

Option Description

VisiBroker for .NET Developer ’s Guide 159

IDL to C# mapping
This chapter describes the VisiBroker for .NET IDL-to-C# language
mapping, as generated by the idl2cs code generation tool.

Names
By default, IDL names and identifiers are mapped to C# names and
identifiers using mixed case. This is an optional mapping, controlled by the
compiler directive -[no_]mixed_caps with mixed caps being the default.

By default, methods, attributes, and factory methods will be named so that
the name begins with an initial capital letter and each logical “word” in the
name also has an initial capital letter. In this context, an identifier part is
considered a logical word if it is separated by an underscore (_) on either
side. For example an IDL method name, foo_bar, would be mapped to
FooBar in the generated C# code.

Enums and member fields of structs, exceptions, and valuetypes are
mapped to names beginning with a lower case letter, but each logical
“word” that follows will have an initial capital letter. For example, foo_bar
would become fooBar.

There is an exception where names in all capital letters would not be
translated to mixed case names in the generated C# code, nor would any
intermediate underscores be collapsed. For example FOO_BAR would remain
as is.

Leading and trailing underscores are preserved in all translated names. For
example, _foo_bar_ becomes _FooBar_.

If a name collision with a C# keyword is generated in the mapped C# code,
the name collision is resolved by prepending a commercial at (@) symbol to
the mapped name. The @ prefix is a C# convention. For example, the C#
keyword string would be mapped to @string, but the symbol's real name
is still string when interpreted in .NET. In other .NET languages where
string is not a keyword (for example, J#) the symbol is recognized as
string.

In addition, because of the nature of the C# language, a single IDL
construct may be mapped to several (differently named) C# constructs. The
additional names are constructed by appending a descriptive suffix. For
example, the IDL interface AccountManager is mapped to the C# interface
AccountManager and additional C# classes AccountManagerOperations
and AccountManagerHelper.

In the exceptional cases where the additional names may conflict with other
mapped IDL names, the resolution rule described above is applied to the
other mapped IDL names. In other words, the naming and use of required
“additional” names takes precedence.

For example, an IDL interface whose name is fooHelper is mapped to C#
class _fooHelper, regardless of whether an interface named foo exists.
The helper class for C# class _fooHelper is named _fooHelperHelper.

IDL names that would normally be mapped unchanged to C# identifiers that
conflict with C# reserved words will have the collision rule applied.

160 VisiBroker for .NET Developer ’s Guide

Reserved generated suff ixes

Reserved generated suffixes
The mapping reserves the use of several names for use as class suffixes.
The use of any of these names for a user-defined IDL type or interface
(assuming it is also a legal IDL name) will result in the mapped name
having an underscore (_) prepended. The reserved generated suffix names
are as follows:

• Helper—The C# class <type>Helper, where <type> is the name of an
IDL user-defined type

• NS—The nested scope C# namespace name <interface>NS, where
<interface> is the name of an IDL interface.

• Operations

• POATie

• POA

• RemotingProxy

• ValueFactory

• ValueData—The C# classes <valuetype>ValueData and
<valuetype>ValueFactory where <valuetype> is the name of an IDL
valuetype type.

Reserved words
The mapping reserves the use of several words for its own purposes. The
use of any of these words for a user-defined IDL type or interface
(assuming it is also a legal IDL name) will result in the mapped words
having a commercial at (@) symbol prepended. The reserved keywords in
the C# language are as follows:

abstract as base bool

break byte case catch

char checked class const

dontinue decimal default delegate

do double else enum

event explicit extern false

finally float fixed for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short
sizeof stackalloc static string
struct switch this throw
true try typeof uint
ulong unchecked unsafe ushort

VisiBroker for .NET Developer ’s Guide 161

Basic types

Basic types
The following table shows how the defined IDL types map to basic C# types.

When there is a potential mismatch between an IDL type and its mapped
C# type, a standard CORBA exception can be raised. For the most part,
exceptions are in two categories,

• Range of the C# type is larger than the IDL type. For example, C# chars
are a superset of IDL chars.

• Because there is no uniform support in .NET for unsigned types, unsigned
IDL types are mapped to their signed equivalents in C#. The developer is
responsible for ensuring that large unsigned IDL type values are handled
correctly as negative integers in .NET.

Additional details are described in the following sections.

using virtual void volatile
while

IDL type C# type
boolean bool

char char

wchar char

octet byte

string string

wstring string

short short

unsigned short short

long int

unsigned long int

longlong long

unsigned longlong long

float float

double double

162 VisiBroker for .NET Developer ’s Guide

Basic types

C# null
The C# null may only be used to represent null CORBA object references
and valuetypes (including recursive valuetypes). For example, a zero length
string, rather than null must be used to represent the empty string. This is
also true for arrays and any constructed type, except for valuetypes. If you
attempt to pass a null for a structure, it will raise a system
NullReferenceException.

Boolean
The IDL type boolean is mapped to the C# type bool. The IDL constants
TRUE and FALSE are mapped to the C# constants true and false.

Char
IDL characters are 8-bit quantities representing elements of a character set
while C# characters are 16-bit unsigned quantities representing Unicode
characters. To enforce type-safety, the CORBA runtime asserts range
validity of all C# chars mapped from IDL chars when parameters are
marshaled during method invocation. If the char falls outside the range
defined by the character set, a CORBA::DATA_CONVERSION exception is
thrown.

The IDL wchar maps to the C# char type.

String and WString
The IDL type string, both bounded and unbounded variants, is mapped to
the C# type string. Range checking for characters in the string as well as
bounds checking of the string are done at marshal time.

The IDL type wstring, used to represent Unicode strings, is mapped to the
C# type string. Bounds checking of the string is done at marshal time.

Integer types
IDL short and unsigned short map to C# type short. IDL long and
unsigned long map to C# type int.

Note

Because there is no uniform support in .NET for unsigned types, unsigned
IDL types are mapped to their signed equivalents in C#. The developer is
responsible for ensuring that negative integers in .NET are handled correctly
as large unsigned values.

IDL type extensions
This section summarizes VisiBroker for .NET support for IDL type
extensions. The first table provides a summary for quick look-ups. This is
followed by a table summarizing support for new types.

Type Supported in VisiBroker for .NET
longlong yes

unsigned longlong yes

VisiBroker for .NET Developer ’s Guide 163

Constants

Constants
Constants are mapped to a public abstract class with the same name as the
constant and containing a public const int field named Value. This field
holds the constant's value.

This code sample shows the mapping of an IDL constant within a module to
a C# class.

/* From Example.idl: */
module Example {
const long aLongerOne = -123;
};

// Example.cs
namespace Example {
public abstract class ALongerOne {
 public const int Value = (int) -123;

}
}

Note:

Constants within an interface or valuetype are put into a namespace with
the NS suffix appended to the name of the interface or valuetype.

Constructed types
IDL constructed types include enum, struct, union, sequence, and array.
The types sequence and array are both mapped to the C# array type.
The IDL constructed types enum, struct, and union are mapped to a C#
class that implements the semantics of the IDL type. The C# class
generated will have the same name as the original IDL type.

long double no1

wchar yes2

wstring yes2

fixed no1

1 VisiBroker for .NET might support it in a future release of the OMG
standard implementation.
2 UNICODE is used “on the wire.”

New types Description
longlong 64-bit signed 2's complements integers

unsigned
longlong

64-bit unsigned 2's complements integers

long double IEEE Standard 754-1985 double extended floating point

wchar Wide characters

wstring Wide strings

fixed Fixed-point decimal arithmetic (31 significant digits)

Type Supported in VisiBroker for .NET

164 VisiBroker for .NET Developer ’s Guide

Constructed types

Enumerations
An IDL enum is mapped to a C# enum with the same name as the enum
type which declares the enum values. The code sample below is an example
of an IDL enum mapped to a C# enum.

// Example.idl
module Example {

enum EnumType (first, second, third};
};

// Example.cs
public enum EnumType {

first
second
third

}

Structs
An IDL struct is mapped to a C# class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor
for all values.

This code sample shows the mapping of an IDL struct to C#.

// Example.idl
module Example {
 struct StructType {
 long field1;
 string field2;
 };

};

// Example.cs
public sealed class StructType

public int field1;
 public string field2;
 public StructType() {

field2 = ““;
}
public StructType (int field1, string field2) {

this.field1 = field1;
this.field2 = field2;

}
override public string ToString() {

System.Text.StringBuilder _ret =
new System.Text.StringBuilder(“struct

Example.StructType {“);
_ret.Append(“\n”);
_ret.Append(“int field1=”);
_ret.Append(field1);
_ret.Append(“,\n”);
_ret.Append(“string field2=”);
_ret.Append(“field2 != null?’\”’ + field2 + ‘\

”’:null);
_ret.Append(“\n”);
_ret.Append(“}”);
return _ret.ToString();

}
override public int GetHashCode() {

VisiBroker for .NET Developer ’s Guide 165

Constructed types

returns base.GetHashCode();
}
override public bool Equals(object o) {

if(this == o) return true;
if(o == null) return false;
if(o is Example.StructType) {

Example.StructType obj = (Example.StructType) o;
bool res = true;
do {

res = this.field1 == obj.field1;
if(!res) break;
res = this.field2 == obj.field2 ||

(this.field2 != null && obj.field2 != null &&
this.field2Equals(obj.field2));

} while(false);
return res;

}
else {

return false;
}

}
}

Unions
An IDL union is mapped to a sealed C# class of the same name. It provides
the following:

• Default constructor

• Accessor method for the union's discriminator, named discriminator()

• Accessor method for each branch

• Modifier method for each branch

• Modifier method for each branch having more than one case label

• Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the
field names, the normal name conflict resolution rule is used: prepend an
underscore (_) for the discriminator.

The branch accessor and modifier methods are overloaded and named after
the branch. Accessor methods will raise the CORBA::BAD_OPERATION
system exception if the expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple
modifier method for that branch sets the discriminant to the value of the
first case label. In addition, an extra modifier method which takes an
explicit discriminator parameter is generated.

If the branch corresponds to the default case label, then the modifier
method sets the discriminant to a value that does not match any other case
labels.

It is illegal to specify a union with a default case label if the set of case
labels completely covers the possible values for the discriminant. It is the
responsibility of the C# code generator (for example, the IDL compiler, or
other tool) to detect this situation and refuse to generate illegal code.

A default method _default() is created if there is no explicit default case
label, and the set of case labels does not completely cover the possible

166 VisiBroker for .NET Developer ’s Guide

Constructed types

values of the discriminant. It will set the value of the union to be an out-of-
range value.

This code sample shows the mapping of an IDL union to C#.

// Example.idl
module Example {
 enum EnumType { first, second, third, fourth, fifth,
sixth };
 union UnionType switch (EnumType) {
 case first: long win;
 case second: short place;
 case third:
 case fourth: octet show;
 default: boolean other;
 };

};

// Example.cs
public sealed class UnionType {

private object _object;
private Example.EnumType _disc = Example.EnumType.fifth;
internal bool _defaultState = false;

 // constructor
 public UnionType() {

}

 // discriminator accessor
 public Example.EnumType discriminator() {

return _disc;
}

 // win
 public int Win() { ... }
 public void Win(int _vis_value) { ... }

 // place
 public short Place() { ... }
 public void Place(short _vis_value) { ... }

 // show
 public byte Show() { ... }
 public void Show(byte _vis_value) { ... }
 public void Show(Example.EnumType disc, byte
_vis_value) { ... }

 // other
 public bool Other() {...}
 public void Other(bool _vis_value) { ... }

public void Other(Example.EnumType disc, bool
_vis_value) { ...)
 override public string ToString () { . . .}

overrinde public int GetHashCode() { ... }
 public bool Equals(object o) { . . .}
}

VisiBroker for .NET Developer ’s Guide 167

Modules

Sequences and Arrays
An IDL sequence is mapped to a C# array. In the mapping, anywhere the
sequence type is needed, an array of the mapped type of the sequence
element is used.

An IDL array is mapped in the same way as an IDL bounded sequence. In
the mapping, anywhere the array type is needed, an array of the mapped
type of array element is used. In C#, the natural C# subscripting operator
is applied to the mapped array. The length of the array can be made
available in C#, by bounding the array with an IDL constant, which will be
mapped as per the rules for constants.

The following code sample shows the mapping for an array.

// Example.idl
const long ArrayBound = 42;
typedef long larray[ArrayBound];

// Example.cs
public abstract class ArrayBound {

public const int Value = (int) 42;
}

Modules
An IDL module is mapped to a C# namespace with the same name. All IDL
type declarations within the module are mapped to corresponding C# class
or interface declarations within the generated namespace.

IDL declarations not enclosed in any modules are mapped into the
(unnamed) C# global scope.

The code sample below shows the C# code generated for an IDL module.

// Example.idl
module Example {

...
};

// Example.cs
namespace Example {

...
}

Interfaces
Given a user-defined type named Foo, the idl2cs compiler generates the
following:

• public sealed class FooHelper

• public interface Foo : CORBA.Object, Example.FooOperations

• public class FooOperations

• public class _FooStub

There are no special “nil” object references. C# null can be passed freely
wherever an object reference is expected.

Attributes are mapped to a pair of C# accessor and modifier methods.
These methods have the same name as the IDL attribute and are
overloaded. There is no modifier method for IDL “readonly” attributes.

168 VisiBroker for .NET Developer ’s Guide

Interfaces

This code sample shows the mapping of an IDL interface to C#.

// Example.idl
module Example {
 interface Foo {
 long method(in long arg) raises(AnException);
 attribute long assignable;
 readonly attribute long nonassignable;
 };
};

// Example.cs
namespace Example {

public sealed class FooHelper { ... }
public interface Foo : CORBA.Object,

Example.FooOperations {
}
public interface FooOperations {

int Method(in long arg) throws Example.AnException;
int Assignable();
void Assignable(int assignable);
int Nonassignable ();

}
public class _FooStub : CORBA.ObjectIml, Example.Foo {

... }
}

Signature and Operations interfaces
In the example above, the two interfaces, Foo and FooOperations,
provide the complete signature of your IDL interface when mapped to C#.
The signature interface defines the signature for each interface you
declare in your IDL file, while the Operations interface provides the
implementation details.

The Operations interface contains only the operations and attributes
declared in the IDL interfaces. The C# Operations interface contains the
mapped operation signatures. Methods can be invoked on an object
reference to this interface.

Helper classes
A Helper class is provided for most of the classes in the CORBA
namespace. They are also generated by the idl2cs compiler for user-
defined types and are given the name of the class that is generated for the
type with an additional Helper suffix. The reason for using the Helper
class is to avoid loading the methods that the class offers if they are not
needed. Several static methods needed to manipulate the type are
supplied.

• Any insert and extract operations for the type

• Getting the repository id

• Getting the typecode

• Reading and writing the type from and to a stream

The Helper class declares a static narrow method that allows an instance of
CORBA.Object to be narrowed to the object reference of a more specific
type. The IDL exception CORBA::BAD_PARAM is thrown if the narrow fails
because the object reference doesn't support the request type. A different

VisiBroker for .NET Developer ’s Guide 169

Interfaces

system exception is raised to indicate other kinds of errors. Trying to
narrow a null will always succeed with a return value of null.

For objects like mapped structures, enumerations, unions, exceptions,
valuetypes, and valueboxes, the Helper class provides methods for reading
and writing the object to a stream and returning the object's repository
identifier. The Helper classes generated for interfaces contain additional
methods, like bind and narrow.

Methods for all Helper classes
The following methods appear in all generated Helper classes.

public static <interface_name> Extract(CORBA.Any any)

This method extracts the type from the specified Any object.

public static void Insert(CORBA.Any any, <type_name>
_vis_value)

This method insert a type into the specified Any object.

public static <type_name> Read(CORBA.InputStream _input)

This method reads a type from the specified input stream.

public static CORBA.TypeCode GetTypeCode()

This method returns the TypeCode associated with this object.

public static void Write(CORBA.OutputStream _output,
<type_name> _vis_value)

This method writes a type to the specified output stream.

Methods generated for interfaces

public static <interface_name> Bind()

This method attempts to bind to any instance of an object of type
<interface_name>.

Parameter Description
any The Any object to contain the object.

Parameter Description
any The Any object to contain the type.
_vis_value The type to insert.

Parameter Description
input The input stream from which the object is read.

Parameter Description
output The output stream to which the object is written.
value The type to be written to the output stream.

170 VisiBroker for .NET Developer ’s Guide

Interfaces

public static <interface_name> Bind(string name)

This method attempts to bind to an object of type <interface_name> that
has the specified instance name.

public static <interface_name> Bind(string name, string
host,

CORBA.Visi.BindOptions options)

This method attempts to bind to an object of type <interface_name> that
has the specified instance name and which is located on the specified
host, using the specified BindOptions.

public static <interface_name> Narrow(CORBA.Object obj)

This method attempts to narrow a CORBA.Object reference to an object
of type <interface_name>. If the object reference cannot be narrowed, a
null value is returned.

Generated stub classes
A stub class is generated by the idl2cs compiler to provide a stub
implementation for <interface_name> which the client calls. This class provides
the implementation for transparently acting on an object implementation.

Abstract interfaces
An IDL abstract interface is mapped into a single public C# interface with
the same name as the IDL interface. The mapping rules are similar to the
rules for generating the C# operations interface for a non-abstract IDL
interface. However, this interface also serves as the signature interface.

The mapped C# interface has the same name as the IDL interface and is
also used as the signature type in method declarations when interfaces of
the specified types are used in other interfaces. It contains the methods
which are the mapped operations signatures.

Passing parameters
IDL parameters are mapped to normal C# actual parameters. The results of
IDL operations are returned as the result of the corresponding C# method.

This code sample shows the IDL parameter mapping to C#.

Parameter Description
name The instance name of the desired object.

Parameter Description
name The instance name of the desired object.
host The optional host name where the desired object is

located.
options The bind options for this object.

Parameter Description
obj The object to be narrowed to the type

<interface_name>.

VisiBroker for .NET Developer ’s Guide 171

Mapping for except ions

// Example.idl
module Example {
 interface Modes {
 long operation(in long inArg, out long outArg, inout
long inoutArg);
 };
};

// Example.cs
namespace Example;
public interface Modes : CORBA.Object,
Example.ModesOperations {
}
public interface ModesOperations {

int Operation(int inArg, out int outArg, ref int
inoutArg);
}

Interface scope
OMG IDL to C# mapping specification does not allow declarations to be
nested within an interface scope, nor does it allow namespaces and
interfaces to have the same name. Accordingly, interface scope is mapped
to a package with the same name with an NS suffix.

Mapping for exceptions
IDL exceptions are mapped very similarly to structs. They are mapped to a
C# class that provides instance variables for the fields of the exception and
constructors.

CORBA system exceptions are unchecked exceptions. They inherit
(indirectly) from RuntimeException.

User defined exceptions are checked exceptions. They inherit (indirectly)
from Exception.

User-defined exceptions
User-defined exceptions are mapped to C# classes that extend
CORBA.UserException and are otherwise mapped just like the IDL struct
type, including the generation of Helper classes.

If the exception is defined within a nested IDL scope (essentially within an
interface or valuetype) then its C# class name is defined within a special
namespace whose name is the name of the containing interface or
valuetype with an NS suffix appended. Otherwise its C# class name is
defined within the scope of the C# namespace that corresponds to the
exception's enclosing IDL module.

This code sample shows the mapping of user-defined exceptions.

// Example.idl
module Example {
 exception AnException {
 string reason;
 };
};

// Example.cs
namespace Example {

172 VisiBroker for .NET Developer ’s Guide

Mapping for the Any type

public sealed class AnExceptionHelper : CORBA.Streamable
{ ... }

public sealed class AnException : CORBA.UserException {
 public string reason;
 public AnException() :
base(Example.AnExceptionHelper.GetRepID()) {

}
 public AnException(string reason) : this() {

this.reason = reason;
}

 public AnException (string _reason, string reason) :
base(Example.AnExceptionHelper.GetRepId() + ‘ ‘ +

_reason) {
this.reason = reason;

}
override public string ToString() { . . . }
override public GetHashCode() { ... }
override public bool Equals(object o) { ... }

}
}

System exceptions
The standard IDL system exceptions are mapped to final C# classes that
extend CORBA.SystemException and provide access to the IDL major and
minor exception code, as well as a string describing the reason for the
exception. There are no public constructors for CORBA.SystemException;
only classes that extend it can be instantiated.

The C# class name for each standard IDL exception is the same as its IDL
name and is declared to be in the CORBA namespace. The default
constructor supplies 0 for the minor code, COMPLETED_NO for the
completion code, and the empty string (“”) for the reason string. There is
also a constructor which takes the reason and uses defaults for the other
fields, as well as one which requires all three parameters to be specified.

Mapping for the Any type
The IDL type Any maps to the C# class CORBA.Any. This class has all the
necessary methods to insert and extract instances of predefined types. If
the extraction operations have a mismatched type, the
CORBA::BAD_OPERATION exception is thrown.

In addition, insert and extract methods are defined to provide a high speed
interface for use by portable stubs and skeletons. There is an insert and
extract method defined for each primitive IDL type as well as a pair for a
generic streamable to handle the case of non-primitive IDL types.

The insert operations set the specified value and reset the Any's type if
necessary.

Setting the typecode via the type() accessor wipes out the value. An
attempt to extract before the value is set will result in a
CORBA::BAD_OPERATION exception being raised. This operation is provided
primarily so that the type may be set properly for IDL out parameters.

VisiBroker for .NET Developer ’s Guide 173

Mapping for certain nested types

Mapping for certain nested types
IDL allows type declarations nested within interfaces. C# does not allow
classes to be nested within interfaces. Hence those IDL types that map to
C# classes and that are declared within the scope of an interface must
appear in a special “scope” namespace when mapped to C#.

IDL interfaces that contain these type declarations generate a scope
namespace to contain the mapped C# class declarations. The scope
namespace name is constructed by appending NS to the IDL type name.

This code sample shows the mapping for certain nested types.

// Example.idl
module Example {
 interface Foo {
 exception e1 {};
 };
};

// Example.cs
namespace Example

public sealed class FooHelper { ... }
public interface Foo : CORBA.Object,

Example.FooOperations {
}
public interface FooOperations {
}
namespace FooNS {

public sealed class e1Helper : CORBA.Streamable { ...
}

public sealed class e1 : CORBA.UserException { ... }
}
public class _FooStub : CORBAObjectIpml, Example.Foo {

... }
}

Mapping for TypeDef
IDL types that are mapped to simple C# types may not be subclassed in
C#. Therefore, any typedefs that are type declarations for simple types are
mapped to the original (mapped type) any where the typedef type appears.
For simple types, Helper classes are generated for all typedefs.

Typedefs for non arrays and sequences are “unwound” to their original type
until a simple IDL type or user-defined IDL type (of the non typedef variety)
is encountered.

This code sample shows the mapping of a complex IDL typedef.

// Example.idl
module Example {

struct EmployeeName {
string firstName;
string lastName;

};
typedef EmployeeName EmployeeRecord;

};

// Example.cs
namespace Example {

174 VisiBroker for .NET Developer ’s Guide

public sealed class EmployeeNameHelper :
CORBA.Streamable { ... }

public sealed class EmployeeName { ... }
public sealed class EmployeeRecordHelper { ... }

}

VisiBroker for .NET Developer ’s Guide 175

Java built-in type support
This chapter describes the Java to .NET mapping for built-in types
supported in VisiBroker for .NET.

The following table describes the default Java package to .NET namespace
mapping in VisiBroker for .NET.

java.lang

Java package .NET namespace Refer to section
java J2EE
java.lang J2EE.Lang “java.lang”

java.io J2EE.Io “java.io”

java.math J2EE.Math “java.math”

java.net J2EE.Net “java.net”

java.rmi J2EE.Rmi “java.rmi”

java.sql J2EE.Sql “java.sql”

javax J2EE
javax.ejb J2EE.Ejb “javax.ejb”

javax.naming J2EE.Naming “javax.naming”

javax.rmi J2EE.Rmi “javax.rmi”

javax.transaction J2EE.Transaction “javax.transaction”

java.util J2EE.Util “java.util”

Java type .NET type
java.lang.Error J2EE.Lang.Error
java.lang.Exception J2EE.Lang.Exception
java.lang.Object System.Object
java.lang.RuntimeException J2EE.Lang.RuntimeException
java.lang.StringBuffer System.Text.StringBuilder
java.lang.Throwable J2EE.Lang.Throwable

Java type .NET type
java.lang.Boolean J2EE.Lang.Boolean
java.lang.Byte J2EE.Lang.Byte
java.lang.Character J2EE.Lang.Character
java.lang.Double J2EE.Lang.Double
java.lang.Float J2EE.Lang.Float
java.lang.Integer J2EE.Lang.Integer
java.lang.Long J2EE.Lang.Long
java.lang.Number J2EE.Lang.Number
java.lang.Short J2EE.Lang.Short

176 VisiBroker for .NET Developer ’s Guide

java. io

The following java.lang error and exception types are mapped to the
J2EE.Lang namespace using the same type names.

java.io
The following java.io exception types are mapped to the J2EE.Io namespace
using the same type names.

java.math

AbstractMethodError AssertionError
ClassCircularityError ClassFormatError
Error ExceptionInInitializerError
IllegalAccessError IncompatibleClassChangeError
InstantiationError InternalError
LinkageError NoClassDefFoundError
NoSuchFieldError NoSuchMethodError
OutOfMemoryError StackOverflowError
ThreadDeath UnknownError
UnsatisfiedLinkError UnsupportedClassVersionError
VerifyError VirtualMachineError

ArithmeticException ArrayIndexOutOfBoundsException
ArrayStoreException ClassCastException
IllegalArgumentException IllegalMonitorStateException
IllegalStateException IllegalThreadStateException
IndexOutOfBoundsException NegativeArraySizeException
NullPointerException NumberFormatException
RuntimeException SecurityException
StringIndexOutOfBoundsException UnsupportedOperationException

ClassNotFoundException CloneNotSupportedException
IllegalAccessException InstantiationException
InterruptedException NoSuchFieldException
NoSuchMethodException

CharConversionException EOFException
FileNotFoundException IOException
InterruptedIOException InvalidClassException
InvalidObjectException NotActiveException
NotSerializableException ObjectStreamException
OptionalDataException StreamCorruptedException
SyncFailedException UTFDataFormatException
UnsupportedEncodingException WriteAbortedException

Java type .NET type
java.math.BigDecimal J2EE.Math.BigDecimal
java.math.BigInteger J2EE.Math.BigInteger

VisiBroker for .NET Developer ’s Guide 177

java.net

java.net

The following java.net exception types are mapped to the J2EE.Net
namespace using the same type names.

java.rmi

The following java.rmi exception types are mapped to the J2EE.Rmi
namespace using the same type names.

java.sql

Java type .NET type
java.net.URL System.Uri
java.net.URI System.Uri
java.net.InetAddress System.Net.IPHostEntry
java.net.Inet4Address System.Net.IPHostEntry
java.net.SocketAddress System.Net.EndPoint
java.net.InetSocketAddress System.Net.IPEndPoint

BindException ConnectException
MalformedURLException NoRouteToHostException
PortUnreachableException ProtocolException
SocketException SocketTimeoutException
URISyntaxException UnknownHostException
UnknownServiceException

Java type .NET type
java.rmi.Remote CORBA.Object

RMISecurityException

AccessException AlreadyBoundException
ConnectException ConnectIOException
MarshalException NoSuchObjectException
NotBoundException RemoteException
ServerError ServerException
ServerRuntimeException StubNotFoundException
UnexpectedException UnknownHostException
UnmarshalException

Java type .NET type
java.sql.Date System.DateTime
java.sql.Time System.DateTime
java.sql.Timestamp System.DateTime

178 VisiBroker for .NET Developer ’s Guide

javax.ejb

The following java.sql exception types are mapped to the J2EE.Sql
namespace using the same type names.

javax.ejb

The following javax.ejb exception types are mapped to the J2EE.Ejb
namespace using the same type names.

javax.naming

The following javax.naming exception types are mapped to the
J2EE.Naming namespace using the same type names.

BatchUpdateException DataTruncation
SQLException SQLWarning

Java type .NET type
javax.ejb.EJBHome J2EE.Ejb.EJBHome
javax.ejb.EJBMetaData J2EE.Ejb.EJBMetaData
javax.ejb.EJBObject J2EE.Ejb.EJBObject
javax.ejb.Handle J2EE.Ejb.Handle
javax.ejb.HomeHandle J2EE.Ejb.HomeHandle

AccessLocalException CreateException
DuplicateKeyException EJBException
FinderException NoSuchEntityException
ObjectNotFoundException RemoveException
TransactionRequiredLocalException TransactionRolledbackLocalException

Java type .NET type
javax.naming.Binding J2EE.Naming.Binding
javax.naming.Context J2EE.Naming.Context
javax.naming.InitialContext J2EE.Naming.InitialContext
javax.naming.NameClassPair J2EE.Naming.NameClassPair

AuthenticationException AuthenticationNotSupportedException
CannotProceedException CommunicationException
ConfigurationException ContextNotEmptyException
InsufficientResourcesException InterruptedNamingException
InvalidNameException LimitExceededException
LinkException LinkLoopException
MalformedLinkException NameAlreadyBoundException
NameNotFoundException NamingException
NamingSecurityException NoInitialContextException
NoPermissionException NotContextException
OperationNotSupportedException PartialResultException
ReferralException ServiceUnavailableException
SizeLimitExceededException TimeLimitExceededException

VisiBroker for .NET Developer ’s Guide 179

javax.rmi

javax.rmi

javax.transaction
The following javax.transaction exception types are mapped to the
J2EE.Transaction namespace using the same type names.

java.util

Java type .NET type
javax.rmi.PortableRemoteObject J2EE.Rmi.PortableRemoteObject

HeuristicCommitException HeuristicMixedException
HeuristicRollbackException InvalidTransactionException
NotSupportedException RollbackException
SystemException TransactionRequiredException
TransactionRolledbackException

Java type .NET type
java.util.Calendar J2EE.Util.Calendar
java.util.Date System.DateTime
java.util.GregorianCalendar J2EE.Util.GregorianCalendar
java.util.Locale System.Globalization.CultureInfo
java.util.Random1

1. See “Interoperability property” on page 26 for information on using this type.

System.Random
java.util.TimeZone System.TimeZone
java.util.SimpleTimeZone System.TimeZone
sun.util.calendar.ZoneInfo2

2. sun.util.calendar.ZoneInfo is intended to be an internal Sun implementation class,
but it shows up in remote procedure calls in certain situations.

System.TimeZone

Java type .NET type
java.util.Comparator System.Collections.IComparer
java.util.Iterator System.Collections.IEnumerator
java.util.ListIterator System.Collections.IEnumerator

Java type .NET type
java.util.Collection System.Collections.ICollection
java.util.List System.Collections.IList
java.util.Map System.Collections.IDictionary
java.util.Set System.Collections.ICollection
java.util.SortedMap System.Collections.IDictionary
java.util.SortedSet System.Collections.ICollection

180 VisiBroker for .NET Developer ’s Guide

java.ut i l

Java type .NET type
java.util.AbstractCollection System.Collections.ICollection
java.util.AbstractList System.Collections.IList
java.util.AbstractMap System.Collections.IDictionary
java.util.AbstractSequentialList System.Collections.IList
java.util.AbstractSet System.Collections.ICollection
java.util.Dictionary System.Collections.IDictionary

Java type .NET type
java.util.ArrayList System.Collections.ArrayList
java.util.BitSet System.Collections.BitArray
java.util.HashMap System.Collections.Hashtable
java.util.HashSet System.Collections.ArrayList
java.util.Hashtable System.Collections.Hashtable
java.util.IdentityHashMap System.Collections.Hashtable
java.util.LinkedHashMap System.Collections.Hashtable
java.util.LinkedHashSet System.Collections.ArrayList
java.util.LinkedList System.Collections.ArrayList
java.util.Properties System.Collections.Specialized.StringDictionar

y
java.util.Stack System.Collections.Stack
java.util.TreeMap System.Collections.Hashtable
java.util.TreeSet System.Collections.ArrayList
java.util.Vector System.Collections.ArrayList

Java type .NET type
java.util.Arrays$ArrayList System.Collections.ArrayList
java.util.Collections$CopiesList System.Collections.ArrayList
java.util.Collections$SingletonList System.Collections.ArrayList
java.util.Collections$SingletonMap System.Collections.Hashtable
java.util.Collections$SingletonSet System.Collections.ArrayList
java.util.Collections$SynchronizedCollection System.Collections.ICollection
java.util.Collections$SynchronizedList System.Collections.IList
java.util.Collections$SynchronizedMap System.Collections.IDictionary
java.util.Collections$SynchronizedRandomAccess
List

System.Collections.IList

java.util.Collections$SynchronizedSet System.Collections.ICollection
java.util.Collections$SynchronizedSortedMap System.Collections.IDictionary
java.util.Collections$SynchronizedSortedSet System.Collections.ICollection
java.util.Collections$UnmodifiableCollection System.Collections.ICollection
java.util.Collections$UnmodifiableList System.Collections.IList
java.util.Collections$UnmodifiableMap System.Collections.IDictionary
java.util.Collections$UnmodifiableSet System.Collections.ICollection
java.util.Collections$UnmodifiableSortedMap System.Collections.IDictionary
java.util.Collections$UnmodifiableSortedSet System.Collections.ICollection
java.util.TreeMap$SubMap System.Collections.Hashtable

VisiBroker for .NET Developer ’s Guide 181

Appl icat ion server support

The following java.util exception types are mapped to the J2EE.Util
namespace using the same type names.

Application server support
The following table describes application server-specific type mappings that
are included in VisiBroker for .NET.

ConcurrentModificationException EmptyStackException
MissingResourceException NoSuchElementException

TooManyListenersException

Application server Java type .NET type
VisiBroker com.inprise.ejb.iterator.

CustomVector
System.Collections.ArrayLi
st

182 VisiBroker for .NET Developer ’s Guide

Appl icat ion server support

VisiBroker for .NET Developer ’s Guide 183

Symbols
... ellipsis 2
.NET Framework class library 8
.NET Remoting 8, 10, 13, 15

example 13
extension 16

symbols
square brackets 2

| vertical bar 2

A
Abstract interfaces 170
activation, client 18
activation, server 18
Any type mapping 172
application server support 181
arrays 167

mapping 163
ASP.NET 5, 8, 38

B
basic IDL types 161
boolean type mapping 162
bootstrapping 16
Borland AppServer 181
Borland.Janeva.Private 38
Borland.Janeva.Runtime 37, 38
Borland.Janeva.Services 37, 38
borland.slip 39
brackets 2
building VisiBroker for .NET applications 35
built-in types, Java 175

C
C#

generating code from IDL file 155
null 162

Callback interface 42
callbacks, adding to clients 47
cast 14
channel, Remoting 17
char type mapping 162
client activation 18

example 18
client.slip 39
ClientRequestInterceptor 83
Codec 86
CodecFactory 86
collision rule 159
command line 36, 37
commands

conventions 2
idl2cs 155
idl2csj 155

common intermediate language 6, 8
common language runtime 7
common language system 6
common type system 6

compiler options 155
compiler overview 6
complex data types 7
configuration file 13, 15, 16

licensing 39
configuring properties 21

command-line 21
configuration file 22
programmatically 22
property descriptions 23

conflict resolution 159
constants mapping 163
constructed data types 80
constructed types mapping 163
contexts 7
CORBA

example 15
naming service 15
overview 10

corbaloc URL scheme 17
corbaname URL scheme 17
CosTransactions 114
Current

interface 86
Current object reference 114
custom marshaling 49, 60

D
data types 7

constructed 80
traversing the components 80

declarative activation 16
deploying VisiBroker for .NET applications 35,

37
deployment license 38
developer tools overview 6
developing Remoting server 41
development process 13
documentation

.pdf format 3
accessing Help Topics 1
platform conventions used in 2
type conventions used in 2
updates on the web 3

dynamically managed types 79
DynAny

access and initializing 80
constructed data types 80
creating 79
CurrentComponent method 80
interface 79
Next method 80
Rewind method 80
Seek method 80
types 79
usage restrictions 79

DynArray data type 81
DynEnum data type 80
DynSequence data type 81

Index

 184 VisiBroker for .NET Developer’s Guide

DynStruct data type 80
DynUnion data type 81

E
EAR 35, 157
effective policies 65
EJB interfaces 157
EJBHome object 14
embedded resource licensing 39
Enterprise JavaBeans overview 9
enums mapping 163
exceptions

mapping 171
system 172
user-defined 171

extract method, Helper classes 169

F
factory object 15
fault tolerance 7
features of VisiBroker for .NET 7
file URL scheme 17
firewall, enabling 149
Framework class library 8

G
GAC 38
GateKeeper integration 149
generated suffixes 160
generating VisiBroker for .NET stubs 35

H
Help Topics

accessing 1
Helper class 160

mapping 168
Helper suffix 159
hint file 158
hints

overview 52
using 49

hints file
schema 63

HTTP 10
http URL scheme 17

I
IDL 35

generating C# code 155
mapping constants 163
mapping constructed types 163
mapping interfaces 167
mapping modules 167
mapping names to Java 159
mapping nested types 173
mapping parameters 170
mapping to Java 159
mapping types 161
overview 10
reserved names 160
reserved words 160

type extensions 162
IDL to C# mapping 159
IDL type

basic types 161
boolean 162
char 162
integer type 162
simple 173
string 162
wstring 162

idl2cs
command info 155
options 155
output 159-174
tool 35

idl2csj
options 155

idl2java
generating portable stubs for DII 155

IIOP 5, 6, 8, 10, 16, 17
IiopChannel type 17
initialize the ORB 15
integer mapping 162
interception points

request interception points 84, 85
ServerRequestInterceptor 85

Interceptor
class 83
interface 83

Interface Definition Language overview 10
interface scope mapping 171
invocation context propagation 6
IOR interceptors 83
IOR URL scheme 17
IORInfoExt class 87
IORInterceptor interface 86

J
J2EE

example 14
naming service 14
overview 9

janeva.agent.addr 32
janeva.agent.port 32
janeva.firewall 31, 149
janeva.interop.jvmType 26
janeva.license.dir 24
janeva.orb.init 31, 87
janeva.security 27, 128
janeva.security.certificate 28
janeva.security.password 28
janeva.security.realm 28
janeva.security.server 29
janeva.security.server.certificate 30
janeva.security.server.defaultPort 30
janeva.security.username 28
janeva.server.defaultPort 25
janeva.server.remoting 26, 48
janeva.transactions 24
janeva.transactions.factory.url 25
JAR 35, 157

VisiBroker for .NET Developer’s Guide 185

Java
built-in types 175
mapping from IDL 159
RMI overview 9

Java 2 Platform, Enterprise Edition
overview 9

java.lang.Random support 27
java.math.BigDecimal support 27
java.math.BigInteger support 27
java.util.Stack support 27
java.util.Vector support 27
java2cs

hint 49
tool 35

L
license key 38
life-cycle requirements 7
line number information 157
load balancing 7

M
managed applications 7
mapping 168

abstract interfaces 170
Any type 172
arrays 163
boolean type 162
char type 162
constants 163
constructed types 163
enums 163
exceptions 171
IDL names 159
IDL to C# 159
IDL type 161
integer 162
interface scope 171
interfaces 167
modules 167
nested types 173
passing parameters 170
reserved names 160
reserved words 160
sequences 163
string 162
structs 163
unions 163

MarshalByRefObject implementation 41
marshaling 6

custom 49, 60
precedence 64

methods
bind in Helper 169

Microsoft .NET Framework Redistributable
Package 38

Microsoft .NET overview 7
Microsoft Visual J# Redistributable
Package 38

mixed case mapping 159
modules mapping 167

multi-threaded 41

N
name collision 159
naming service 14, 15
nested types mapping 173
NS suffix 160
null, C# 162

O
object references 17
objects

activating 95
CORBA interface 66

objects-by-value 6
online Help Topics

accessing 1
operations classes description 168
Operations suffix 159, 160
option help 158
ORBInitRef 23
osagent URL scheme 17
overloaded methods 157
overrides, policy 65

P
packages

java.io 176
java.lang 175
java.net 177
java.rmi 177
java.sql 177
java.util 179
javax.ejb 178
javax.naming 178
javax.rmi 179
javax.transaction 179

parameters mapping 170
Partition services

using 141
Partitions

services 141
path 36
PDF documentation 3
peer-to-peer 10
performance 7
POA 89

activating objects 95
Bind Support policy 93
creating 93
creating and activating 94
creating and using 90
ID Assignment policy 92
Implicit Activation policy 93
Lifespan policy 91
naming convention 93
Object ID Uniqueness policy 91
overview 89
policies 91
Request Processing policy 92
setting policies 94

 186 VisiBroker for .NET Developer’s Guide

suffix 160
terminology 90
Thread policy 91

POA manager 103
POAServant Retention policy 92
POATie suffix 160
policies, effective 65
policy overrides 65
Portable Interceptors 7

creating 86
Current 86
extensions 87
interception points 85
Interceptor 83
IOR Interceptor 86
IOR interceptors 83
overview 83
PICurrent 86
POA scoped server request 87
registering 87
request interception points 84
request interceptor 84
request interceptors 83
ServerRequestInterceptor 85
types 83

Portable Object Adapters 89
programmatic activation 19
properties

janeva.agent.addr 32
janeva.agent.port 32
janeva.firewall 31, 149
janeva.interop.jvmType 26
janeva.license.dir 24
janeva.orb.init 31, 87
janeva.security 27, 128
janeva.security.certificate 28
janeva.security.password 28
janeva.security.realm 28
janeva.security.server 29
janeva.security.server.certificate 30
janeva.security.server.defaultPort 30
janeva.security.username 28
janeva.server.defaultPort 25
janeva.server.remoting 26, 48
janeva.transactions 24
janeva.transactions.factory.url 25
ORBInitiRef 23

property configuration 21
command-line 21
configuration file 22
programmatic 22
property descriptions 23

Q
Quality of Service 7

interfaces 65
overview 65

R
references, adding 36
Remoting channel 17

Remoting overview 8
Remoting server development 41
RemotingProxy suffix 160
request interceptors 83

interception points 84, 85
POA scoped server request 87
ServerRequestInterceptor 85

reserved keywords 160
reserved names 160

mapping 160
reserved words, mapping 160
resolving the Naming Service 23
root context 15
root namespace 158
Root POA, obtaining 94
runtime libraries, VisiBroker for .NET 6,

36, 38

S
scalability 7
schema, hints 63
security 7
Security service 6, 127

enabling 128
overview 127

sequences 167
mapping 163

Servant Managers 98
ServantActivators 99
ServantLocators 101
Servants 98
server activation 18

SingleCall 41
Singleton 41

server development 42
server request interceptors

POA scoped 87
server.slip 39
ServerRequestInterceptor 83

interception points 85
setting properties 21

command-line 21
configuration file 22
programmatically 22
property descriptions 23

SingleCall object configuration 45
SingleCall server activation 41
Singleton object configuration 44
Singleton server activation 41
SOAP 10
square brackets 2
stateful services 7
string mapping 162
structs 164
stubs

classes 170
generating 35, 155

symbols
ellipsis ... 2
vertical bar | 2

VisiBroker for .NET Developer’s Guide 187

T
TCP connections 6
tools

idl2cs 35, 155
idl2csj 155
java2cs 35, 156

Transaction service 113
transactions 7

contexts 7
two-phase-commit transaction 7
type extensions 162
type mapping 161
types, built-in 175

U
unions 165

mapping 163
URL schemes 16

V
value classes 157
ValueData suffix 160
ValueFactory

class 50
suffix 160

valuetype mapping, custom 49
virtual root licensing 39
VisiBroker for .NET

features 7
license 38
runtime 6
runtime libraries 36, 38
server development 42

VisiBroker properties 33
Visual Studio .NET 35

VisiBroker for .NET properties 35

W
words, reserved 160
wstring mapping 162

X
XML 10

configuration file 13, 16
license configuration 39

	Contents
	Introduction to VisiBroker for .NET
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Understanding the VisiBroker for .NET model
	What is VisiBroker for .NET?
	Changes in VisiBroker for .NET
	VisiBroker for .NET developer tools
	VisiBroker for .NET runtime
	VisiBroker for .NET features

	What is .NET?
	Common language runtime
	.NET Framework class library
	.NET Remoting
	Managed vs. Unmanaged Applications

	What is J2EE?
	Enterprise JavaBeans
	Java RMI

	What is CORBA?
	Interface Definition Language
	CORBA and .NET Remoting

	Microsoft Visual Studio .NET options

	Developing VisiBroker for .NET client applications
	Some simple examples
	A simple .NET Remoting example
	A simple J2EE example
	A simple CORBA example

	.NET Remoting configuration
	Specifying the object location
	URL schemes

	Specifying the Remoting channel

	Client-activated objects vs. server-activated objects
	Programmatic activation

	Configuring properties
	Setting properties at the command line
	Setting properties programmatically
	Setting properties within a configuration file
	VisiBroker for .NET property descriptions
	Resolving the Naming Service
	ORBInitRef

	Licensing property
	janeva.license.dir

	Transactions properties
	janeva.transactions
	janeva.transactions.factory.url

	Server-side properties
	janeva.server.defaultPort
	janeva.server.remoting

	Interoperability property
	janeva.interop.jvmType

	Security properties
	janeva.security
	janeva.security.username
	janeva.security.password
	janeva.security.realm
	janeva.security.certificate

	Server-side security properties
	janeva.security.server
	janeva.security.server.defaultPort
	janeva.security.server.certificate

	Firewall property
	janeva.firewall

	Portable Interceptor property
	janeva.orb.init

	VisiBroker Smart Agent properties
	janeva.agent
	janeva.agent.port
	janeva.agent.addr

	Setting VisiBroker properties

	Building and deploying VisiBroker for .NET applications
	Generating VisiBroker for .NET stubs and skeletons
	Adding references to VisiBroker for .NET runtime libraries
	Deploying VisiBroker for .NET applications
	Microsoft .NET Framework Redistributable Package
	VisiBroker for .NET runtime libraries
	VisiBroker for .NET deployment license key
	Including the license as an embedded resource
	Copying the license to the application virtual root
	Modifying the application configuration file

	Developing VisiBroker for .NET Remoting servers
	Introduction
	About .NET Remoting
	About VisiBroker for .NET Server

	Developing a server in .NET Remoting style
	Singleton object configuration
	Explicit registration
	Implicit registration

	SingleCall object configuration
	Explicit registration
	Implicit registration

	Adding callbacks to a VisiBroker for .NET Remoting client
	Properties

	Using hints and custom marshaling
	VisiBroker for .NET code generation—an example
	ValueFactory class
	ValueFactory methods

	An introduction to hints
	Supplying the implementation of a value type
	Replacing the default implementation with a custom implementation

	Mapping interfaces with methods
	Using signature type to hide implementation details
	Explicit factory code
	Immutables
	Custom marshaling
	Hints file schema
	One-to-many marshaling precedence

	Using Quality of Service
	Understanding Quality of Service
	Setting policies per CORBA object
	Policy overrides and effective policies

	QoS interfaces
	Object
	Object methods

	PolicyManager
	PolicyManager methods

	PolicyCurrent
	DeferBindPolicy
	DeferBindPolicy properties

	ExclusiveConnectionPolicy
	ExclusiveConnectionPolicy properties

	RelativeConnectionTimeoutPolicy
	RelativeConnectionTimeoutPolicy methods

	RebindPolicy
	RebindForwardPolicy
	RebindForwardPolicy methods

	RelativeRequestTimeoutPolicy
	RelativeRoundTripTimeoutPolicy
	SyncScopePolicy

	QoS exceptions

	Using the dynamically managed types
	DynAny types
	Usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	Using Portable Interceptors
	Portable Interceptors overview
	Types of Portable Interceptors

	Portable Interceptor classes and interfaces
	Interceptor class
	Request Interceptor
	ClientRequestInterceptor
	ServerRequestInterceptor

	IORInterceptor
	PortableInterceptor (PI) Current
	Codec
	CodecFactory

	Creating a Portable Interceptor
	Registering Portable Interceptors
	VisiBroker for .NET extensions to Portable Interceptors
	POA scoped Server Request Interceptors
	IORInfoExt Interface

	Limitations of the Portable Interceptors Implementation

	Using Portable Object Adapters
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Thread policy
	Lifespan policy
	Object ID Uniqueness policy
	ID Assignment policy
	Servant Retention policy
	Request Processing policy
	Implicit Activation policy
	Bind Support policy

	Creating POAs
	POA naming convention
	Obtaining the Root POA
	Setting the POA policies
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default Servant
	Deactivating objects

	Using Servants and Servant Managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Listening and Dispatching: Server Engines, Server Connection Managers, and their properties
	Server Engine and POAs
	Associating a POA with a Server Engine
	Defining Hosts for Endpoints for the Server Engine

	Server Connection Managers
	Manager
	Listener
	IIOP listener properties
	Dispatcher

	When to use these properties

	Adapter activators
	Processing requests

	Using the Transaction service
	Configuring VisiBroker for .NET for transactions
	Creating VisiBroker for .NET-managed transactions
	Obtaining a Current object reference

	Looking at the CosTransactions module
	Transaction service classes and interfaces
	Current interface
	Current methods

	TransactionFactory interface
	TransactionFactory methods

	Control interface
	Control methods

	Terminator interface
	Terminator methods

	Coordinator interface
	Coordinator methods

	RecoveryCoordinator interface
	RecoveryCoordinator methods

	Resource interface
	Resource methods

	Synchronization interface
	Synchronization methods

	TransactionalObject interface

	Using the Security service
	VisiBroker for .NET Security overview
	Enabling VisiBroker for .NET Security
	Interoperating with J2EE servers and CORBA servers
	User name and password authentication
	Using the .NET Remoting API for user name and password authentication
	Using the CORBA-based API for user name and password authentication
	Using a configuration file for user name and password authentication

	Certificate-based authentication
	Using the .NET Remoting API for certificate-based authentication
	Using the CORBA-based API for certificate-based authentication
	Using a configuration file for certificate-based authentication

	ASP.NET integration
	ASP.NET configuration

	Enabling security for .NET servers

	Using VisiBroker for .NET with Partially Trusted Applications
	Using VisiBroker for .NET in Partially Trusted Environments
	Permissions Required by VisiBroker for .NET
	Usage in No Touch Deployment environments

	Using VisiBroker for .NET with COM
	Overriding COM Visibility
	ClassInterface attributes
	Defining custom interfaces
	Support for array-valued parameters and return values
	Avoiding ProgId collisions

	Using VisiBroker for .NET with GateKeeper
	What is GateKeeper?
	Enabling the VisiBroker for .NET Firewall feature
	VisiBroker for .NET server-side configuration
	VisiBroker for .NET client-side configuration
	Callbacks with GateKeeper's bidirectional support
	Security considerations

	Examples

	Compiler options
	idl2cs[j]
	java2cs

	IDL to C# mapping
	Names
	Reserved generated suffixes
	Reserved words
	Basic types
	C# null
	Boolean
	Char
	String and WString
	Integer types
	IDL type extensions

	Constants
	Constructed types
	Enumerations
	Structs
	Unions
	Sequences and Arrays

	Modules
	Interfaces
	Signature and Operations interfaces
	Helper classes
	Methods for all Helper classes
	Methods generated for interfaces

	Generated stub classes
	Abstract interfaces
	Passing parameters
	Interface scope

	Mapping for exceptions
	User-defined exceptions
	System exceptions

	Mapping for the Any type
	Mapping for certain nested types
	Mapping for TypeDef

	Java built-in type support
	java.lang
	java.io
	java.math
	java.net
	java.rmi
	java.sql
	javax.ejb
	javax.naming
	javax.rmi
	javax.transaction
	java.util
	Application server support

	Index

