
Micro Focus
VisiBroker 8.5.7

Security Guide

http://www.microfocus.com

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

https://www.microfocus.com

© Copyright 2009-2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and VisiBroker are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-12-17

https://www.microfocus.com

VisiBroker Secur i ty Guide iii

Contents

Introduction to VisiBroker... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation conventions.. 2
Contacting Micro Focus .. 2

Further Information and Product Support ... 2
Information We Need .. 3
Contact information .. 3

Getting Started with VisiSecure... 5
VisiSecure Overview.. 5

VisiSecure design flexibility .. 5
Pluggability .. 5
VisiSecure for Java.. 6

VisiSecure for Java features ... 6
VisiSecure for C++ ... 6

VisiSecure for C++ Features .. 6
Basic security model.. 7

Authentication realm (user domain) .. 8
Resource domain .. 8
Authorization domain .. 8

Distributed transmission .. 8

Authentication... 11
Managing authentication with JAAS ... 11

Basics of JAAS concepts... 11
Subjects .. 11
Principals... 11
Credentials .. 12

Public and private credentials ... 13
Authentication and pluggability... 13

Authentication mechanisms and LoginModules .. 14
Identity, trust and authentication .. 14

Relationship between trust and authentication .. 14
Identities... 15

System identity .. 15
Client identity .. 15

Configuring authentication ... 16
Authentication property settings ... 16
Formatted target .. 17
Setting the config file for client authentication .. 18
Setting up authentication realms .. 18

Different types of Authentication ... 19
Servers ... 19
Clients .. 19

Authentication mechanisms.. 20
GSSUP mechanism.. 20

Authenticating clients with usernames and passwords 20
Username/password authentication using APIs 22

Certificate mechanism ... 22
Certificate-based authentication using KeyStores and property settings . 23
Certificate-based authentication using APIs .. 24
Certificate based authentication using APIs with pkcs12Server.............. 26
Certificate based authentication using Certificate wallet 27
PKCS#12-based authentication using KeyStores 28

iv Vis iBroker Secur i ty Guide

PKCS#12-based authentication using APIs ...28
Creating LoginModules ...29

LoginContext class and LoginModule interface ...30
Authentication and stacked LoginModules ...31

Associating a LoginModule with a realm..32
Syntax of a realm entry ...33
LoginModules ...33

Using a Vault ..34
Creating a Vault ..35

Example—using VaultGen...35
Example—Using API ..36

Certificate Revocation List (CRL) and revoked certificate serial numbers..................37
Support for MS-CAPI..38

Both VisiBroker C++ and VisiBroker Java ...38
VisiBroker C++ Only..38
VisiBroker Java Only ..39

Authorization...41
Access Control ..41

Access Control List ..41
Roles-based access control...41

Pluggable Authorization..41
Configuring authorization using the rolemap file ..42

What is a rolemap ...42
Syntax of Role DB ...43
Modifying the authorization rolemap file ...44

Assertion syntax ...44
Recycling an existing role...45

Authorization domains ...45
Specifying names to authorization domain ..46
Configuring authorization domains to run-as alias..46

Setting up authorization for CORBA objects...48
Setting up the name..48
Setting up default access ...48

Configuring authorization requirements..49
Java Example: Authorization Using a Vault..51

To launch run-as alias: ..55
Run-as mapping ...57

Using a vault for a domain..57
Context Propagation ..57

Identity assertions ..58
Impersonation ..58
Delegation ...59

Asserting identity of the caller...59
Trusting Assertions ..61

Trust assertions and plug-ins ..61
Backward trust ...62
Forward trust ...62

Temporary privileges ...62

Secure Transportation ...63
Encryption..63

Public-key encryption...63
Asymmetric encryption ..64
Symmetric encryption..64
Certificates and Certificate Authority ..64

Distinguished names ...65

VisiBroker Secur i ty Guide v

Certificate chains.. 65
Generating a private key and certificate request.. 66
Digital signatures.. 66

Enabling SSL .. 66
Setting the level of encryption .. 67

Cipher suites.. 67
ECC Curves ... 69

Enabling Security .. 71
Enabling SSL.. 71

To disable the SSL .. 71
Setting the Log Level .. 71

Using IIOP/HTTPS ... 72
Browser considerations.. 73
Microsoft Internet Explorer... 73

Quality of Protection ... 75
Setting properties and QoP... 75
Configuring Quality of Protection(QoP) ... 76

Configuring QoP for the server.. 76
Configuring QoP for the client... 77

Configuring Quality of Protection (QoP) parameters ... 79

Creating custom plugins.. 81
LoginModules ... 81
CallbackHandlers .. 83
Authorization Service Providers... 84
Trust Providers ... 91

Creating Secure CORBA Applications Using Java 93
Steps to secure clients and servers.. 93

Step One: Providing an identity .. 93
Username/password authentication, using JAAS

modules, for known realms.. 94
Username/password authentication, using APIs 94
Certificate-based authentication, using KeyStores via property settings.. 94
Certificate-based authentication, using KeyStores via APIs 94
Certificate-based authentication, using APIs 94
pkcs12-based authentication, using KeyStores 96
pkcs12-based authentication, using APIs ... 96

Step Two: Setting properties and Quality of Protection (QoP) 96
Step Three: Setting up Trust .. 96
Step Four: Setting up the Pseudo-Random Number Generator 96
Step Five: If necessary, set up identity assertion... 97

Examining SSL related information .. 97
SSL Example .. 97

Creating Secure CORBA Applications Using C++........................ 99
Steps to secure clients and servers.. 99

Step One: Providing an identity .. 99
Username/password authentication, using JAAS

modules, for known realms.. 100
Username/password authentication, using APIs 100
Certificate-based authentication, using KeyStores via property settings 100
Certificate-based authentication, using KeyStores via APIs 100
Certificate-based authentication, using APIs 100
pkcs12-based authentication, using KeyStores 101
pkcs12-based authentication, using APIs ... 101

vi Vis iBroker Secur i ty Guide

Step Two: Setting properties and Quality of Protection (QoP) 101
Step Three: Setting up Trust... 101
Step Four: If necessary, set up identity assertion....................................... 101

Security configuration while setting up a server engine....................................... 103
Examining SSL related information .. 103
SSL example .. 104

Using properties to install certificates, private key and trustpoints 104
Using initializers to install certificates, private key, trustpoints and CRL 104
Using APIs with Security aware applications: SecureServer and SecureClient. 105
Using APIs with pkcs12Server ... 106

Security Properties for Java...107
SSL Server Connection Manager properties ... 112

Security Properties for C++...115
SSL Server Connection Manager properties ... 123

VisiSecure for C++ APIs ..125
General API .. 125

class vbsec::Current.. 125
Include File .. 125
Methods .. 125

class vbsec::Context ... 126
Include File .. 126
Methods .. 126

class vbsec::Principal... 130
Include file... 130
Methods .. 130

class vbsec::Credential .. 130
Include File .. 130

class vbsec::Subject.. 130
Include File .. 130
Methods .. 130

class vbsec::Wallet.. 132
Include File .. 132
Methods .. 132

class vbsec::WalletFactory.. 132
Include File .. 132
Methods .. 133

SSL API ... 134
class vbsec::SSLSession .. 134

Include File .. 134
Methods .. 134

class vbsec::VBSSLContext .. 135
Include File .. 135
Methods .. 135

class ssl::CipherSuiteInfo... 136
Include File .. 136

class CipherSuiteName .. 136
Include File .. 137
Methods .. 137

class vbsec::SecureSocketProvider .. 137
Include File .. 137
Methods .. 137

class ssl::Current .. 138
Include File .. 138
Methods .. 139

VisiBroker Secur i ty Guide vii

Certificate API .. 141
class vbsec::CertificateFactory.. 141

Include File.. 141
Methods .. 141

class CORBAsec::X509Cert .. 143
Include File.. 143
Methods .. 143

class CORBAsec::X509CertExtension ... 145
Include File.. 145

QoP API... 146
class vbsec::ServerConfigImpl.. 146

Include File.. 146
class ServerQoPPolicyImpl ... 146

Include File.. 147
Methods .. 147

class vbsec::ClientConfigImpl... 147
Include File.. 147
Methods .. 147

class vbsec::ClientQoPPolicyImpl .. 147
Include File.. 147
Methods .. 148

Authorization API .. 148
class csiv2::AccessPolicyManager.. 148

Include File.. 148
Methods .. 148

class csiv2::ObjectAccessPolicy... 149
Include File.. 149
Methods .. 149

Security SPI for C++ ... 151
Plugin Mechanism and SPIs .. 151
Providers ... 153

Providers and exceptions ... 153
vbsec::LoginModule .. 154

Include File .. 154
Methods .. 154

vbsec::CallbackHandler ... 155
Include file .. 155
Methods .. 155

vbsec::IdentityAdapter .. 156
IdentityAdapters included with the VisiSecure... 156
Methods .. 156
vbsec::MechanismAdapter ... 158
Methods .. 158

vbsec::AuthenticationMechanisms... 159
Credential-related methods.. 159
Context-related methods ... 160

vbsec::Target ... 162
Methods .. 162

vbsec::AuthorizationServicesProvider .. 163
Methods .. 163

vbsec::Resource ... 164
Methods .. 164

vbsec::Privileges .. 165
Constructors .. 165
Methods .. 165

vbsec::AttributeCodec ... 167

viii Vis iBroker Secur i ty Guide

Methods... 167
vbsec::Permission ... 169

Include file ... 170
Methods... 170

vbsec::PermissionCollection.. 171
Include file ... 171
Methods... 171

vbsec::RolePermission ... 171
Constructors... 171
Methods... 171

vbsec::TrustProvider.. 172
Methods... 173

vbsec::InitOptions... 174
Include file ... 174
Data Members .. 174

vbsec::SimpleLogger ... 174
Include file ... 174
Methods... 174

VisiSecure Error Codes...177
Modifying minor codes in C++ .. 177
Modifying minor codes in Java .. 177

General Errors ... 178
PKI Errors ... 178
SSL Errors ... 178
PKCS12 Errors ... 179
General Security Policies (GSP) Errors ... 179
Common Secure Interoperable (CSI) Errors .. 179
Authentication Errors .. 180
Authorization Errors .. 180

Login Modules..181
Basic LoginModule ... 181
JDBC LoginModule ... 183
LDAP LoginModule ... 184
Host LoginModule .. 185

UNIX shadow password for Host LoginModule ... 185
Creating a user database for the basic login module... 185

Using the userdbadmin tool .. 186
Creating a new database.. 186
Creating groups and associating users with groups 187
Adding new users ... 187
Listing existing users in the database .. 188
Listing all groups in the database .. 188
Create a new group... 188
Assign groups to existing users... 188
Remove a group from the database ... 188
Add a new user without any group .. 189
Remove a group from a user .. 189
Remove a user from the group.. 189
Exiting the userdbadmin program.. 189

Index ...191

VisiBroker Secur i ty Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enables you to build, deploy,
and manage distributed enterprise applications in your corporate
environment. These applications provide dynamic content by using JSP,
servlets, and Enterprise Java Bean (EJB) technologies.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows

• Click Start > Programs > VisiBroker > Help Topics

or

• Open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then enter the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, click Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

2 VisiBroker Secur i ty Guide

Documentat ion convent ions

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, https://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

Convention Used for
italics Used for new terms and chapter or section titles.
bold italics Used for book titles.
computer Information that the user or application provides, sample

command lines and code.
bold computer In text, bold indicates information the user types in. In code

samples, bold highlights important statements.
[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

https://www.microfocus.com
http://www.microfocus.com

VisiBroker Secur i ty Guide 3

Contact ing Micro Focus

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter https://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/products/corba/visibroker/ (VisiBroker trial
software)

• https://supportline.microfocus.com/login.aspx (Micro Focus support
login)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
https://software.microfocus.com/en-us/select/email-subscription

https://www.microfocus.com/products/corba/visibroker/
https://www.microfocus.com
https://supportline.microfocus.com/login.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
https://software.microfocus.com/en-us/select/email-subscription

4 VisiBroker Secur i ty Guide

Contact ing Micro Focus

VisiBroker Secur i ty Guide 5

Getting Started with
VisiSecure
As more businesses deploy distributed applications and conduct operations
over the Internet, the need for high quality application security has grown.

Sensitive information routinely passes over Internet connections between
web browsers and commercial web servers; credit card numbers and bank
balances are two examples. For example, users engaging in commerce with
a bank over the Internet must be confident that:

• They are in fact communicating with their bank's server, not an impostor
that mimics the bank for illegal purposes.

• The data exchanged with the bank will be unintelligible to network
eavesdroppers.

• The data exchanged with the bank software will arrive unaltered. An
instruction to pay $500 on a bill must not accidentally or maliciously
become $5000.

VisiSecure lets the client authenticate the bank's server. The bank's server
can also take advantage of the secure connection to authenticate the client.
In a traditional application, once the connection has been established, the
client sends the user's name and password to authenticate. This technique
can still be used once a VisiSecure connection has been established, with
the additional benefit that the user name and password exchanges will be
encrypted. VisiSecure provides support for any number of authentication
realms providing access to portions of distributed applications. In addition,
with VisiSecure you can create authorization domains that delineate access-
control rules for your applications.

VisiSecure Overview
VisiSecure provides a framework for securing VisiBroker and BDOC.
VisiSecure lets you establish secure connections between clients and
servers.

VisiSecure design flexibility
Micro Focus has designed VisiSecure to work with a variety of application
architectures, so that it can support many different current and future
architectures. However, while VisiSecure represents a powerful security
architecture, alone it cannot fully protect your servers. You must be
responsible for physical security, and configuring you base web server
(host) and operating system services in the most secure manner possible.

Pluggability
VisiSecure allows many security technologies to be plugged in. Pluggability
is provided at various levels. Security service providers can plug in and
replace the entire set of security services and application developers can
plug in smaller modules to achieve custom integration with their
environment. The only layers which are not pluggable are the CSIv2 layer
and the transport layer which are tightly integrated with the internal
implementation of the VisiBroker ORB and interact heavily with each other.

6 VisiBroker Secur i ty Guide

Vis iSecure Overview

VisiSecure for Java
VisiSecure is 100% Java and supports all security requirements of the J2EE
1.3 specification. VisiSecure uses the Java Authentication and Authorization
System (JAAS) for authentication, the Java Secure Socket Extension (JSSE)
for SSL communications, and the Java Cryptography Extension (JCE) for
cryptographic operations. Most of the APIs for Java applications reflect the
existing JDK or additional Java standard APIs. Care has been taken not to
duplicate APIs at the different security layers. In some cases, the VisiSecure
feature set exceeds the J2EE 1.3 security requirements.

VisiSecure for Java features
VisiSecure has the following features:

• Enterprise Java Beans (EJB) Container Integration: VisiSecure
seamlessly integrates EJB security mechanisms with the underlying
CORBA Security Service and CSIv2. CORBA offers enhanced features to
the security architecture of your bean. By utilizing VisiSecure, you have
options additional to the relatively simple EJB security model.

• Web Container Integration: VisiSecure integrates with the web
container by providing mechanisms to the web container that allow its
own authentication and authorization engines to propagate security
information to other EJB containers, as necessary. For example, a servlet
trying to invoke an EJB container's bean will act on behalf of the original
browser client that triggered the initial request. Security information
supplied from the client will be propagated seamlessly to the EJB
container. In addition, the web container authentication and
authorization engine can be configured to use authentication
LoginModules and authorization rolemaps supplied by Micro Focus.

• Security Services Administrator: The administration and configuration
of VisiSecure is performed using simple-to-use properties and supports
tools like the Java keytool.

• GateKeeper: You can use GateKeeper to enable authenticated
connections across a high-level firewall. This allows clients to connect to
the server, even if the server and the application client are on opposite
sides of a firewall. Use of the GateKeeper is fully documented in the
VisiBroker GateKeeper Guide.

• Secure Transport Layer: VisiSecure for Java utilizes standardized
Transport Layer Security (TLS) which has evolved from the older SSL
standards. Note that Java only supports the TLS versions provided by its
underlying security provider (such as JSSE).

VisiSecure for C++
VisiSecure for C++ offers similar features to VisiSecure for Java. See
“VisiSecure for C++ APIs” and “Security Properties for C++” for detailed
information.

VisiSecure for C++ Features
VisiSecure for C++ has the following features:

• Authentication and Authorization: The Authentication and
Authorization model are similar to VisiSecure for Java. This extends the
capability of VisiSecure for C++ applications.

VisiBroker Secur i ty Guide 7

Basic securi ty model

• Security Services Administrator: The administration and configuration
of VisiSecure is performed using simple-to-use properties.

• Secure Transport Layer: VisiSecure for C++ utilizes standardized
Transport Layer Security (TLS) which has evolved from the older SSL
standards. This release includes support for TLSv1.3, TLSv1.2, TLSv1.1
and TLSv1.0.

Basic security model
The basic security model describes VisiSecure and its components from a
user's perspective. This is the logical model that VisiSecure users need to
understand, configure and interact with. The security service groups entities
of a system into the following three logical groups (domains):

• Authentication realm (User domain): simply a database of users.
Each authentication realm describes a set of users and their associated
credentials and Privileges attributes.

• Resource Domain: represents a collection of resources of a single
application. The application developer defines the access control policies
for access to resources in the application.

• Authorization Domain: defines the set of rules that determines whether
an access attempt to a particular resource is allowed.

The following figure displays the relationship among these domains.

Figure 1 Interaction Among Different Domains in VisiSecure

These three VisiSecure domains are closely related.

1 For authentication, you need an authentication realm. VisiBroker comes
with a simple one, or you can use an existing supported realm, like an
LDAP server.

2 For authorization, you need to set up roles, and associate users with
those roles.

3 Then, you need to set up a resource domain, and grant access to the
resources in that domain to certain roles.

8 VisiBroker Secur i ty Guide

Distr ibuted t ransmission

Authentication realm (user domain)
An authentication realm, simply described, is a database of users. Each
authentication realm describes a set of users and their associated
credentials and privileges, such as the user's password and the groups to
which the user belongs, respectively. Examples of authentication realms
are: an NT domain, an NIS or yp database, or an LDAP server.

A “realm” represents a configuration entry that represents an
authenticating target.

An authentication realm is defined both by the authentication mechanism
such as LoginModules it uses, as well as a set of configuration options
customized to point to the source of the data which contains the user
information.

For example, if you are using LDAP, then the authentication realm specifies
LDAP as the authentication protocol, specifies the name of the server, and
specifies other configuration parameters. When you log on to a system, the
system is authenticating you. For more information on setting up an
authentication realm, see “Authentication”.

Resource domain
A resource defines an application component that VisiSecure needs to
protect. VisiSecure organizes resources into resource domains containing
every resource in an application. This means every remote method or
endpoint that is exposed by a server is essentially a resource.

The application developer defines access control policies for access to
resources in the application. These are defined in terms of roles. Roles
provide a logical collection of permissions to access a set of resources. For
more information, see “Authorization”.

In addition, applications may choose to be more security aware and provide
access control for more fine grained resources such as fields, or access to
external resources such as databases. The EJB and Servlet specifications
provide standard deployment descriptor information that allow applications
to define their access policies in terms of the set of roles required to access
a given method.

Authorization domain
The authorization domain allows users to act in given roles. VisiSecure
grants privileges to access resources based on these roles. When VisiBroker
applications pass user identities from one application to another, the
identity contains user information, and the permissions based on the
specified roles. The caller's identity is then matched with the required rules
to determine whether the caller satisfies the required rules. If the caller
satisfies the rules, access is granted. Otherwise, access is denied. For more
information, see “Authorization”.

Distributed transmission
For a distributed environment, in addition to the three domains that make
up the basic security model, the following must be considered:

• Distributed transmission of the authorization privileges

• Assertion and trusting assertion

VisiBroker Secur i ty Guide 9

Distr ibuted t ransmission

The VisiSecure Service Provider Interface (SPI) provides interfaces and
classes to address secure transportation, assertion, and assertion trust. The
transmission (or interoperability) is handled by the underlying CSIv2
implementation. Because the implementation of the SPI is closely bundled
with the VisiBroker ORB, it cannot be separated from the core as a generic
SPI for other languages.

Specifically, the VisiSecure SPI classes enable customization of your
Security Service in the following:

• Identification and Authentication

• Authorization (or access control decision making)

• Assertion trust

10 VisiBroker Secur i ty Guide

Distr ibuted t ransmission

VisiBroker Secur i ty Guide 11

Authentication
The first layer of security protection for any system is authentication (as
well as identity representation). This layer defines the process of verifying
the entities are who they claim to be. Most of the time, credentials are
required to verify the identity of an entity.

VisiSecure employs the Java Authentication and Authorization Service
(JAAS) framework to facilitate the interaction between the entities and the
system. At the same time, the authentication mechanism concept is
employed to represent the format (encoding and decoding process) for
communicating or transporting authentication information between various
components of the security subsystem.

Managing authentication with JAAS
The Java Authentication and Authorization Service (JAAS) defines
extensions that allow pluggable authorization and user-based
authentication. This framework effectively separates the implementation of
authentication from authorization, allowing greater flexibility and broader
vendor support. The fine-grained access control capabilities allow
application developers to control access to critical resources at the
granularity level that makes the most sense.

Basics of JAAS concepts
VisiSecure employs the Java Authentication and Authorization Service
(JAAS) framework to facilitate the interaction between the entities and the
system. The three essential concepts of the framework are subject,
principal, and credential.

Subjects
JAAS uses the term subject to refer to any user of a computing service or
resource. Another computing service or resource, therefore, is also
considered a subject when it requests another service or resource. The
requested service or resource relies on names in order to authenticate a
subject. However, different services may require different names in order to
use them.

For example, your email account may use one username/password
combination, but your ISP requires a different combination. However, each
service is authenticating the same subject—namely yourself. In other
words, a single subject may have multiple names associated with it. Unlike
the example situation, in which the subject himself must know a set of
usernames, passwords, or other authentication mechanisms at a specific
time, JAAS is able to associate different names with a single subject and
retain that information. Each of these names is known as a principal.

Principals
A principal represents any name associated with a subject. A subject could
have multiple names, potentially one for each different service it needs to
access. A subject, therefore, comprises a set of principals, such as in the
code sample below:

12 VisiBroker Secur i ty Guide

Managing authent icat ion with JAAS

Java
public interface Principal {
 public String getName();
}
public final class Subject {
 public Set getPrincipals()
}

C++
class Principal {
 public:
 std::string getName() const=0;}
class Subject {
 public:
 Principal::set& getPrincipals();
}

Principals populate the subject when the subject successfully authenticates
to a service. You do not have to rely on public keys and/or certificates if
your operational environment has no need for such robust technologies.

To return the principal name(s) for a subject from the application context,
use getCallerPrincipal.

Note

Principals participating in transactions may not change their principal
association within those transactions.

Credentials
In the event that you want to associate other security-related attributes
with a subject, you may use what JAAS calls credentials. Credentials are
generic security-related attributes like passwords and public-key
certificates. Credentials can be any type of object, allowing you to migrate
any existing credential information or implementation into JAAS. Or, if you
want to keep some authentication data on a separate server or other piece
of hardware, you can simply store a reference to the data as a credential.
For example, you can use JAAS to support a security-card reader.

VisiBroker Secur i ty Guide 13

Managing authent icat ion with JAAS

Public and private credentials
Credentials in JAAS come in two types, public and private. Public credentials
do not require permissions to access them. Private credentials require
security checks. Public credentials could contain public keys and so on,
while private credentials are private keys, encryption keys, sensitive
passwords, and so on. Consider the following subject:

Java
public final class Subject {
 ...
 public Set getPublicCredentials()
}

C++
class Subject {
 public:
 Credential::set& getPrivateCredentials();
}

No additional permissions would be necessary to retrieve the public
credentials from the subject, but the situation changes when trying to
retrieve private credentials with following APIs:

Java
public final class Subject {
 ...
 public Set getPrivateCredentials()
}

C++
class Subject {
 public:
 Credential::set& getPrivateCredentials();
}

For Java, permissions are required for code to access private credentials in
a Subject. For C++, all codes are local and therefore trusted.

Public credentials are used for authorization only. Private credentials are
used for caching purposes. These credentials are populated by login
modules.

For more information on permissions in Java, consult the JAAS Specification
from Oracle.

Authentication and pluggability
Within the JAAS framework, the logon service separates the configuration
from implementation. A low-level system programming interface called the
LoginModule provides an anchor point for pluggable security modules.

The authentication mechanism concept is employed to represent the
“format” for communicating (or transporting) authentication information
between various components of the security subsystem. The security
service provider for the authentication/identification process implements
the specific format (encoding and decoding process) that is to be used by
the underlying core system.

14 VisiBroker Secur i ty Guide

Authent icat ion mechanisms and LoginModules

In a distributed environment, the authentication process is further
complicated by the fact that the representation of the entity and the
corresponding credential must be transported among peers in a generic
fashion. Therefore, the VisiSecure Java SPI employs the concept of the
AuthenticationMechanism and defines a set of classes for doing
authentication/identification in a distributed environment.

Authentication mechanisms and LoginModules
An authentication mechanism represents the encoding/decoding for
communicating authentication information between various components of
the security subsystem. For example, it represents how LoginModules
communicate with the mechanism and how the mechanism on one process
communicates with an equivalent mechanism on another process.

VisiSecure includes several common LoginModules for server and client
authentication as well as the Service Provider Interface classes for Java and
C++ that enable you to “plug-in” security service provider implementations
of authentication and identification.

Identity, trust and authentication

Relationship between trust and authentication
Authentication is a process of verifying an identity. When the verification is
successful, the identity becomes a trusted identity. In other words: a
successful authentication of an identity puts trust on the identity. Trust is a
result of a successful authentication. It is also the result of the identity
assertion.

Assertion works as follows:

1 Identity A is successfully authenticated and is therefore trusted.

2 Later, identity A asserts identity B.

3 Identity B is therefore trusted, although we never directly verify its
identity. This is because the system trusts A and trusts all that A asserts.

Trust can be applied at the transport level if a certificate identity is
presented, or at even higher levels (at the CSIv2 layer) where the identity
takes the form of a username/password.

Java

For trusting certificates with Java code, VisiSecure provides mechanisms to
support user-provided JSSE X509TrustManager that indicates whether a
given certificate chain is trusted. You can also specify a Java keystore where
certificate entries are trusted using standard Java properties.

C++

For VisiBroker for C++ users, a set of APIs that allow trustpoints (trusted
certificates) to be configured is provided as well. For more information, see
“VisiSecure for C++ APIs”.

Note: For certificate authentication, login modules cannot be used.

VisiBroker Secur i ty Guide 15

Ident i ty, t rust and authent icat ion

Identities
Any system that needs to engage in secure communication as a client must
be configured to have an identity that represents the user/client on whose
behalf it is acting. When using SSL with mutual authentication, a server also
needs a certificate to identify itself to the client.

In addition to many clients and users that need to be authenticated to the
various VisiBroker services, VisiSecure itself needs to be provided with its
own identity. This allows the server to identify itself when it communicates
with other secure servers or services. It also allows end-tier servers to trust
assertions made by this server in the case where this server acts on behalf
of other clients.

System identity
Any system first needs to identify itself before being allowed access to
resources. Client identification is always required for resource access. In a
CORBA/J2EE environment, the need for identification also exists for servers
as well. Servers need identification in two cases:

• When using SSL for transport layer security, the server typically needs to
identify itself to the client.

• When mid-tier servers make further invocations to other mid-tier or end-
tier servers, they need to identify themselves before being allowed
(potentially) to act on behalf of the original caller.

Client identity
There are situations, however, where the client process does not have any
information on the realm that it needs to authenticate against. In this case,
by default the client consults the server's IOR for a list of available realms,
and the user is given the option to choose one to which to supply username
and password. This username/password will be used by the server, which
will consult its configuration file for the specified realm, and use the
information collected from the client as data for its specified LoginModule.

For example, if the following is the server side configuration file, then the
information collected or entered by a user will be used for its
JDBCLoginModule.

SecureRealm{
 com.borland.security.provider.authn.JDBCLoginModule
required
 DRIVER=F"com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:../userdb.jds"
 USERNAMEFIELD="USERNAME"
 GROUPNAMEFIELD="GROUPNAME"
 GROUPTABLE="UserGroupTable"
};

The default behavior of the process can be changed through properties. You
can set the retry count by setting
vbroker.security.authentication.retryCount. The default is 3. The
security properties including those for authentication are listed and
described in “Security Properties for Java” and “Security Properties for C++”.

16 VisiBroker Secur i ty Guide

Conf igur ing authent icat ion

Configuring authentication
The authentication config file contains the data necessary to authenticate a
user to one or more realms and defines an authentication mechanism and
provides the code to interact with a specific type of authentication
mechanism (for example, LoginModules).

The configuration must specify which LoginModules should be used for a
particular application, and in what order the LoginModules should be
invoked. For more information, see “Associating a LoginModule with a realm”.

An example of the config.jaas file looks like this:

customrealm {

 CustomLoginModule required;

};

This defines a realm called customrealm, which requires the use of the
CustomLoginModule. Each realm entry has a particular syntax that must
be followed. For more information on realm syntax, see “Syntax of a realm
entry”.

A login configuration contains the following information. Each entry in the
configuration is indexed via realm name and contains a list of LoginModules
configured for that application.

Each LoginModule is specified via its fully qualified class name.
Authentication proceeds down the module list in the exact order specified. If
an application does not have specific entry, it defaults to the specific entry.

The Flag value controls the overall behavior as authentication proceeds
down the stack. For a description of the valid values for Flag and their
respective semantics, see “Syntax of a realm entry”.

For information on LoginModules, see “LoginModules”.

Authentication property settings
The authentication policy—whether it is server or client authentication and
whether it is done using public-key certificates or passwords—is determined
by property settings. For more information, see “Security Properties for C++”
and “Security Properties for Java”.

The security configuration uses properties and a configuration file to define
the identities that represent the system. This configuration file is populated
with all the LoginModules necessary for authentication to the various realms
to which this process needs to authenticate.

For example:

Set the property vbroker.security.login=true
Set the property vbroker.security.login.realms=payroll,hr
Set the following realm information in a file reference by
vbroker.security.authentication.config=<config-file>
Set the property vbroker.security.callbackhandler=<callback-
handler>

VisiBroker Secur i ty Guide 17

Conf igur ing authent icat ion

In the <config-file> setup the following:

payroll {
com.borland.security.provider.authn.HostLoginModule
required;
};

hr {
 com.borland.security.provider.authn.BasicLoginModule
required
 DRIVER=com.borland.datastore.jdbc.DataStoreDriver
 URL="jdbc:borland:dslocal:../userdb.jds"
 TYPE=BASIC
 LOGINUSERID=admin
 LOGINPASSWORD=admin;
};

In this code sample:

• The process will already know something about the realms to which it
needs to authenticate through the property
vbroker.security.login.realms.

• The process knows it will authenticate to the host on which it is running
(logically representing the “payroll” realm), and so sets itself up to invoke
this LoginModule.

• The process also knows that it must log into the “hr” realm, and so sets
up a LoginModule to this end as well.

The format of the realm information passed into
vbroker.security.login.realms is as follows:

<authentication Mechanism>#<Authentication Target>

This format is called Formatted target.

Formatted target
Formatted target is the canonical representation of an authentication
mechanism.

A formatted target is of the form:

<authentication mechanism>#<mechanism specific target
name>

For example:

Realm1, Realm3, GSSUP#Realm4,

In the above example, realm1, realm3 and realm4 are specific instances
of GSSUP authentication mechanism. GSSUP is assumed by default if no
other authentication mechanism is specified.

This can be used to represent how LoginModules communicate with the
authentication mechanism and how the mechanism on one process
communicates with an equivalent mechanism on another process. The
mechanism specific target name represents how the mechanism represents
this target.

For more information on authentication mechanisms, see “Authentication
mechanisms”.

18 VisiBroker Secur i ty Guide

Conf igur ing authent icat ion

Setting the config file for client authentication
Each process uses its own configuration file containing the configuration for
the set of authentication realms that the system supports for client
authentication.

To set the location of the configuration file:

1 Set the vbroker.security.authentication.config property to the
path of the configuration file.

2 If desired, you can specify more than one login configuration file as
follows:

vbroker.security.authentication.configs=myconfig,
yourconfig, hisconfig, herconfig
vbroker.security.authConfig.myconfig=<the physical file
name for myconfig>
vbroker.security.authConfig.yourconfig=<the physical file
name for yourconfig>
vbroker.security.authConfig.hisconfig=<the physical file
name for hisconfig>
vbroker.security.authConfig.herconfig=<the physical file
name for herconfig>

If more than one login configuration file is specified then the files are read
and concatenated into a single configuration.

Note: the use of forward or backward slashes is based on the underlying file
system. The URLs always use forward slashes, regardless of what operating
system the user is running.

Setting up authentication realms
A system administrator determines the authentication technologies, or
Login Modules, to be used for each application and configures them in the
configuration file.

Follow these steps to setup the authentication realm:

1 Create an authentication configuration file containing one or more
realms. For information on Creating configuration file, see “Configuring
authentication”.

2 Use the property vbroker.security.authentication.config to
involve the configuration file into the runtime.

vbroker.security.authentication.config=<the filename of
the config file>

An example:

customrealm {
CustomLoginModule required;
};

In the above example, the realm entry is named "customrealm". This name
must be unique as it will be used by the VisiSecure to refer to this entry.
The entry specifies the LoginModule to be used for the user authentication.

This LoginModule is “required” for the authentication to be considered
successful. The LoginModule will succeed only if the name and password
supplied by the user are successfully used to log the user into the system.

For setting up the configuration file for client and server, refer to the basic
authentication example in the <install_dir>\examples\vbroker\

VisiBroker Secur i ty Guide 19

Dif ferent types of Authent icat ion

security\basic folder. The example given here has all the basic setting
needed to secure the application.

For more information on the authentication realm (user domain), see
“Authentication realm (user domain)”.

Different types of Authentication
With the VisiBroker implementation of JAAS, you can set up different
mechanisms of authentication. You can have server authentication, where
servers are authenticated by clients using public-key certificates. You can
also have client authentication. Clients can be authenticated using
passwords or public-key certificates. That is, the server can be configured to
authenticate clients with a password or clients with public-key certificates.
Whether it is server or client authentication and whether it is done using
public-key certificates or passwords, it is determined by property settings.
For more information see “Authentication property settings”.

Servers
Authentication can be accomplished using a standard username/password
combination. For servers using username and password, authentication is
performed locally since the realms are always known.

There can be constraints on certificate identities, depending on whether
they are stored in a KeyStore or whether they are specified through APIs.

Clients
To authenticate clients using usernames and passwords, several things
need to happen. The server should expose a set of realms to which it can
authenticate a client. Each realm should correspond to a JAAS LoginModule
that actually does the authentication. Finally, the client should provide a
username and password, and a realm under which it wishes to authenticate
itself.

For clients using usernames and passwords, there can be constraints about
what the client knows about the server's realms. Clients may have prior
knowledge of the server's supported realms or none at all at the time of
identity inquiry.

The client always authenticates at the server end for which the client has to
do the identity enquiry.

If the client does not know about the server’s realm upfront, then it has to
read the server IOR and reactively do an identity enquiry to make the
server authenticate.

The client can authenticate itself if the server’s realm is known upfront.
Even in such cases the server will authenticate again.

Keeping these constraints in mind, VisiSecure supports the following usage
of authentication models: GSSUP mechanism and Certificate mechanism. You
can use any of these to provide an identity to the server or client.

20 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

Authentication mechanisms
An authentication mechanism represents the encoding/decoding for
communicating authentication information between various components of
the security subsystem.

For example, it represents how LoginModules communicate with the
mechanism and how the mechanism on one process communicates with an
equivalent mechanism on another process. The mechanism specific target
name represents how the mechanism represents this target.

There are two types of authentication mechanisms supported by VisiSecure:

• GSSUP mechanism

• Certificate mechanism

GSSUP mechanism
VisiSecure provides a mechanism for a simple username/password
authentication scheme. This mechanism is called GSSUP. The OMG CSIv2
standard defines the interoperable format for this mechanism. The
LoginModule to mechanism interaction model is defined by Micro Focus. This
is because the mechanism implementation needs to translate the
information provided by a LoginModule to information (to a specific format)
it can transmit over the wire using CSIv2.

As mentioned above, the target name for a mechanism is specific to that
mechanism. For the GSSUP mechanism, the target name is a simple string
representing a target realm (for example, in the JAAS configuration file, on
the receiving tier). So, if a server has a configuration file with one realm
defined, for example “ServerRealm”, a client side representation of this
realm would be:

GSSUP#ServerRealm

Note

For convenience, since the GSSUP mechanism is always available in
VisiBroker, you can omit the “GSSUP#” from the target name. However,
this is only for the GSSUP mechanism. When the security service interprets
a “realm” name, it first attempts to resolve the realm name with a local
JAAS configuration entry. If that fails, it treats that realm name as
representing “GSSUP#”.

GSSUP based authentication methods are:

• Authenticating clients with usernames and passwords

• Username/password authentication using APIs

Authenticating clients with usernames and passwords
For authentication, you need username/password or certificates. Username/
password and certificates can be collected from user through JAAS callback
handlers. These can also be collected through APIs.

VisiBroker Secur i ty Guide 21

Authent icat ion mechanisms

Username/password authentication using LoginModules for known
realms

If the realm to which the client or server wishes to authenticate is known,
the client-side can be configured by setting properties as below:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

22 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

Username/password authentication using APIs

For C++:

The following code sample demonstrates the use of the login APIs. This case
uses a wallet. For a full description of the four login modes supported, see
“VisiSecure for C++ APIs” and “Security SPI for C++”.

int main(int argc, char* const* argv) {
// initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityContext");
Context* c = dynamic_cast<Context*> (obj.in());
// Obtain a walletFactory
CORBA::Object_var o = orb-
>resolve_initial_references("VBWalletFactory");
 vbsec::WalletFactory* wf =
dynamic_cast<vbsec::WalletFactory*>(o.in());
vbsec::Wallet* wallet = wf->createIdentityWallet(
<username>, <password>, <realm>);
 c->login(*wallet);
 }

For Java:

The following code sample demonstrates the use of the login APIs. This case
uses a wallet. For a full description of the four login modes supported, see
“LoginModules”.

public static void main(String[] args) {
//initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);
com.borland.security.Context ctx =
(com.borland.security.Context)
orb.resolve_initial_references("VBSecurityContext");
if(ctx != null) {
com.borland.securty.IdentityWallet wallet =
new com.borland.security.IdentityWallet(<username>,
<password>.toCharArray(), <realm>);
ctx.login(wallet);
}
}

Certificate mechanism
The Certificate mechanism is a mechanism that uses certificates for
authentication. This mechanism is different from GSSUP; certificates are
used instead of username/password, and these identities are used at the
SSL layer and not at the higher CSIv2 over IIOP layer.

You can put certificates into VisiSecure using certificate login or wallet APIs.
When using wallet APIs, you need to specify the usage through the constant
definitions in the vbsec.h file, class vbsec::WalletFactory. For more
information, see “class vbsec::WalletFactory”.

Using certificate login, you need to specify the target realm using the
following format:

Certificate#<target>

VisiBroker Secur i ty Guide 23

Authent icat ion mechanisms

Note

If you do not specify the usage, the default is ALL.

The following describes the available targets defined for the certificate login
mechanism.

A process can have either a client and server identity that are different or
an identity that is used in all roles, but not both. In other words, you cannot
establish an identity in the Certificate#CLIENT and the
Certificate#ALL targets simultaneously.

Note

For backward compatibility, wallet properties and SSL APIs are supported;
certificate identities established this way are only treated as
Certificate#ALL.

Typical uses of certificate-based authentication methods are:

• Certificate-based authentication using KeyStores and property settings

• Certificate-based authentication using APIs

• Certificate based authentication using APIs with pkcs12Server

• Certificate based authentication using Certificate wallet

• PKCS#12-based authentication using KeyStores

• PKCS#12-based authentication using APIs

Certificate-based authentication using KeyStores and
property settings
This section demonstrates how to make a minimal SSL configuration on the
simplest, security-unaware VisiBroker example such that client and server
communicate using SSL to perform mutual PKI authentication. Executables
from basic/bank_agent are re-used to emphasize the fact that in order to
secure non-security aware application no source code changes are required.

1 Familiarize yourself with the C++ version of the simplest VisiBroker
examples in the directory basic/bank_agent.

2 Copy over only the executables of the Server (Server.exe on Windows)
and Client (Client.exe on windows) to the current directory, security/
bank_ssl.

3 Make sure that osagent is up and running as usual.

4 Launch the server using the command below:

Target Description
Certificate#CLIENT Identifies this process in a client role. When a user

establishes an identity for this target, the certificate
identity established will be used when this process acts as
a client. In other words, this certificate will identify this
process when it establishes outgoing SSL connections.

Certificate#SERVER Identifies this process in a server role. When a user
establishes an identity for this target, this process will use
the certificate identity established to identify itself when it
is accepting SSL connections.

Certificate#ALL Identifies this process in all roles. This identity is used in
both of the above roles.

24 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

prompt> Server -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library
name>

5 Launch the client using the command below:

prompt> Client -DORBpropStorage=cpp_client.properties -
Dvbroker.orb.dynamicLibs=<VisiSecure shared library
name>

6 Open the property files cpp_server.properties and
cpp_client.properties and notice how the certificates and private
keys are installed using the wallet property set in the files.

C++ Server properties
vbroker.security.peerAuthenticationMode=require_and_trust
vbroker.security.requireauthentication=false

vbroker.security.trustpointsRepository=Directory:./
trustpoints
vbroker.security.server.transport=SECURE_ONLY

vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=frans
vbroker.security.wallet.password=frans

C++ client properties
vbroker.security.trustpointsRepository=Directory:./
trustpoints
vbroker.security.peerAuthenticationMode=require_and_trust

vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=charles
vbroker.security.wallet.password=charles

For descriptions of these properties, see “Security Properties for C++”.

7 Browse through the content of subdirectory identities and
trustpoints and understand how the directory wallet and trustpoints
are structured.

Note:

The VisiSecure shared library name depends on the platforms. For example:

• on win32, it is vbsec.dll,

• on Solaris 64 bit, it is vbsec64.so,

• on HPUX 64 bit std build, it is vbsec64_p.sl.

We recommend that you check your ${VBROKER_DIR}/lib (on UNIX) or
<install_dir>\bin (on Windows) directory.

Certificate-based authentication using APIs
1 Build the example as mentioned in the security/bank_SSL example in

the example folder by executing the command:

nmake cpp (for Windows) or
make cpp (for UNIX).

A successful build creates the executables SecureServer.exe and
SecureClient.exe on Windows, or SecureServer and SecureClient
on UNIX.

VisiBroker Secur i ty Guide 25

Authent icat ion mechanisms

2 Make sure osagent is up and running.

3 Launch the server using the command:

prompt> SecureServer

4 Launch the client using the command:

prompt> SecureClient

5 Launch either server or client or both using -
Dvbroker.app.useCRL=true, and notice how the mutual SSL
authentication fails and client gets NO_PERMISSION exception.

For example:

prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from SecureServer.C, SecureClient.C:

• how they perform the security initialization in their main() and after
ORB_Init().

• how they impose peerAuthenticationMode=require_and_trust
and alwaysSecure=true through QoP

SecureServer.C
...
if (ssp) {
CORBAsec::ASN1ObjectList chain;
chain.length(bank::numberOfCertificates);
CORBA::ULong L;
for (CORBA::ULong i = (CORBA::ULong)0; i <
bank::numberOfCertificates; i++) {
L = (CORBA::ULong) strlen(bank::certificate[i]);
chain[i].replace (L, L,
(CORBA::Octet*)bank::certificate[i],
(CORBA::Boolean)false);
} // Wrap the b64 certificate chain in an ASN1ObjectList
as
// required by the certificate factory

CORBAsec::X509CertList_var certchain =
ssp->getCertificateFactory().importCertificateChain(
chain);
// Consult the certificate factory to convert the chain
// into an X509CertList as required to create an
SSLContext

Note:

In the resulting list, the order is reversed: The root cert is list[0]

L = (CORBA::ULong) strlen(bank::privateKey);
CORBAsec::ASN1Object key (L, L,
(CORBA::Octet*)bank::privateKey,
(CORBA::Boolean)false);
// Wrap the b64 private key in an ASN1Object

CORBAsec::ASN1Object_var privatekey =
ssp->getCertificateFactory().importPrivateKey(key);
// Consult the certificate factory to convert the private
key
// into a DER wrapped inside an ASN1Object

26 VisiBroker Secur i ty Guide

Authent icat ion mechanisms

 const char* const sword = "frans";
L = (CORBA::ULong) strlen(sword);
vbsec::VBSSLContext* sslctx = ssp->createSSLContext (
*certchain,
*privatekey,
CSI::UTF8String(L, L, (CORBA::Octet*)sword,
(CORBA::Boolean)false)
); // Consult the SecureSocketProvider to create an
SSLContext
// from the chain and the private key.

CORBAsec::X509Cert* cacert = (*certchain)
[(CORBA::ULong)0];
sslctx->addTrustedCertificate(*cacert);

The root of this chain is an implicit part of trustpoint. But it does not happen
automatically.

For Java:

If you do not want to use KeyStores directly, you can specify certificates
and private keys using the CertificateWalletAPI. This class also
supports the pkcs12 file format.

X509Certificate[] certChain = ...list-of-X509-
certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
 new com.borland.security.CertificateWallet(alias,
 certChain, privKey, "password".toCharArray());

The first argument in the new Certificate wallet is an alias to the entry in the
KeyStore, if any. If you are not using keystores, set this argument to null.

Certificate based authentication using APIs with
pkcs12Server
This section demonstrates how to use VisiSecure API for handling a PKCS12
storage, a very widely acceptable storage format for certificates and private
keys.

1 Build the example as mentioned in the bank_SSL example in the
security folder by executing the command:

nmake cpp (for Windows) or
make cpp (for UNIX).

When the build completes, the executable pkcs12Server.exe is created
on Windows, or pkcs12Server on UNIX platforms.

2 Make sure osagent is up and running.

3 Launch the server using the command below:

prompt> pkcs12Server frans.pfx frans

4 Launch the client using the command below:

prompt> SecureClient

5 Launch the client using -Dvbroker.app.useCRL=true, and notice how
the mutual SSL authentication fails and the client gets a NO_PERMISSION
exception.

prompt> SecureClient -Dvbroker.app.useCRL=true

VisiBroker Secur i ty Guide 27

Authent icat ion mechanisms

6 Read and learn from pkcs12Server.C

Notice how it installs certificates and a private key from a PKCS12 file.

PKCS12Server.C
...
if (ssp) {
CORBA::ULong L = (CORBA::ULong) bank::BUF_SIZE;
CORBAsec::ASN1Object pkcs12bytes(L, L, bank::gBuffer,
(CORBA::Boolean)0);
L = (CORBA::ULong) strlen(argv[2]);
CSI::UTF8String sword(L, L, (CORBA::Octet*)argv[2],
(CORBA::Boolean)0);
CORBAsec::X509CertList_var certchain =
ssp->getCertificateFactory().importCertificateChain (
pkcs12bytes,
sword);
// Consult the certificate factory to convert the chain
// into an X509CertList as required to create an
SSLContext

It is IMPORTANT to note that in the resulting list, the order is reversed.
The root cert is list[0].

CORBAsec::ASN1Object_var privatekey =
ssp->getCertificateFactory().importPrivateKey(
pkcs12bytes,sword);
// Consult the certificate factory to convert the
// private key into a DER wrapped inside an ASN1Object

 if (!certchain || !privatekey) {
cerr << "Fail to import certificates and private key
from pkcs12 "
<< "file named: " << argv[1] << endl;
exit(1);
}
vbsec::VBSSLContext* sslctx = ssp->createSSLContext (
*certchain,
*privatekey,
sword
); // Consult the SecureSocketProvider to create an
// SSLContext from the chain and the private key.

Certificate based authentication using Certificate
wallet
Use a certificate wallet as follows:

1 Create a new wallet

com.borland.security.provider.CertificateWallet wallet =
new com.borland.security.provider.CertificateWallet
(null, certChain,
encryptedPrivateKey.getBytes (),
"Delt@$$$".toCharArray());

2 Get the security context:

// Login
com.borland.security.Context ctx =
(com.borland.security.Context)
orb.resolve_initial_references ("VBSecurityContext");

28 VisiBroker Secur i ty Guide

3 Pass the wallet that was initially created in step 1:

ctx.login (wallet)

Setting wallet properties

You can set the transport identity for SSL using the properties below:

vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=frans
vbroker.security.wallet.password=frans

PKCS#12-based authentication using KeyStores
You can use the same APIs discussed in “Username/password authentication
using APIs” to login using PKCS#12 KeyStores. The realm name in the
IdentityWallet should be CERTIFICATE#ALL, the username corresponds to
an alias name in the default KeyStore that refers to a Key entry, and the
password refers to the password needed to unlock the PKCS#12 file. The
property javax.net.ssl.KeyStore specifies the location of the PKCS#12
file.

Specify the details of the PKCS#12 KeyStore file as follows:

For C++:
vbroker.security.wallet.type=PKCS12:./identities/

client.p12
vbroker.security.wallet.identity=client
vbroker.security.wallet.password=password

Note:

The vbroker.security.wallet.identity property is ignored for a
PKCS12 keystore, but the property must be set.

For Java:
vbroker.security.wallet.type=PKCS12:./identities
vbroker.security.wallet.identity=client
vbroker.security.wallet.password=password

The VisiBroker for Java secure client then looks for a client.p12 file in the
./identities folder.

PKCS#12-based authentication using APIs
If you do not want to use KeyStores directly, you can import certificates and
private keys using the CertificateFactoryAPI. This class also supports
the PKCS#12 file format.

CORBA::Object_var o = orb-
resolve_initial_references("VBSecureSocketProvider");
vbsec::SecureSocketProvider* ssp =
dynamic_cast<vbsec::SecureSocketProvider*>(o.in());

const vbsec::CertificateFactory& cf = ssp-
getCertificateFactory ();

The first argument in the new Certificate wallet is an alias to the entry in the
KeyStore, if any. If you are not using keystores, set this argument to null.

VisiBroker Secur i ty Guide 29

Creating LoginModules
A LoginModule defines an authentication mechanism and provides the code
to interact with a specific type of authentication mechanism. Each
LoginModule is customized using authentication options that point it to a
specific data source and provide other customizable behavior as defined by
the author of the LoginModule.

Each LoginModule authenticates to a particular authentication realm (any
authenticating body or authentication provider—for example, an NT
domain). An authentication realm is represented by a configuration entry in
a JAAS configuration file. A JAAS configuration entry contains one or more
LoginModule entries with associated options to configure the realm. For
more information, see “Associating a LoginModule with a realm” on page 32.

30 VisiBroker Secur i ty Guide

LoginContext class and LoginModule interface
VisiSecure uses the class LoginContext as the user API for the
authentication framework. The LoginContext class uses the JAAS
configuration file to determine which authentication service to plug-in under
the current application.

Java
public final class LoginContext {
 public LoginContext(String name)
 public void login()
 public void logout()
 public Subject getSubject()
}

C++
class LoginContext{
 public:
 LoginContext(const std::string& name, Subject
*subject=0, CallbackHandler *handler=0);
 void login();
 void logout();
 Subject &getSubject() const;
}

The authentication service itself uses the LoginModule interface to perform
the relevant authentication.

Java
public interface LoginModule {
 boolean login();
 boolean commit();
 boolean abort();
 boolean logout();
}

C++
class LoginModule {
 public:
 virtual bool login()=0;
 virtual bool logout()=0;
 virtual bool commit()=0;
 virtual bool abort()=0;
}

It is possible to stack LoginModules and authenticate a subject to several
services at one time.

VisiBroker Secur i ty Guide 31

Authentication and stacked LoginModules
Authentication proceeds in two phases in order to assure that all stacked
LoginModules succeed (or fail, otherwise).

1 The first phase is the “login phase,” during which the LoginContext
invokes login() on all configured LoginModules and instructs each to
attempt authentication.

2 If all necessary LoginModules successfully pass, the second, “commit
phase” begins, and LoginContext calls commit() on each LoginModule
to formally end the authentication process. During this phase the
LoginModules also populate the subject with whatever credentials and/or
authenticated principals are necessary for continued work.

Note

If either phase fails, the LoginContext calls abort() on each
LoginModule and ends all authentication attempts.

32 VisiBroker Secur i ty Guide

Associating a LoginModule with a realm
VisiSecure uses the JAAS configuration file to associate a LoginModule with
a realm and store that information. The JAAS configuration file contains an
entry for each authentication realm. The following is an example of a JAAS
configuration entry:

MyLDAPRealm {
 com.borland.security.provider.authn.LDAPModule required
URL=ldap://directory.borland.com:389
}

The following figure shows the elements of a realm entry in the JAAS
configuration file.

Figure 2 Realm entry in a JAAS config

A server can support multiple realms. This allows clients to authenticate to
any one of those realms. In order for a server to support multiple realms, all
you need to do is configure the server with that many configuration entries.
The name of the configuration entries is not predefined and can be user
defined, for example PayrollDatabase.

Note

There must be at least one LoginModule with the authentication
requirements flag=required.

VisiBroker Secur i ty Guide 33

Syntax of a realm entry
The following code sample shows the generic syntax for a realm entry:

//server-side realms for clients to authenticate against
realm-name {
 loginModule-class-name required|sufficient|requisite|
optional
 [loginModule-properties];
 ...
};

Note

The semicolon (“;”) character serves as the end-of-line for each
LoginModule entry.

The following four elements are found in the realm entry:

• Realm Name—the logical name of the authentication realm represented
by the corresponding LoginModule configuration

• LoginModule Name—the fully-qualified class name of the LoginModule
to be used

• Authentication Requirements Flag—there are four values for this
flag—required, requisite, sufficient, and optional. You must
provide a flag value for each LoginModule in the realm entry. Overall
authentication succeeds only if all required and requisite
LoginModules succeed. If a sufficient LoginModule is configured and
succeeds, then only the required and requisite LoginModules listed
prior to that sufficient LoginModule need to have succeeded for the
overall authentication to succeed. If no required or requisite
LoginModules are configured for an application, then at least one
sufficient or optional LoginModule must succeed. The four flag
values are defined as follows:

• required—the LoginModule is required to succeed. If it succeeds or
fails, authentication still continues to proceed down the LoginModule
list for each realm.

• requisite—the LoginModule is required to succeed. If it succeeds,
authentication continues down the LoginModule list in the realm entry.
If it fails, control immediately returns to the application—that is,
authentication does not proceed down the LoginModule list.

• sufficient—the LoginModule is not required to succeed. If it does
succeed, control immediately returns to the application—again,
authentication does not proceed down the LoginModule list. If it fails,
authentication continues down the list.

• optional—the LoginModule is not required to succeed. If it succeeds or
fails, authentication still continues to proceed down the LoginModule
list.

• LoginModule-specific properties—each LoginModule may have
properties that need to be provided by the server administrator. The
necessary properties for each LoginModule provided by Micro Focus are
described below.

LoginModules
Micro Focus provides the following common LoginModules for server and
client authentication. These LoginModules are used for both client

34 VisiBroker Secur i ty Guide

authentication and authentication of the VisiSecure server itself to its
operating environment.

Not all LoginModules have the same properties, and your own LoginModules
may have different properties as well. Each LoginModule included with
VisiBroker is described below, its syntax and properties explained, and a
realm entry code sample is provided.

• Basic LoginModule—this LoginModule uses a proprietary schema to store
and retrieve user information. It uses standard JDBC to store its data in
any relational database. This module also supports the proprietary
schema used by the Tomcat JDBC realm.

• JDBC LoginModule—this LoginModule uses a standard JDBC database
interface to authenticate the user against native database user tables.

• LDAP LoginModule—similar to the JDBC LoginModule, but uses LDAP as its
authentication back-end.

• Host LoginModule—for authentication to the operating system hosting the
server. This is the only LoginModule supported for C++.

Using the callback handler to communicate with users

Sometimes the LoginModule needs to communicate with the user to obtain
authentication information, for example asking the user to provide
username and password. The LoginModule uses the callback handler for this
purpose. Out of the box, VisiSecure provides command-line based callback
handlers.

GUI-based callback handler

A GUI-based callback handler is provided in VisiSecure Java Edition for all
login modules. To use the GUI login you must specify the correct callback
handler, by setting the following property:

vbroker.security.authentication.callbackHandler=com.borlan
d.security.provider.authn.DialogCallbackHandler

Using a Vault
When running clients, the security subsystem has the opportunity to
interact with users to acquire credentials for authentication. This is done
using a callback handler, as mentioned in “Using the callback handler to
communicate with users”. However, when running servers (your VisiBroker
server or a Partition), it is not desirable or even possible to have user
interaction at start up time. A typical example of this if the server is started
as a service at the startup time of a host or from a automated script of
some sort.

The vault was designed to provide the identity information to the security
subsystem in such environments. Note that the vault itself is not directly
tied to the security subsystem. It is merely a tool to replace the user
interaction.

In other words, a vault does not contain authenticated credentials. The
security service will perform all appropriate authentication, but will receive
information from the vault rather than by interacting with a callback
handler. Due to the fact that no user interaction is required, the data in the
vault, while sufficiently secure, does contain sensitive information (the
usernames and passwords). Hence the vault file that is used for
authentication of such servers must be protected using host security
mechanisms (file permissions for example) or other equivalent approaches.

VisiBroker Secur i ty Guide 35

Creating a Vault
To create a vault, you can use the vaultgen command-line tool from your
installation's bin directory. Its usage is as follows:

vaultgen [<driver-options>] -config <config.jaas-file> -
vault <vault-name> [<options>] <command>

<driver-options> are optional, and can be any of the following:

• -J<option>: passes a -J Java option directly to the JVM

• -VBJVersion: prints VBJ version information

• -VBJDebug: prints VBJ debugging information

• -VBJClasspath: specify a classpath that will precede the CLASSPATH
environment variable

• -VBJProp <name=value>: passes the name/value pair to the VM

• -VBJjavavm: specify the path to the Java VM

• -VBJaddJar <jar-file>: appends the JAR file to the CLASSPATH before
executing the VM

-config <config.jaas-file> points to the location of the config.jaas
file containing the realms the identities in the vault will authenticate to. -
vault <vault-name> is the path to the vault to be generated. You can also
specify an existing vault in order to add additional identities to it.

<options> are other optional arguments, and can be any of the following:

• -?, -h, -help, -usage: prints usage information

• -driverusage: prints usage information, including driver options

• -interactive: enables an interactive shell

<command> is the command you want vaultgen to execute. You can select
any one of the following:

• login <realm|formatted-target>: establishes an identity in the vault
for a given realm or formatted target. The identity is first established
when the vault is used for login during system startup.

• logout <realm|formatted-target>: removes an identity from the
vault for a given realm or formatted target.

• runas <alias> <realm>: configures a run-as alias with the identity
provided for a given realm.

• removealias <alias>: removes a configured run-as alias from the
vault.

• realms: lists the available realms for this configuration.

• mechanisms: lists the available mechanisms (for formatted targets) for
this configuration.

• aliases: lists configured aliases in the vault.

• identities: lists configured identities in the vault.

Example—using VaultGen
This example uses VaultGen. Assume we want to create a vault called
MyVault for use with a domain called base. First, we need to know which
security profile the domain is using so that we can reference its
config.jaas file. We check the value of the domain's

36 VisiBroker Secur i ty Guide

vbroker.security.profile property in the domain's orb.properties
file:

#
Security for the user domain
#
Disable user domain security by default
vbroker.security.profile=default
vbroker.security.vault=${properties.file.path}/../
security/scu_vault

The name of the security profile is default. This tells us that the path to
the profile's config.jaas file is:

c:/BDP/var/security/profiles/default/config.jaas

Now we can check which realms are contained in the profile for which we
want to create identities. We navigate to the installation's bin directory,
and use the realms command:

c:\BDP\bin> vaultgen -config ../var/security/profiles/
default/config.jaas -vault myVault realms

vaultgen tells us the following realms are available:

The following realms are available:
- UserRealm
- MikeRealm
- BenRealm

Next we execute vaultgen using the login command:

c:\BDP\bin> vaultgen -config ../var/security/profiles/
default/config.jaas -vault myVault login UserRealm

vaultgen prompts us for the username and password for the UserRealm,
which we enter. We then repeat the process for each additional realm. At
the end of each command, vaultgen informs us that it has logged-in the
new identity and saved changes to MyRealm.

Logged into realm BenRealm
Generating Vault to MyVault

The vault is created in the directory you specify in the command, in this
case the bin directory. A good place to put the actual vault files are in the
domain's security directory, located in:

<install-dir>/var/domains/<domain-name>/adm/security/

Example—Using API
This example illustrates the use of the Security Context Interface's APIs
generateVault(std::osstream& os, CSI::UTF8String& pass),
login(std::istream& is) which can be used to explicitly login to the
server. The example given here has all the basic setting needed to secure
an application.

The API generateVault will take a file output stream and store the userid/
password and realm in a file. It generates a byte stream from the login
information by encrypting the login (Userid/password/realm) information.
After encrypting, it closes the files and logs out.

During authorization, the system uses the file created above to login rather
than asking the user to provide the information using FileInputStream API
and gets the security Context from the ORB and logs in using the file.

The example also illustrates the use of VisiBroker properties and JAAS
configuration file to secure your application. The example client and server

VisiBroker Secur i ty Guide 37

use username/password authentication of the client on the server and also
for the server's self-authentication.

The different properties files (server.properties, client.properties) and the
server.config files for the basic vault example are in the <install_dir>\
examples\vbroker\security\basic folder. The Bank Agent example
has a simple AccountManager interface to open an Account and to query the
balance in that account.

To run the example, first generate the vault file as given below.

Generate the vault file

1 At the command prompt, enter the following in the server window:

prompt% Server -DORBpropStorage=cpp_server.properties -
genVault <vaultfileName>

It will ask for the userid/password. Enter the Host Login Name and
password for the current system. This information gets stored in the
vaultfile.

To run the server without providing authentication information:

prompt% Server -DORBpropStorage=cpp_server.properties -
useVault <vaultfileName>

(start Server -DORBpropStorage=cpp_server.properties -useVault
<vaultfileName> on Windows)

2 To run the client, simply use the command:

prompt% Client -DORBpropStorage=cpp_client.properties
-Dvbroker.orb.dynamicLibs=<vbsec library>

where <vbsec library> is:

(on Windows): vbsec.dll located in %VBROKERDIR%/bin directory

(on UNIX): libvbsec shared library located in $VBROKERDIR/lib

3 The vaultfile uses this file information to log in the user without user
interaction. It will ask for the userid/password. Enter the Host Login
Name and password for the current system.

Certificate Revocation List (CRL) and revoked
certificate serial numbers

C++ Only

When signed public key certificates are created by a Certificate Authority
(CA), each certificate has an expiration date that indicates when it is no
longer valid. However, in order to address the case where a certificate
becomes invalid for some reason before the date of expiration, the
Certificate Revocation List (CRL) feature is provided for VisiSecure for C++.
For more information about Certificate Authorities (CA)s, see “Certificates and
Certificate Authority”.

Using the VisiSecure for C++ Certificate Revocation List (CRL) feature, you
can set up CRLs and check peer certificates against this list during SSL
handshake communication.

The CRL files can be in either DER binary format or base 64 text format
(PEM format). When an application adds a trusted certificate into a
VBSSLContext instance, the corresponding CRL of that trusted certificate
can be passed as second parameter of the call to the

38 VisiBroker Secur i ty Guide

addTrustedCertificate() method. For this, the physical CRL bytes (if in DER)
or string characters (if in B64) need to be wrapped in an instance of
CORBAsec::ASN1Object, which is actually a CORBA octet sequence. See
the VBSSLContext API in header file vbssp.h.

class _VBSECEXPORT VBSSLContext
{
...
virtual void
addTrustedCertificate(const CORBAsec::X509Cert& trusted,
const CORBAsec::ASN1Object* crl = NULL) = 0;
...
};

Multiple trusted certificates can be installed along with their respective CRLs
by means of multiple calls on a VBSSLContext instance. Concrete examples
of CRL installation is in the bank_ssl example.

The method addTrustedCertificate() involves cryptographic verification to
make sure that the CRL is signed using the private key of the public key in
the certificate.

Applications can call addTrustedCertificate() with only the first parameter,
in which case it is assumed that the trusted certificate has no corresponding
CRL.

Notes

• There can be more than one CRL file within the CRL Repository directory
structure.

• Once the CRLs are loaded, VisiSecure examines all certificates sent by a
peer during SSL handshake. If any of the peer certificates appears in the
CRLs, an exception will be thrown and the connection will be refused.

Support for MS-CAPI
Windows

On Windows systems, VisiBroker supports the Microsoft Cryptography API
(CAPI).

Both VisiBroker C++ and VisiBroker Java
When CAPI is fully enabled, it takes over the mechanism for some
cryptographic operations, most notably generating RSA, DSA and ECDSA
signatures. That means that private keys must be stored in Windows stores
if CAPI is being used this way by a VisiBroker process. This is currently only
supported on the client side.

VisiBroker C++ Only
You can enable CAPI support in VisiBroker C++ by setting the
vbroker.security.useCAPI property to true.

A limitation when using CAPI is that the OpenSSL CAPI engine (and
therefore the VisiBroker C++ CAPI engine) does not support generating a
client certificate chain. The client certificate must have been signed by a CA
root or intermediary known to the server. Normally the client could send a
chain with its own certificate and any intermediaries needed to establish a

VisiBroker Secur i ty Guide 39

path back to a CA trusted by the server. VisiBroker does not support that
with CAPI.

A new property has been introduced to assist in selecting the right client
certificate if the user has multiple identity certificates that are eligible. See
vbroker.security. identityCertificates. nameMustContain for details.

By setting the vbroker.security.client. socket.allowedDigests parameter to short
you can prevent the use of the SHA-2 family of digests (SHA-256, etc). You
may need to set this on the client side when the client is using a DSS
certificate, unless you are using .1 or earlier, or you are using an add-on
Credential Service Provider (CSP) that supports both DSA and SHA-512.

This option was introduced:

1 To prevent conversation failure when either side was using an old key too
small to accommodate the newer digests.

2 If CAPI is being used, only the Microsoft CSPs are installed, the client is
using a DSS certificate, and .2 or later is supported by both sides. In that
case, the client and server will negotiate SHA-512 as the hash function
for the client's proof-of-identity; but no Microsoft CSP supports both DSA
and SHA-512, so the signing operation fails. Enabling this option on the
client side now also tells the provider to force the use of SHA-1 for the
client's proof of identity.

VisiBroker Java Only
CAPI support is automatically enabled in VisiBroker for Java.

The property vbroker.security.mscapiAliasFix was introduced to deal with a
Java bug that has now been fixed in later Java version updates.

40 VisiBroker Secur i ty Guide

VisiBroker Secur i ty Guide 41

Authorization
Authorization is the process of verifying that the user has the authority to
perform the requested operations on the server. For example, when a client
accesses an enterprise bean method the server must verify that the user of
the client has the authority to perform such an access. Authorization occurs
after authentication (confirming the user's identity).

Access Control
Authorization occurs after the user proves who he or she is
(Authentication). Authorization is the process of making access control
decisions on requested resources for an authenticated entity based on
certain security attributes or privileges. Following Java Security
Architecture, VisiBroker adopts the notion of permission in authorization. In
VisiSecure, resource authorization decisions are based on permissions.
Micro Focus uses a proprietary authorization framework based on users and
roles to accomplish authorization. For example, when a client accesses a
CORBA or Web request enterprise bean method, the application server must
verify that the user has the necessary permissions to perform such an
access. This process is called access control or authorization.

Access Control List
Authorization is based on the user's identity and an access control list
(ACL), which is a list of roles. Typically, an access control list specifies a set
of roles that can use a particular resource. It also designates the set of
people whose attributes match those of particular roles, and thus are
allowed to perform those roles.

Roles-based access control
VisiSecure uses a role database (a file whose default name is roles.db) to
associate user identities with roles. If a user is associated with at least one
allowed role, the user may access the method. For more information, see
“Configuring authorization using the rolemap file”.

Pluggable Authorization
VisiSecure provides the ability to plug-in an authorization service that can
map users to roles. The implementer of the Authorization Service provides
the collection of permissions that are granted access to certain resources.

The class RolePermission is defined to represent “role” as permission. The
Authorization Services Provider in turn provides the implementation on the
homogeneous collection of RolePermissions contained for an association
between given privileges and a particular resource.

For more information on the RolePermission class, see
“vbsec::RolePermission”.

The Authorization Service is tightly connected with the concept of the
Authorization domain—each domain has exactly one Authorization Services
Provider implementation. The Authorization domain is the bridge between
the VisiSecure system and the authorization service implementation. During
the initialization of the ORB itself, the authorization domains defined by the
property vbroker.security.authDomains are constructed, while the

42 VisiBroker Secur i ty Guide

Conf igur ing author izat ion using the rolemap f i le

Authorization Services Provider implementation is instantiated during the
construction of the Authorization domain itself.

The Authorization Domain defines the set of rules that determine whether a
user belongs to a logical “role” or not.

The implementer of the Authorization Service provides the collection of
permission objects that are granted access to certain resources. Whenever
an access decision is going to be made, the AuthorizationServicesProvider is
consulted. The Authorization Service is closely associated with the
Authorization domain concept. An Authorization Service is installed for each
Authorization domain implementation, and functions only for that particular
Authorization domain.

The AuthorizationServicesProvider is initialized during the construction of its
corresponding Authorization domain. Use the following property to set the
implementing class for the AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

During run time, this property is loaded by way of Java reflection.

Another important functionality of the Authorization Service is to return the
run-as alias for a particular role given. The security service is configured
with a set of identities, identified by aliases. When resources request to
“run-as” a given role the AuthorizationServices is again consulted to return
the alias that must be used to “run-as” in the context of the rules specified
for this authorization domain.

Configuring authorization using the rolemap file
You can configure authorization by creating your own Authorization
Rolemap by hand.

What is a rolemap
The authorization rolemap is captured in a rolemap file. Typically, you would
name this file after your authorization domain. The rolemap file, also called
Role DB, is a map of users to roles. The rolemap designates the set of
people whose attributes match the rules, and who are therefore associated
with the corresponding role.

VisiSecure provides a mechanism for specifying role names and a set of
attributes which define the role.

VisiBroker Secur i ty Guide 43

Conf iguring author izat ion using the ro lemap f i le

Syntax of Role DB
The Role DB file itself has the following form, and can contain multiple role
entries:

role-name {
 assertion1 [, assertion2, ...]
 ...
 [assertion-n]
 ...
}
role-name2 {
 assertion3 [, assertion4, ...]
 ...
 [assertion-n]
 ...
}

A role entry is made up of a role name and a list of rules within curly braces
(“{}”). A role must be made up of one or more rules. Each rule is a single
line containing a list of comma-separated assertions for proper access
identifications. Similarly, each rule must contain one or more assertions.

Each line in the Role Entry is a rule. Rules are read top-to-bottom, and
authorization proceeds until one or none succeeds. That is, each rule is read
as though separated by an “OR” operator. Assertions are separated on the
same line by a comma (“,”). Assertions are read left-to-right, and all
assertions must succeed in order for the rule to succeed. That is, each
assertions in a rule is read as though separated by an “AND” operator.

Each rule must contain all necessary security information for a given
Principal's security credentials. That is, each principal must have at least
those attributes required from the rule—or exactly all the listed attributes.
Otherwise authorization will not succeed.

For more information on specifying rules, see “Assertion syntax”.

For example, the contents of Role DB could be:

ServerAdministrator {
 CN=*, OU=Security, O=Borland, L=San Mateo, S=California,
C=US
 *(CN=admin)
 *(GROUP=administrators)
 }

 Customer {
 role=ServerAdministrator
 *(CN=borland)
 *(CN=pclare)
 *(CN=jeeves)
 *(GROUP=RegularUsers)
 }

This defines two roles, ServerAdministrator and Customer along with a
set of rules and attributes which define them.

Once the rolemap file is complete, it can be referenced using the property
vbroker.security.domain.<authorization-domain>.rolemap_path.

44 VisiBroker Secur i ty Guide

Conf igur ing author izat ion using the rolemap f i le

Modifying the authorization rolemap file
You can modify the authorization rolemap files by editing the rolemap file
using properties given in the example directory. You can specify rolenames
and attributes and thus associate users with roles. A role must be made up
of one or more rules. For more information on rules and role entries, refer
to “Assertion syntax”.

For configuring the database to store users, credentials and attributes, refer
to “Using the userdbadmin tool”.

Assertion syntax
There is a variety of ways to specify rules using logical operators with
attribute/value pairs that represent the access identifications necessary for
authorization. There is also a simplified syntax using the wildcard character
(“*”) to give your rules more flexibility. Both of these are discussed below.

Using logical operators with assertions

Two logical operators are available in specifying attribute/value pairs.

A value can be any string, but the wildcard character, “*” has special uses.
For example, the attribute/value pair GROUP=* matches for all GROUPs. The
following role has two associated rules:

manager {
 CN=Kitty, GROUP=*
 GROUP=SalesForce1, CN=*
}

The role manager has two rules associated with it. In the first rule, anyone
named Kitty is authorized for manager, regardless of Kitty's associated
group at the time. The second rule authorizes anyone in the group
SalesForce1, regardless of their common-name (CN).

Wildcard assertions

For complicated security hierarchies, it may be prudent to look for only one
or two attributes from the hierarchy in order to authorize a principal.
VisiSecure’s security hierarchy starts with GROUPs at the top, then
branching out into ORGANIZATIONs (O) and ORGANIZATIONAL UNITS
(OU), and finally settling on COMMON NAMEs (CN).

For example, you may want to define a security role called SalesSupervisor
that allows method permissions for managers of the sales force. (For this
example, “sales” is the ORGANIZATION and “managers” is the
ORGANIZATIONAL UNIT. You could do so with the following rule:

SalesSupervisor {
 GROUP=*, O=sales, OU=managers, CN=*
}

This rule does not specify values for GROUP or for COMMON NAME
(presumably because they are not necessary). But remember, each rule
must represent all possible values for a Principal's credentials. There are

Operator Description Example
attribute =
value

equals: attribute must equal value for
authorization rule to succeed.

CN=Russ
Simmons

attribute !=
value

not equal: attribute must not equal value for
authorization rule to succeed.

CN!=Rick
Farber

VisiBroker Secur i ty Guide 45

Authorizat ion domains

other means of representing this same information in a smaller space using
wildcard assertions.

You make a wildcard assertion by placing the wildcard character (“*”) in
front of the assertion(s) in one of two ways. You may place the wildcard
character in front of a single assertion, meaning that all possible security
attributes are accepted but they must contain the single assertion. Or, you
may place the wildcard character in front of a list of assertions separated by
commas within parentheses. This means all possible security attributes are
accepted but they must contain the assertions listed in the parentheses.

Making use of wildcard assertions, the role could also look like this:

SalesSupervisor {
 *O=sales, *OU=managers
}

Or, even more simply:

SalesSupervisor {
 *(O=sales, OU=managers)
}

All three code samples are different versions of the same rule.

Other assertions

Each role provides limited extensibility to others. You may, as a part of a
role entry, specify a role=existing-role-name assertion that can extend
an earlier role. You can also use customized code as your authorization
mechanism rather than Role DB syntax by using the Authorization Provider
Interface.

Recycling an existing role
You can refer to the rules from an existing role by using the rule-reference
assertion—role=role-name. For example, let's say we have a group of
marketers who are also sales supervisors that need to be authorized to the
same code as Sales Supervisors. Building upon the SalesSupervisor code
sample, we can create a new role entry as follows:

MarketSales {
 role=SalesSupervisor
 *(OU=marketing)
}

Now, everyone in role SalesSupervisor has access to the MarketSales role,
as does anyone in the “marketing” OU.

Authorization domains
The authorization domain defines the set of rules that determine whether a
user belongs to a logical “role” or not.

The authorization domain is the bridge between VisiSecure system and the
authorization service implementation.

During the initialization of the ORB itself, the authorization domain is
defined by the property vbroker.security.authDomains. Each Role DB
file is associated with an authorization domain. An authorization domain is a
security context that is used to separate role DBs and hence their
authorization permissions. For more information on the authorization
domain in the context of the basic security model, see “Basic security model”
on page 7.

46 VisiBroker Secur i ty Guide

Authorizat ion domains

Specifying names to authorization domain
Each Role DB file is associated with an authorization domain. An
authorization domain is a security context that is used to separate role DBs
and hence their authorization permissions. For more information on the
authorization domain in the context of the basic security model, see “Basic
security model”.

You may use as many authorization domains as you wish, provided they are
all registered with the VisiBroker ORB. You must do the following for each of
your authorization domains:

• give it a name,

• set up default access,

• set up the Role DB.

To accomplish these items, the properties described in the following
sections must be set. For more information about these properties, see
“Security Properties for Java” or “Security Properties for C++”.

Naming authorization domains

You can give each authorization domain a name and list them using the
property:

vbroker.security.authDomains=<domain1> [, <domain2>,
<domain3>, ...]

Setting up default access

You can set up the default access and decide whether or not to grant access
to the domain in the absence of security roles for <domain-name>.

The property used to set up the default access is

vbroker.security.domain.<domain-
name>.defaultAccessRole=grant|deny

Setting up RoleDB

The path of the Role DB file is associated with the authorization domain
<domain-name>. Although this can be a relative path, Micro Focus
recommends you make this path fully-qualified.

The property you use to set up the RoleDB is:

vbroker.security.domain.<domain-name>.rolemap_path=<path>

Configuring authorization domains to run-as
alias
Authorization domains are then configured to run-as a given alias for a role
in that domain.

A Run-as Alias is a string identifying an authentication identity. It is defined
in the vault and scoped within the VisiBroker ORB. This alias then
represents a particular user. The identity is mapped to the alias using either
the Context APIs or by defining it in the vault. The vault can contain a list of
run-as aliases and the corresponding authenticating credentials for the
identity to run-as. In both cases, the authenticating credentials (from the
vault or wallet) are passed to the LoginModules, which authenticate those

VisiBroker Secur i ty Guide 47

Authorizat ion domains

credentials and set them as fully authenticated identities corresponding to
those credentials in the run-as map.

Note

Run-as aliases are not available under C++.

When a request is made to run-as a given role, then the authorization
domain for that context is consulted to get the corresponding run-as alias.
The run-as map is then consulted to get the identity corresponding to that
alias, and this identity is used.

Run-as identities can also be configured to be certificate identities and not
just username/password identities.

Run-as alias is useful in particular when there are clients, middle-tier
servers and end-tier servers.

To set up run-as alias on CORBA application level:

1 Set the property in the server.properties file. This property specifies
the name of the run-as role. The value can either:

a be use-caller-identity to have the caller principal itself as the principal
identity for the run-as role, or

b specify an alias for a principal to use as the run-as role name:

vbroker.security.domain.<domain-name>.runas.<role-
name>=<alias>|use-caller-identity

2 Specify a list of trusted roles as specified in the authorization domain.
This is uniquely identified for each trust assertion rule as a list of digits.

3 Trust all the assertions made by peers by setting the property below to
true:

vbroker.security.assertions.trust.all

48 VisiBroker Secur i ty Guide

Setting up authorization for CORBA objects
Authorization in the CORBA environment allows only identities in specific
roles for a given object to access that object. An object's access policy is
specified by means of a Quality of Protection policy for the Portable Object
Adapter (POA) hosting the object in question. Note that access policies can
only be applied at the POA level.

Rolemaps are also used to implement authorization for CORBA objects.
Similarly, the J2EE roles and concepts therein are also used in the CORBA
environment.

In order to set up authorization for an object, you need to perform the
following:

1 Create a ServerQopPolicy.

2 Initialize the ServerQopPolicy with a ServerQopConfig object.

3 Implement an AccessPolicyManager interface, which takes the
following form:

Java
interface AccessPolicyManager {
 public java.lang.String domain();
 public com.borland.security.csiv2.ObjectAccessPolicy
getAccessPolicy(
 org.omg.PortableServer.Servant servant, byte[]
object_id byte [] adapter_id);
}

C++
class AccessPolicyManager {
 public:
 virtual char* domain() =0;
 ObjectAccessPolicy_ptr
getAccessPolicy(PortableServer_ServantBase* _servant,
 const ::PortableServer::ObjectId& id,
 const::CORBA::OctetSequence& _adapter_id) =0;
}

Setting up the name
This interface returns the authorization domain from the domain() method
and uses it to set the access manager in the ServerQopConfig object. The
domain specifies the name of the authorization domain associated with the
proper rolemap. You set the location and name of the rolemap by setting
the property:

 vbroker.security.domain.<authorization-domain-
name>.<rolemap-path>

where <authorization-domain-name> is a tautology, and <rolemap-
path> is a relative path to the rolemap file.

Setting up default access
The getAccessPolicy() method takes an instance of the servant, the
object identity, and the adapter identity and returns an implementation of
the ObjectAccessPolicy interface.

VisiBroker Secur i ty Guide 49

1 Implement the ObjectAccessPolicy interface that returns the required
roles and a run-as role for accessing a method of the object. There is no
difference between J2EE and CORBA run-as roles in Micro Focus's
implementation. The ObjectAccessPolicy interface takes the following
form:

Java
interface ObjectAccessPolicy {
 public java.lang.String[]
getRequiredRoles(java.lang.String method);
 public java.lang,String
getRunAsRole(java.lang.String method);
}

C++
class ObjectAccessPolicy {
 public:
 getRequiredRoles (const char* _method) =0;
}

The getRequiredRoles() method takes a method name as its argument
and returns a sequence of roles. The getRunAsRole() method returns a
run-as role, if any, for accessing the method.

Identities can be supplied using Callback Handlers. For more details, see
“Authentication”.

Configuring authorization requirements
You must configure authorization requirements for the components in the
server, as the client needs to have these authorizations in order to access
these components in the server.

In the corbaauthz example in the <install_dir>\examples\vbroker\
security folder, the authorization requirement for the BankManager object
is that the clients should be a member of the "Manager" role and for the
Account it is "Customer" or "Teller" role.

The rolemap file contains the authorization data from the Role DB file.
Members of the roles Manager, Customer and Teller are described in the
bank.rolemap file, a snippet of which is shown below:

Example for bank.rolemap file for Java

Manager {
*CN=admin
*group=user
}
Customer {
*CN=admin
}
Teller {
*CN=admin
*group=user
}

Example for bank.rolemap file for C++

Manager {
*group=cceng

50 VisiBroker Secur i ty Guide

}
Customer {
*group=cceng
}
Teller {
*group=cceng
}

Any authenticated user with username=Administrator is a member of the
role ‘Manager’.

 Any authenticated user with group=cceng is a member of both role
‘Customer’ and role ‘Teller’.

You can use this example and change the username and group to use a
valid, existing username and group in your system as required.

The example illustrates the use of VisiBroker properties and JAAS
configuration file to secure your application. The example client and server
uses username/password authentication of the client on the server and also
for the server's self authentication.

Look at the different properties files (server.properties, client.properties)
and config files (server.config and client.config) in the <install_dir>\
examples\vbroker\security/corbaauthz folder.

The server or the client configuration file is the JAAS configuration file which
defines the login modules.

To enable security, you must set up the following properties in the server or
client properties file:

Property Description
vbroker.security.disable= false The default value is false. If set to true, disables all security

services.
vbroker.security.login= true If this property is set to true, during initialization, this property

tries to log on to all the realms listed by the property
vbroker.security.login.realms.

vbroker.security.authentication.
config= cpp_server.config

This specifies the path to the configuration file used for
authentication. The default value is null.

vbroker.security.authDomains=bank Specifies a comma-separated list of available authorization
domains. For example:

vbroker.security.authDomains=domain1,domain2
vbroker.security.domain.bank.
rolemap_path=./cpp_bank.rolemap

Specifies the location of the RoleDB file that describes the roles
used for authorization. This is scoped within the domain
<domain_name> specified in
vbroker.security.authDomains.

vbroker.security.domain.bank.
defaultAccessRule=grant

Specifies whether to grant or deny access to the domain by
default in the absence of security roles for the provided domain.
It handles requests for methods not in the rolemap file.
Acceptable values are grant or deny.

vbroker.security.
peerAuthenticationMode=none

Sets the peer authentication mode.

When set to none, Authentication is not required. During
handshake, no certificate request will be sent to the peer.
Regardless of whether the peer has certificates, a connection will
be accepted. There will be no transport identity for the peer.

For other authentication mode values, see the property
“vbroker.security. peerAuthenticationMode” (for Java),
“vbroker.security. peerAuthenticationMode” (for C++).

VisiBroker Secur i ty Guide 51

The properties allow you to customize the behavior of VisiSecure.
Depending on whether your application is Java, C++, or both, you may
have to set different properties with different types of values. See “Security
Properties for C++” and “Security Properties for Java” for all the properties you
can set in this file.

Java Example: Authorization Using a Vault
To set up authorization for CORBA objects by using a vault, modify the
following files in the corbaauthz example in the <install_dir>\
examples\vbroker\security\example folder:

• java_server.properties

• AccountImpl.java

• Server.java

• Bank.idl

You may need to add the following files:

• ConverterImpl.java

• ConverterServer.java (many parts are just cut-and-paste Server.java)

• A newly-created vault named 'fault' as shown in the example below

In the java server properties file, add the following properties:

vbroker.security.domain.bank.runas.jeeves_runasrole=jeeves
_alias
vbroker.security.assertions.trust.all=true

In the Bank.idl file, make the following changes:

module Bank {
interface Converter {
float toSGD(in float USD);
};
interface Account {
float balance();
};
interface AccountManager {
Account open(in string name);
};
};

vbroker.security.login.realms=
myrealm

This gives a list of comma-separated realms to login to. This is
used when login takes place, either through property
vbroker.security.login (set to true) or API login.

vbroker.security.authentication.c
allbackHandler=com.borland.securi
ty.provider.authn.HostCallbackHan
dle

Specifies the callback handler for login modules used for
interacting with the user for credentials. You can specify one of
the following or your own custom callback handler. For more
information, see “VisiSecure for C++ APIs”.

com.borland.security.provider.authn.CmdLineCallbackHandler

com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while
HostCallbackHandler has password echo off.

Property Description

52 VisiBroker Secur i ty Guide

In the AccountImpl.java file, modify as shown in bold below.

// AccountImpl.java
import com.borland.security.csiv2.ObjectAccessPolicy;
import org.omg.CORBA.BAD_OPERATION;
import org.omg.CORBA.ORB;

public class AccountImpl extends Bank.AccountPOA
implements ObjectAccessPolicy {

 public String[] getRequiredRoles(String op) {
if (op.equals("balance")) {
return new String[] {"Customer", "Teller"};
}
throw new BAD_OPERATION("No operation named " + op);
}

 public String getRunAsRole(String op) {
// return "jeeves_runasrole";
return null;
}

 public AccountImpl(float balance) {
_balance = balance;
}
public float balance() {
return _converter.toSGD(_balance);
}
private float _balance;

 public static Bank.Converter _converter;
}

In the server.java file, to write the AccountManager’s reference to a file
for the client to access, add the following commands:

FileWriter output = new FileWriter("bank.ior");
output.write(orb.object_to_string(object));
output.close();
System.out.println(object + " is ready.");
// Wait for incoming requests
orb.run();
}

// AccountManagerImpl.java
import org.omg.PortableServer.*;
import com.borland.security.csiv2.ObjectAccessPolicy;
import org.omg.CORBA.BAD_OPERATION;
import org.omg.CORBA.ORB;

import java.util.*;

public class ConverterImpl extends Bank.ConverterPOA
implements ObjectAccessPolicy {

 public String[] getRequiredRoles(String op) {
if (op.equals("toSGD")) {
return new String[] {"Manager"};
}
throw new BAD_OPERATION("No operation named " + op);
}

VisiBroker Secur i ty Guide 53

 public String getRunAsRole(String op) {
return null;
}

 public float toSGD(float USD) {
System.out.println("*** Converter.toSGD is called");
javax.security.auth.Subject caller =
_current.getCallerSubject();
System.out.println("THE CALLER = " + caller.toString());
return _rate * USD;
}

 // Use const for now
private static final float _rate = 1.65676f;
com.borland.security.Current _current;

 ConverterImpl(com.borland.security.Current current) {
_current = current;
}

}

Add a new file ConverterServer.java. This file is the same server.java
file that is in the corba authz example. Add the following that is given in
bold:

// Server.java
import org.omg.PortableServer.*;
import java.io.*;
import org.omg.CORBA.Any;
import org.omg.CORBA.Policy;
import org.omg.CORBA.PolicyManager;
import org.omg.CORBA.PolicyManagerHelper;
import org.omg.CORBA.SetOverrideType;
import com.borland.security.csiv2.SERVER_QOP_CONFIG_TYPE;
import
com.borland.security.csiv2.ServerQoPConfigDefaultFactory;
import com.borland.security.csiv2.ServerQoPConfig;
import com.borland.security.csiv2.ServerQoPConfigHelper;
import com.borland.security.csiv2.ServerQoPPolicy;
import com.borland.security.csiv2.AccessPolicyManager;
import com.borland.security.csiv2.ObjectAccessPolicy;

public class ConverterServer {

 public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA")
);

ServerQoPConfig config =
new ServerQoPConfigDefaultFactory().create(false,
ServerQoPPolicy.ALL,
true,
new AccessPolicyManager() {
public String domain () {

54 VisiBroker Secur i ty Guide

return "bank";
}

 public ObjectAccessPolicy getAccessPolicy (Servant
servant,
byte[] id,
byte[] adapter_id) {
return (ObjectAccessPolicy) servant;
}
});
Any any = orb.create_any();
ServerQoPConfigHelper.insert(any, config);
Policy qop =
orb.create_policy(SERVER_QOP_CONFIG_TYPE.value, any);

PolicyManager polmgr =
PolicyManagerHelper.narrow(orb.resolve_initial_references
("ORBPolicyManager"));
polmgr.set_policy_overrides(new Policy[]
{qop},SetOverrideType.SET_OVERRIDE);

 // Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSIST
ENT),
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("converter_poa",
rootPOA.the_POAManager(),
policies);
// Create the servant
com.borland.security.Current current =
(com.borland.security.Current)
orb.resolve_initial_references (
"VBSecurityCurrent"
);
ConverterImpl converterServant = new
ConverterImpl(current);

 // Decide on the ID for the servant
byte[] converterId = "CurrencyConverter".getBytes();

 // Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(converterId,
converterServant);

 // Activate the POA manager
rootPOA.the_POAManager().activate();

 // convert servant to an object reference
org.omg.CORBA.Object object =
myPOA.servant_to_reference(converterServant);

 // Write the AccountManager's reference to a file,
// so clients can access it.
FileWriter output = new FileWriter("converter.ior");
output.write(orb.object_to_string(object));
output.close();
System.out.println(object + " is ready.");
// Wait for incoming requests

VisiBroker Secur i ty Guide 55

orb.run();
}
catch (Exception e) {
e.printStackTrace();
}
}

}

In this example, we are creating a vault called fault:

1 At the command prompt, enter the following command

> vaultgen -vault fault -config java_server.config -
interactive

2 Enter "quit" to quit.

3 Login to the realm:

> login myrealm
JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software
Corporation. All rights reserved.
JDataStore: License for JDataStore development only -
not for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited
connections

4 Enter authentication information for realm myrealm

5 Enter username: admin

6 Enter password: admin

You are logged into realm myrealm

7 Enter

> runas jeeves_alias myrealm

8 Enter authentication information for realm myrealm

9 Enter username: jeeves

10 Enter password: jeeves

Added runas alias jeeves_alias

11 Enter
> quit

You are now generating a Vault to “fault”.

To launch run-as alias:
Open three different command-line consoles (DOS prompts on Windows
NT).

Start the osagent.

1 In console1, launch the client as follows:

vbj -DORBpropStorage=java_client.properties Client

2 When prompted, enter borland/borland.

3 In console2, launch the server as follows

vbj -DORBpropStorage=java_server.properties Server

56 VisiBroker Secur i ty Guide

4 In console 3, launch the currency converter server as follows:

vbj -DORBpropStorage=java_server.properties
ConverterServer

5 Console 3 displays:

*** Converter.toSGD is called
THE CALLER = Subject:
Principal: jeeves@myrealm
Public Credential: Privileges for jeeves@myrealm
Private Credential: Destroyed authentication context for
null
Private Credential:
com.borland.security.provider.ATSCodec$EncoderCache@e939
99

6 Open and edit the AccountImpl.java file and change the following:

public String getRunAsRole(String op) {
return "jeeves_runasrole";

 }

to

public String getRunAsRole(String op) {
return null;
}

7 In console1, launch the client as follows

vbj -DORBpropStorage=java_client.properties Client

8 When prompted, login as borland/borland.

See console3 again:

*** Converter.toSGD is called
THE CALLER = Subject:
Principal: borland@myrealm
Public Credential: Privileges for borland@myrealm
Private Credential: Destroyed authentication context for
null
Private Credential:
com.borland.security.provider.ATSCodec$EncoderCache@e939
9

9 This time, the original caller borland@myrealm is propagated properly all
the way to the ConverterServer. But previously, this identity was
translated into jeeves@myrealm.

There are three things that together specify jeeves@myrealm:

1 AccountImpl.java getRunAsRole() returns "jeeves_runasrole"

2 java_server.properties translates "jeeves_runasrole" into
"jeeves_alias" using:

vbroker.security.domain.bank.runas.jeeves_runasrole=jeev
es_alias

3 The vault contains runas entry with alias "jeeves_alias".

VisiBroker Secur i ty Guide 57

Run-as mapping

Note

Run-as mapping is not available under C++.

Setting the vbroker.security.domain.<domain-name>.runas.<role-
name> property effectively maps an alias to a bean's run-as role. Upon
successful authorization, but before method invocation, the container
checks the Run-as role specified in the EJB's deployment descriptor for the
called method. If a run-as role exists, the container checks to see if there is
an alias as well. If there is, when the bean makes an outgoing invocation it
switches to the identity for that alias.

If, however, no alias is specified (that is, the run-as role name is set to use-
caller-identity), the caller principal name is used.

Using a vault for a domain
If you are using a vault to store system identities, you associate it with a
domain so that it can be used. You do this by setting the domain's
vbroker.security.vault property in the domain's orb.properties file.

Set the property to the location of the domain's vault. For example:

vbroker.security.vault=c:/BDP/var/domains/base/adm/
security/MyVault

Similar to the vault are other properties which only belong to the
orb.properties file. These include secure listener ports, thread
monitoring, and so forth.

As a general rule, add only those properties that can be shared by multiple
applications. Otherwise, use the appropriate process-specific ORB
properties file to specify the property.

Context Propagation
In addition to ensuring the confidentiality and integrity of transmitted
messages, you need to communicate caller identity and authentication
information between clients and servers. This is called delegation. The caller
identity also needs to be maintained in the presence of multiple tiers in an
invocation path. This is because a single call to a mid-tier system may result
in further calls being invoked on other systems which must be executed
based on the privileges attributed to the original caller.

In a distributed environment, it is common for a mid-tier server to make
identity assertions and act on behalf of the caller. The end-tier server must
make decision on whether the assertion is trusted or not. When propagating
context, the client transfers the following information:

• Authentication token—client's identity and authentication credentials.

• Identity token—any identity assertion made by this client.

• Authorization elements—privilege information that a client may push
about the caller and/or itself.

58 VisiBroker Secur i ty Guide

Identity assertions
Identity assertion occurs when several servers with secure components are
involved in a client request. At times, it is necessary for a server to act on
behalf of its clients—when a client request is passed from one server to
another. This is typical in the case where a client calls a mid-tier server, and
the server further needs to call an end-tier server to perform a part of the
service requested by the client. At such times, the mid-tier server typically
needs to act on behalf of the client. In other words, it needs to let the end-
tier server know that while it (the mid-tier server) is communicating with
the end-tier server, access control decisions must be based on the original
caller's privileges and not its privileges.

For example, a client request goes to Server 1, and Server 1 performs the
authentication of the identity of the client. However, Server 1 passes the
client request to Server 2, which may in turn pass the request to Server 3,
and so forth. See the following diagram:

Each subsequent server (Server 2 and Server 3) can assume that the client
identity has been verified by Server 1 and thus the identity is trusted. The
server that ultimately fulfills the client request, such as Server 3, need only
perform the access control authorization.

By default the identity is authenticated only at the first tier server and is
asserted. It is the asserted identity that propagates to other tiers.

Impersonation
Impersonation is the form of identity assertion where there is no restriction
on what resources the mid-tier server can access on the end-tier server.
The mid-tier server can perform any task on behalf of the client.

VisiBroker Secur i ty Guide 59

Delegation
The inverse of impersonation, delegation is the form of identity assertion
where the client explicitly delegates certain privileges to the server. In this
case, the server is allowed to perform only certain actions as dictated by the
client. VisiSecure performs only simple delegation.

Asserting identity of the caller
The identity assertion example in the \\VisiBroker\examples\vbroker\
security\assertion example folder illustrates the use of identity
assertion APIs which can be used to explicitly assert an identity as caller.

This example uses APIs provided by security context to create a new
identity and assert the identity as caller before making the invocation. The
server first checks if the assertion is made by the trusted peer and then
checks if the asserted identity is authorized to make the invocation.

You can change the attribute to suit your own environment before running
the example. In this example, a server is setup with assertion trust and
authorization rules.

To make the assertion, use the following command:

for (int i=0; i<argc; ++i) {

 if (strcmp(argv[i], "-assert") == 0) {
CORBA::Object_var obj1 = orb-
>resolve_initial_references("VBSecurityContext");
Context* context = dynamic_cast<Context*>(obj1.in());

CORBA::Object_var obj2 = orb-
>resolve_initial_references("VBSecurityCurrent");
Current* current = dynamic_cast<Current*>(obj2.in());

CORBA::Object_var obj3 = orb-
>resolve_initial_references("VBWalletFactory");
WalletFactory* factory =
dynamic_cast<WalletFactory*>(obj3.in());

Wallet* wallet = factory->createIdentityWallet("asserted",
"password", "myrealm");
Subject* subject = context->importIdentity(*wallet);
current->asserting(subject);
cout << "New caller identity asserted." << endl;
break;
}
}

The assertion trust rule on the server requires the asserter, which is the
client in this example. This asserter must be a member of the Asserter role
for the authorization domain bank.

Members of the role Asserter are described in the bank.rolemap as
follows:

Asserter {
*group=cceng
}

This means that any authenticated user that belongs to group cceng must
be a member of role Asserter.

60 VisiBroker Secur i ty Guide

The authorization rule on the server requires the caller, which is the identity
asserted by the client in this example, to be of Manager role for
authorization domain bank.

Members of the role Manager are described in the bank.rolemap as
follows:

Manager {
*cn=asserted
}

The client code asserts an identity that user name is asserted, thus the
asserted identity is a member of role Manager and access will be granted.

1 Launch the server using the following command:

prompt> Server -DORBpropStorage=cpp_server.properties &

(start Server -DORBpropStorage=cpp_server.properties on
Windows)

2 Launch the client with assertion using the following command:

prompt> Client -DORBpropStorage=cpp_client.properties -
assert

3 Enter your userid/password, when prompted, for the current host
machine.

The program runs successfully.

To run the client without assertion:

1 Launch the client using the following command:

prompt> Client -DORBpropStorage=cpp_client.properties

2 Enter the userid/password, when prompted, for the current host
machine.

The exception CORBA::NO_PERMISSION is thrown because only the
asserted identity is authorized to make the invocation under the server
configuration.

In this example, the following properties are set on the server side:

Property Description
vbroker.security.disable=false To enable the security service, set it to false.
vbroker.security.login=false If set to true, at initialization time this property tries to log on to

all realms listed by property
vbroker.security.login.realms.

vbroker.security.authentication.c
onfig=cpp_server.config

This specifies the path to the configuration file used for
authentication.

vbroker.security.peerAuthenticati
onMode=none

This is to set the peer authentication mode.

none—Authentication is not required. During handshake, no
certificate request will be sent to the peer. Regardless of whether
the peer has certificates, a connection will be accepted. There will
be no transport identity for the peer.

vbroker.security.assertions.trust
.1=Asserter@bank

This property is used to specify a list of trusted roles (specify with
the format <role>@<authorization_domain>). <n> is
uniquely identified for each trust assertion rule as a list of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmi
n@default means this process trusts any assertion made by the
ServerAdmin role in the default authorization domain.

VisiBroker Secur i ty Guide 61

The following properties are set on the client side:

Trusting Assertions
A server (end-tier) may choose to accept or not accept identity assertions.
In the case where it chooses to accept identity assertions, there are trust
issues that present themselves. While the server may know that the peer is
authentic, it must also confirm that the peer has the privilege to assert
another caller or act on behalf of the caller. Since the caller itself is not
authenticated by the end-tier, and the end-tier accepts the mid-tier's
assertion, the end-tier needs to ensure that it trusts the mid-tier to have
performed proper authentication of the original caller. It, in turn, trusts the
mid-tier's trust in the authenticity of the caller.

There may be many peers to an end-tier system, some of which are trusted
as mid-tiers, while others are just clients. Therefore, the privilege to speak
for other callers must be granted only to certain peers.

Trust assertions and plug-ins
When a remote peer (server or process) makes identity assertions while
acting on behalf of the callers, the end-tier server needs to trust the peer to
make such assertions. The Service Provider Interface (SPI) allows you to
plug in a Trust Services Provider to determine whether the assertion is
allowed (trusted) for a given caller and a given set of privileges for the
asserter. Specifically, you use the TrustProvider class to implement trust
rules that determine whether the server will accept identity assertions from
a given asserting subject. For more information, see sec-api-doc in the Help
system, and the “Security SPI for C++”.

vbroker.security.authDomains=bank Specifies a list of available authorization domains, separated by
comma.

vbroker.security.domain.bank.role
map_path=./cpp_bank.rolemap

Specifies the location of the RoleDB file that describes the roles
used for authorization. This is scoped within the domain
<domain_name> specified in
vbroker.security.authDomains.

Property Description

Property Description
vbroker.security.server.transport
=CLEAR_ONLY

It determines whether to use secure transport only or not.

Note: To use secure transport only, the secureTransport
property must also be set to true.

vbroker.security.login=true If set to true, at initialization-time this property tries to login to
all the realms listed by property
vbroker.security.login.realms.

On the client side, this property is set to true.
vbroker.security.login.realms=myr
ealm

vbroker.security.disable=false To enable the security service, set this property to false.
vbroker.security.alwaysSecure=
false

This property determines whether to use secure transport only or
not.

Note: To use secure transport only, the secureTransport
property must also be set to true.

vbroker.security.peerAuthenticati
onMode=none

This is to set the peer authentication mode.

none—Authentication is not required. During handshake, no
certificate request will be sent to the peer. Regardless of whether
the peer has certificates, a connection will be accepted. There will
be no transport identity for the peer.

62 VisiBroker Secur i ty Guide

Backward trust
Backward trust is provided “out of the box”, and is the form of trust where
the server has rules to decide who it trusts to perform assertions. With
backward trust, the client has no say whether the mid-tier server has the
privilege to act on its behalf.

Forward trust
Forward trust is similar to delegation in that the client explicitly provides
certain mid-tier servers the privilege to act on its behalf.

Temporary privileges
At times, a server needs to access a privileged resource to perform a
service for a client. However, the client itself may not have access to that
privileged resource. Typically, in the context of an invocation, access to all
resources are evaluated based on the original caller's identity. Therefore, it
would not be possible to allow this scenario, as the original caller does not
have access to such privileged resource. To support this scenario, the
application may choose to assume an identity different from that of the
caller, temporarily while performing that service. Usually, this identity is
described as a logical role, as the application effectively needs to assume an
identity that has access to all resources that require the user to be in that
role.

VisiBroker Secur i ty Guide 63

Secure Transportation
In intranet scenarios, it may be safe to transfer information (including
sensitive data, such as user authentication credentials) using IIOP over
plain sockets. However, when the network environment is not trusted (such
as the Internet, or even an intranet), you need to guarantee integrity (the
message was not modified or tampered with during the transmission) and
confidentiality (the message cannot be read by anybody even if they
intercepted it during transmission) of messages being transmitted over the
network. This is achieved by using secure sockets (SSL).

VisiSecure functions in two transport environments:

• using IIOP over plain sockets - (clear mode)

• using secure sockets (SSL) - (encrypted mode)

Encryption

Public-key encryption
In addition to username/password-based authentication, VisiSecure also
supports public-key encryption. In public-key encryption, each user holds
two keys: a public key and a private key. A user makes the public key
widely available, but keeps the private key secret.

Data that has not been encrypted is often referred to as clear-text, while
data that has been encrypted is called cipher-text. When a public key and a
private key are used with the public-key encryption algorithm, they perform
inverse functions of one another, as shown in the following diagram.

• In the first case, the public key is used to encrypt a clear-text message
into a cipher-text message; the private key is used to decrypt the
resulting cipher-text message.

64 VisiBroker Secur i ty Guide

Encrypt ion

• In the second case, the private key is used to encrypt a message
(typically in the case of digital signatures—that is, “signed” messages),
while the public key is used to decrypt it.

If someone wants to send you sensitive data, they acquire your public key
and use it to encrypt that data. Once encrypted, the data can only be
decrypted with the private key. Not even the sender of the data will be able
to decrypt the data. Note that encryption can be asymmetric or symmetric.

Asymmetric encryption
Asymmetric encryption uses both a public and a private key. Both keys are
linked such that you can encrypt with the public key but can only decrypt
with the private key, and vice-versa. This is the most secure form of
encryption.

Symmetric encryption
Symmetric encryption uses only one key for both encryption and
decryption. Although faster than asymmetric encryption, it requires an
already secure channel to exchange the keys, and allows only a single
communication.

Certificates and Certificate Authority
When you distribute your public key, the recipients of that key need some
sort of assurance that you are indeed who you claim to be. The ISO X.509
standard defines a mechanism called a certificate, which contains a user's
public key that has been digitally signed by a trusted entity called a
Certificate Authority (CA). When a client application receives a certificate
from a server, or vice-versa, the CA that issued the certificate can be used
to verify that it did indeed issue the certificate. The CA acts like a notary
and a certificate is like a notarized document.

You obtain a certificate by constructing a certificate request and sending it
to a CA.

VisiBroker Secur i ty Guide 65

Encryption

Distinguished names
A distinguished name represents the name of a user or the CA that issued
the user's certificate. When you submit a certificate request, it includes a
distinguished name for the user that is made up of the components listed in
the following table.

Certificate chains
The ISO X.509 standard provides a mechanism for peers who wish to
communicate, but whose certificates were issued by different certificate
authorities. Consider the following figure, in which Joe and Ted have
certificates issued by different CAs.

For Joe to verify the validity of Ted's certificate, he must inspect each CA in
the chain until a trusted CA is found. If a trusted CA is not found, it is the
responsibility of the server to choose whether to accept or reject the
connection. In the case shown in the preceding figure, Joe would follow
these steps:

1 Joe obtains Ted's certificate and determines the issuing CA, Acme.

2 Since the Acme CA is not in Joe's certificate chain, Joe obtains the issuer
of the certificate for CA_2.

3 Because CA_2 is not a trusted CA, the server decides whether to accept
or reject the connection.

Notes

• The manner in which you obtain certificate information from a CA is
defined by that CA.

Tag Description
Required
Component

Common-Name The name to be associated with the user. Yes
Organization The name of the user's company or

organization.
Yes

Country The two character country code that
identifies the user's location.

Yes

Email The user’s email address. No
Phone The user's phone number. No
Organizational
Unit

The user's department name. No

Locality The city in which the user resides. No

66 VisiBroker Secur i ty Guide

Enabl ing SSL

• A VisiBroker server using the MFCryptLib/OpenSSL security provider
never trusts a peer certificate as a trustpoint (see vbroker.security.
trustpointsRepository for details) if there is no valid CA intermediate/
root certificate provided for it.

Generating a private key and certificate
request
To obtain a certificate to use in your application, you need to first generate
a private key and certificate request. To automate this process, for Java
applications you can use the Java keytool, or for C++ applications you can
use open source tools such as the openssl utility.

After you generate the files, you should submit the certificate request to a
CA. The procedure for submitting your certificate request to a CA is
determined by the certificate authority which you are using. If you are using
a CA that is internal to your organization, contact your system administrator
for instructions. If you are using a commercial CA, you should contact them
for instructions on submitting your certificate request. The certificate
request you send to the CA will contain your public key and your
distinguished name.

Digital signatures
Digital signatures are similar to handwritten signatures in terms of their
purpose; they identify a unique author. Digital signatures can be created
through a variety of methods. Currently, one of the more popular methods
involves an encrypted hash of data.

1 The sender produces a one-way hash of the data to be sent.

2 The sender digitally signs the data by encrypting the hash with a private
key.

3 The sender sends the encrypted hash and the original data to the
recipient.

4 The recipient decrypts the encrypted hash using the sender's public key.

5 The recipient produces a one-way hash of the data using the same
hashing algorithm as the sender.

6 If the original hash and the derived hash are identical, the digital
signature is valid, implying that the document is unchanged and the
signature was created by the owner of the public key.

Enabling SSL
For Java only:

VisiSecure uses Java Secure Sockets Extension (JSSE) to perform SSL
communication. VisiSecure SPI Secure Socket Provider class provides
access to the underlying SSL implementation. Any appropriate
implementation following Java Secure Socket Extension (JSSE) framework
can be easily plugged in, independent of other provider mechanisms. The
only necessary step is mapping the interfaces (or, in other words, callback
methods) defined to the corresponding JSSE implementation. For more
information on the SPI Secure Socket Provider class, see VisiSecure SPI
for Java and “Security SPI for C++”.

VisiBroker Secur i ty Guide 67

Enabl ing SSL

For the “out-of-box” installation of VisiBroker, the JSSE implementation
provided by the Java SDK is used.

Setting the level of encryption
The SSL product uses a number of encryption mechanisms. These
mechanisms are industry-standard combinations of authentication, privacy,
and message integrity algorithms. This combination of characteristics is
referred to as a cipher suite.

The client and server have a static list of supported cipher suites. This list is
used during the handshake phase of the connection to determine which
cipher suite will be used. The client sends a list of all cipher suites it knows
to the server. The server then takes this information and determines which
cipher suites both the server and client understand. By default, the server
selects the strongest available cipher suite.

While this cipher suite order ensures strong security, you may want to
adopt a different cipher suite order based on application-specific security
requirements. When you want to change the order of the cipher suites, use
the Quality of Protection (QoP) API function calls; you can retrieve a list of
the currently available cipher suites, then set the list to a new order so
weaker cipher suites are used before stronger cipher suites.

Note

You cannot add new cipher suites. You can modify only the order of the
cipher suites that are available and remove cipher suites you do not want to
use.

Cipher suites
A cipher suite is a set of valid encoding algorithms used to encrypt data.
Cipher suites have different security levels and can serve different
purposes. For example, some ciphers provide for authentication while
others do not; some provide for encryption and others do not.

Note that there are important differences between the newer TLSv1.3
cipher suites and cipher suites from TLS versions up to TLSv1.2, still
supported by VisiBroker. The new TLSv1.3 cipher suites cannot be used
with TLSv1.2 and earlier protocol versions; and vice versa, cipher suites
from TLS versions up to TLSv1.2 cannot be used with TLSv1.3.

The TLSv1.3 cipher suites are defined differently from the cipher suites for
earlier TLS versions, in that they do not include the certificate type (e.g.
RSA, ECDSA) or key exchange mechanism (e.g. DHE, ECDHE).

Segments of the name of the cipher indicate what the cipher suite does or
does not provide. The general format for TLSv1.3 cipher suite names is:

TLS_<Encryption Algorithm>_<Hashing Algorithm>

For example:

• TLS_AES_256_GCM_SHA384

• TLS_CHACHA20_POLY1305_SHA256

• TLS_AES_128_GCM_SHA256

For older versions, up to TLSv1.2, the format is:

[TLS|SSL]_<Key Exchange Algorithm>_<Authentication
Algorithm>_WITH_<Encryption Algorithm>_<Hashing Algorithm>

68 VisiBroker Secur i ty Guide

Enabl ing SSL

For example:

• TLS_RSA_WITH_AES_128_CBC_SHA256

• TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

Unsupported cipher suites

Note that for security reasons:

• Cipher suites that include usage of the RC4 cipher are no longer
supported in VisiBroker for C++.

• Cipher suites using Fixed DH (that is, TLS_DH_* or TLS_ECDH_*) keys
are no longer supported at all.

• Certificates signed with MD5withRSA are not supported at Security
Level 1.

For further information

If you need to know more about cipher suite names or the possible values
of the name segments, you can consult an SSL/TLS reference work.
Refer to OpenSSL (https://www.openssl.org/) for a list of supported ciphers
at the current OpenSSL version. The specific version of OpenSSL included in
your release is specified in its Release Notes.
The list of supported cipher suites for VisiSecure is determined by the
underlying security implementation. For VisiSecure for Java, this is the JSSE
package used, which in turn depends on the version and manufacturer of
the JDK used. For VisiSecure for C++, you can find the list of supported
ciphers in the <install_dir>/include/csstring.h file, or by using the
ssl::CipherSuiteInfoList* listAvailableCipherSuites() API.

Using ECDHE cipher suites

VisiBroker supports ECDHE cipher suites. To enable these cipher suites a
private key and certificate chain must be provided that conform to the
following requirements. For ECDHE, certificates must contain an identity
key from one of the supported DH Groups (see the VisiBroker 8.5.7 Release
Notes). The supported cipher suites are:

TLS v1.0:

• TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS v1.2

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• For ECDHE using RSA certificates, the server's private key which matches
the public key in the server's identity certificate must be an RSA key that
is authorized for signing. The supported cipher suites are:

TLS v1.0:

• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS v1.2

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

https://www.openssl.org/

VisiBroker Secur i ty Guide 69

Enabl ing SSL

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Notes

• When using TLSv1.3, the displayed cipher suites will not contain 'ECDHE_'
in their titles. However, the same technology will be used to exchange
ephemeral keys and provide the same Perfect Forward Secrecy.

• The ECDH_ECDSA and ECDH_RSA groups of cipher suites are not
supported in this release.

• In addition in all cases, the following requirements must be met:

• The identity certificate must be signed by a capable ECDSA or RSA (as
appropriate) certificate (intermediate or root).

• The complete certificate chain must be provided.

• For a server, the ECC private key that corresponds to the identity
certificate must be provided.

ECC Curves
OpenSSL supports many pre-defined ECC curves (also known as 'named
curves' or ‘elliptic curves’), used in ECDH and ECDHE ciphers. A complete
list of the supported named curves can be obtained by executing the
following command, using the openssl utility (in this example, for RedHat
Linux):

./openssl ecparam -list_curves

VisiBroker for C++ supports the well-known TLS elliptic curves as defined in
the following IANA RFC:

• RFC4492: http://www.iana.org/go/rfc4492

• RFC7027: http://www.iana.org/go/rfc7027

You are free to select any of the curves from the supported list (provided
the key length is a minimum of 256 bits; see Note below) when generating
your ECC keys/certificates. OpenSSL treats keys generated using these
curves transparently.

While you may use any of the supported curves, the following curves were
selected for the purposes of verifying the behavior of VisiBroker 8.5:

• prime256v1
• secp384r1

Note

VisiBroker for C++ inherits OpenSSL's default behavior, which is to disable
all elliptic curves weaker than 256-bit unless configured otherwise.
VisiBroker for Java relies on the underlying JSSE implementation for
working with ECC curves.

ECDHE ephemeral keys

In previous releases, elliptic curve key groups were used to identify and
sign entities and certificates. Elliptic curve key groups form a subset of
Diffie-Hellman key groups. Starting with VisiBroker 8.5.7, the use of elliptic
curve definitions are deprecated. These have been replaced by the use of
Diffie-Hellman key groups (DH Groups). The remaining supported safe
elliptic curve definitions are a subset of our supported DH Groups.

http://www.iana.org/go/rfc4492
http://www.iana.org/go/rfc7027

70 VisiBroker Secur i ty Guide

Enabl ing SSL

When a DH Group identity is specified as part of the server's certificate and
key configuration, ECDHE ephemeral keys are created using the same DH
Group that is chosen for the server's primary key.

If no DH Group identity is detected, the ECDHE cipher suites require that a
DH Group is chosen to create the ECDHE temporary keys that will be used
in the session. The DH Group will be selected automatically. However, you
can also configure a prioritized set of DH Groups that will be used in the TLS
handshake to negotiate a DH Group to be used with the peer (see the options
vbroker.security.server.socket.TLSCipherGroups and
vbroker.security.client.socket.TLSCipherGroups).

The vbroker.security.server. socket.ecdheCurve property is now deprecated. It is,
however, still supported in this release in order to maintain existing
configurations. Its value is treated in the same way as
vbroker.security.server.socket.TLSCipherGroups.

Note:

If prime256v1 is specified, secp256r1 will appear in the logs.

This is because a previous ANSI X9.62 standard, Public Key Cryptography
For The Financial Services Industry, defined some of the same curves as the
IANA list, but with different names. Where this occurs either name can be
used in the VisiBroker configuration.

For example, the IANA secp256r1 is the same as the ANSI prime256v1.

VisiBroker Secur i ty Guide 71

Enabling Security
For an ORB to be secure, it must have the following property set:

vbroker.security.disable=false

Enabling SSL
To use SSL, your security in the ORB must be enabled. Once the security is
enabled, SSL is enabled by default.

To disable the SSL
To disable the SSL on the client side, set the property on the client side as
given below.

vbroker.security.secureTransport=false

To disable the SSL on the server side, you must set the property on the
server side as given below.

vbroker.security.server.transport=CLEAR_ONLY

Setting the Log Level
Activity logging in VisiBroker employs one or more Logger objects.
Applications can log messages to the Default Logger as well, to integrate
their logging output with that of the ORB, or they can create one or more
other Loggers, to log messages independently as said earlier.

All log messages to a single logger are bound to a common set of
destinations. By using multiple loggers for logging, messages from different
components could be output to various independent end points.

ORB and all its C++ services use a special Logger instance (the ‘Default
Logger’ with the name “default”), which is created automatically the first
time the ORB logs a message. For more information, refer to the chapter on
‘VisiBroker logging’ in the VisiBroker for C++ Developer’s Guide.

SimpleLogger class is a mechanism to log information of various levels.
Currently, it supports four different levels: LEVEL_WARNING,
LEVEL_NOTICE, LEVEL_INFO, and LEVEL_DEBUG, with increasingly
detailed information. There is only one logger in the whole security service.
For information on the SimpleLogger class, see “vbsec::SimpleLogger”.

VisiSecure for Java

Messages from VisiSecure for Java internal are logged under the source
name "secure".

For setting VisiSecure java logging messages to level info, set the following
property to true:

vbroker.log.enable=true
vbroker.log.default.filter.secure.logLevel=info

The default value is "debug".

The VisiBroker for Java logging mechanism applies to VisiSecure for Java as
well.

72 VisiBroker Secur i ty Guide

VisiSecure for C++

VisiBroker for C++ provides a logging mechanism, which allows applications
to log messages and have them directed, via configurable logging
forwarders called appenders, to an appropriate destination or destinations.
The ORB and all its services themselves use this mechanism for the output
of any error, warning or informational messages.

The VisiBroker for C++ logging mechanism applies to VisiSecure for C++ as
well.

For setting VisiSecure csiv2 related logging messages, set the following
property to true:

vbroker.log.enable=true
vbroker.log.default.filter.v_seccsiv2.logLevel=info

The default value is "debug".

Messages from VisiSecure C++ internal are logged under four separate
source names as given below.

Using IIOP/HTTPS
VisiBroker has a feature that allows tunneling of IIOP inside the HTTP
protocol. This is an extended feature in VisiBroker called HIOP. With
VisiSecure enabled, the secure version of HIOP is available. This allows
tunneling of IIOP inside HTTPS.

You can make use of HTTPS, featured in most browsers. The following
guidelines should be followed:

• The VisiBroker proxy server GateKeeper must be running with SSL
enabled on the exterior.

• An applet that only uses IIOP/HTTPS requires no pre-installation of
software (either classes or native libraries) on the client as long as the
browser or applet viewer is HTTPS enabled.

• An applet using IIOP/HTTPS cannot use the X509Certificate[] class to
set or examine identities. All certificate and private key administration is
handled by the browser. Furthermore, when the ORBalwaysTunnel
parameter in the applet tag is set to true, the ORB cannot resolve
SSLCurrent objects.

• To enable an applet to use only IIOP/HTTPS, set ORBalwaysTunnel to
true in the HTML page. If ORBalwaysTunnel is set to false (or
unspecified) the ORB first tries to use IIOP/SSL, which requires the SSL
classes and native SSL library to be installed locally.

• In general, IIOP/HTTPS is not available to Java applications because
HTTPS is not supported by the JDK. However, there are no restrictions in
VisiBroker for Java that prevent the addition of HTTPS support to the JDK
and the use of IIOP/HTTPS in Java applications.

Types of message Source name
Authentication-related messages v_secauthn
Authorization-related messages v_secauthz
SSL-related messages v_secssl
CSIV2-related messages v_seccsiv2

VisiBroker Secur i ty Guide 73

Browser considerations
Some browser versions require the installation of the CA certificate before
allowing an IIOP/HTTPS connection. Follow these guidelines to use IIOP/
HTTPS with such browsers:

• Make sure your server certificates are issued by a CA that is already
trusted.

• Install the root certificate as a trusted certificate. Opening a certificate file
(for example, cacert.crt in bank_https) gives you the opportunity to
install the certificate.

• Use the GateKeeper to download the root certificate to the browser. The
bank_https example shows how to do this.

• Commercial CAs usually provide a link that allows you to install their root
certificate.

• GateKeeper, by default, does not ask for the client identity. You can
enable this function by setting ssl_request_client_certificate to
true in the GateKeeper configuration file.

Microsoft Internet Explorer
To use IIOP/HTTPS with Microsoft Internet Explorer, you must make sure
that the HTTPS connection requires no user interaction. For example, if the
browser visits a HTTPS site with an untrusted root certificate, the browser
will ask for permission before establishing an HTTPS connection. The
Microsoft JVM, due to a known bug, fails on this connection.

Here are several examples that illustrate this condition and ways in which
you can work:

• Internet Explorer ships with a list of trusted Network Server Certificates
Authority. If your server certificate is not issued by one of the trusted
CAs, (the certificates shipped with bank_https, for example) IE asks for
permission before establishing an HTTPS connection. The IIOP/HTTPS
operation fails because the Microsoft JVM does not seem to support an
HTTPS connection that requires user interaction. There are a number of
ways to handle this situation:

• Make sure your server certificates are issued by a CA already trusted
by Internet Explorer.

• Install the root certificate into IE as a trusted Network Server
certificate. Opening a certificate file (for example, cacert.crt in
bank_https) gives you the opportunity to install the certificate.

• Use the GateKeeper to download the root certificate to the browser.
The bank_https example shows how to do this.

• Commercial CAs usually provide a link that allows you to install their
root certificate.

• GateKeeper, by default, does not ask for the client identity. Although you
can enable this function by setting
ssl_request_client_certificate=true in the GateKeeper
configuration file, you cannot use IIOP/HTTPS because the browser asks
for permission before responding with the user's credentials.

Internet Explorer optionally requires the Common Name field within the
server certificate to be the same as the host name of the server. From the
View > Internet Options menu, select the Advanced tab and scroll to the
Security section. Make sure the box next to Warn about invalid site

74 VisiBroker Secur i ty Guide

certificates is not checked to use a server certificate that does not contain
the host name of the server.

VisiBroker for C++ Developer’s Guide 75

Quality of Protection
VisiBroker's extensions of standard CORBA policies include an
implementation of Quality of Protection (QoP) which provides another level
of fine-grained control over your run-time security requirements.

There are two types of QoP:

• Server QoP is usually installed on a Portable Object Adapter (POA)

• Client QoP is usually installed on a object

Setting properties and QoP
There are several properties that can be used to ensure the Quality of
Protection of a connection. These properties can be used to fine-tune
connection quality.

For example, you can set the appropriate cipherList property for SSL
connections to set cryptography strength:

• vbroker.security.TLS13CipherSuites for TLSv1.3

• vbroker.security.cipherList for TLSv1.2 and earlier

These properties can be set to a list of comma-separated ciphers to be
enabled by default on startup. If not set, a default list of cipher suites will be
enabled.

QoP properties can also be set programmatically using ServerQoPConfig
and the ClientQoPConfig for servers and clients, respectively. For more
information, see “Configuring Quality of Protection(QoP)”.

These APIs allow you to set target trust (whether or not targets must
authenticate), the transport policy (whether or not to use SSL or another
secure transport mechanism specified separately). For servers, an
AccessPolicyManager that can access the RoleDB is set to access policies for
POA objects. For more information on AccessPolicyManager, see “class
csiv2::AccessPolicyManager”.

76 VisiBroker for C++ Developer’s Guide

Configuring Quality of Protection(QoP)

Configuring QoP for the server
The complete code of ServerQoPConfigValueFactory is as follows:

package com.borland.security.csiv2;
import
com.borland.security.csiv2.ServerQoPConfigValueFactory;
import com.borland.security.csiv2.ServerQoPConfig;
import com.borland.security.csiv2.AccessPolicyManager

public class ServerQoPConfigDefaultFactory
implements ServerQoPConfigValueFactory {
public ServerQoPConfig createConfig (boolean disable,
 short transport,
 short idType,
 boolean
enableIdAssertion,
 java.lang.String[]

realms, AccessPolicyManager access_manager)

{
return new ServerQoPConfigImpl(disable, transport, idType,
enableIdAssertion, realms, access_manager);

 }
}
disable = security is disabled/enabled for this POA, When
security is disabled, the rest of the settings become
irelevant.

In this package:

• transport has three possible values:

• CLEAR_ONLY: Uses only clear listener to accept request

• SECURE_ONLY: Uses only SSL listener to accept request

• ALL: Uses both clear and SSL.

• idType has the possible values of
com.borland.security.csiv2.ServerQoPPolicy.

• enableIdAssertion = true/false. When set to false, this server
cannot accept caller identity propagated through a CSIV2 Authorization
token.

• realms[] is an array of strings, specifying the names of all realms that
this POA can accept identity of. The default value is ‘null’ meaning there
are no configured realms in this ORB.

Value Description
NO_ID Expecting no identity
UP Expecting Username Password identity
PK Expecting transport identity
UP_AND_PK Expecting both to be present and valid
UP_OR_PK Expecting either one to be present and valid

VisiBroker for C++ Developer’s Guide 77

• access_manager is, for authorization purposes, the AccessPolicyManager
responsible for this POA. The default value is ‘null’ meaning there is no
authorization.

For configuring QoP for the server, follow the steps as given below:

1 To enable access controls, set disable = false

2 For a method to be secure, set transport = SECURE_ONLY

3 For the server to require a client’s credentials for authentication, set
trust_in_client = true.

For more information on transport methods and other QoP related
parameters, see “class vbsec::ServerConfigImpl”.

4 To create server QoP configuration object

ServerQoPConfig config = new
ServerQoPConfigDefaultFactory().create(false,ServerQoPPo
licy.SECURE_ONLY,true, null);

5 To activate the server with QoP:

Any any = orb.create_any();
ServerQoPConfigHelper.insert(any, config);
Policy qop =
orb.create_policy(SERVER_QOP_CONFIG_TYPE.value, any);

Configuring QoP for the client
The initial step of creating a QoP is to create a QoPConfig and specify the
security requirements that must be enforced through the config.

To create a ClientQoPConfig, you can use its default factory as follows:

...
 ...
 com.borland.security.csiv2.ClientQoPConfig myconfig =
 new com.borland.security.csiv2.ClientQoPConfigDefaultFactory().create

/* transport = */
com.borland.security.csiv2.ClientQoPPolicyOperations.CLEAR_ONLY,

 /* Other possible values for above are SECURE_ONLY and USE_ANY*/

 /* trustInTarget= */ true

);

Transport methods trustInTarget=true trustInTarget=false
CLEAR_ONLY Invalid configuration; will

throw PolicyError.
For outgoing, use clear
IIOP transport.

SECURE_ONLY For outgoing, use SSL
and make sure that
server certificate is
trusted.

For outgoing, use SSL
and server certificate can
be non-trusted.

USE_ANY Invalid configuration; will
throw PolicyError.

For outgoing, try SSL
then fallback to clear
when fail, server
certificate can be non-
trusted.

78 VisiBroker for C++ Developer’s Guide

The complete code of ClientQoPConfigDefaultFactory is as follows:

package com.borland.security.csiv2;

public class ClientQoPConfigDefaultFactory

implements
com.borland.security.csiv2.ClientQoPConfigValueFactory {
public com.borland.security.csiv2.ClientQoPConfig create (
short trans,
boolean trustInTarget) {
return new ClientQoPConfigImpl(trans, trustInTarget);
}
}

1 Initialize the ORB/

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(args,null);
 byte[] managerId = "BankManager".getBytes();

Note: For client, QoP is set as follows:

For method to be secure, set transport = secure only
Set trust in target = false. (With this, server need not provide
authentication for client).

For more information on transport methods and other QoP parameters,
see “class vbsec::ClientConfigImpl”.

ClientQoPConfig cc = new
ClientQoPConfigDefaultFactory().create(
ClientQoPPolicy.SECURE_ONLY, false);

org.omg.CORBA.Object managerObject =
Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa",
managerId);

2 Insert client QoP into any object:

Any any = orb.create_any();
ClientQoPConfigHelper.insert(any, cc);

3 Narrow the reference to Bank Manager using the policy

Bank.AccountManager manager =
Bank.AccountManagerHelper.narrow(
 managerObject._set_policy_override(
 new Policy[] { orb.create_policy(
CLIENT_QOP_CONFIG_TYPE.value, any)
},
SetOverrideType.SET_OVERRIDE));

4 Create or open an account for the user. This returns a generic Account
object reference.

org.omg.CORBA.Object accountObject = manager.open(name);

5 Narrow the reference to Bank Account

Bank.Account account = Bank.AccountHelper.narrow(
 accountObject._set_policy_override(
 new Policy[] { orb.create_policy(
CLIENT_QOP_CONFIG_TYPE.value, any) },
 SetOverrideType.SET_OVERRIDE
)
);

VisiBroker for C++ Developer’s Guide 79

6 Get the balance from the account and print it on the console

System.out.println("The balance in " + name + "'s
account is $" + account.balance());
 } catch(Throwable e) {
 synchronized(System.err) {
 e.printStackTrace();
 }
 }
}
public static void main(String[] args) {
if (args.length != 0) {
System.err.println("Usage : vbj -
DORBpropStorage=client.properties Client");
System.exit(1);
}
Client cln = new Client();
cln.test(args);
}
}

Configuring Quality of Protection (QoP) parameters
When clients and servers communicate, they both need to agree on some
parameters for the Quality of Protection (QoP) that will be provided. The
resource host (the server) will:

• publish all the QoP parameters that it can support, and

• impose a set of required QoP parameters on the clients.

Note

By definition, a required QoP is also a supported QoP.

For example, a server may support and require secure transport (SSL)
while it may support authentication but not require it. This is useful, for
example, in the case where some resources are not sensitive and
anonymous access is acceptable. For more information about QoP and QoS
parameters:

C++

See “QoP API” on page 146.

Java

See com.borland.security.csiv2 and “Security Properties for Java”.

80 VisiBroker for C++ Developer’s Guide

VisiBroker for C++ Developer’s Guide 81

Creating custom plugins
There are various components of VisiSecure that allow for custom plug-ins.
They are:

• LoginModules

• CallbackHandlers

• Authorization Service Providers via the SPI

• Trust Providers via the SPI

LoginModules
LoginModule describes the interface implemented by authentication
technology providers. LoginModules are plugged under applications to
provide a particular type of authentication.

While applications write to the LoginContext API, authentication technology
providers implement the LoginModule interface. A Configuration specifies
the LoginModule(s) to be used with a particular login application. Therefore
different LoginModules can be plugged in under the application without
requiring any modifications to the application itself.

You can implement your own LoginModules by extending
vbsec::LoginModule.

LoginModule serves as the parent of all login modules. User plugin login
modules must extend this class. Login modules are configured in the
authentication configuration file and called during the login process. Login
modules are responsible for authenticating the given subject and
associating relevant Principals and Credentials with the subject. They are
also responsible for removing and disposing of such security information
during logout.

To use the LoginModule, you need to set it in the authentication
configuration file, just like any other LoginModule. During runtime, the new
customized module will need to be loaded by the secured application.

The syntax of the authentication configuration is as follows:

<realm-name> {
 <class-name-of-customized-LoginModule> <required|
optional>;
}

Note:

There is implicit replacement of the character “.” to “::” by VisiSecure.
Hence, com.borland.security.provider.authn.HostLoginModule is
equivalent to
com::borland::security::provider::authn::HostLoginModule.

For more information, see “vbsec::LoginModule”.

The first thing you need to do is to determine whether or not your
LoginModule will require some form of user interaction (retrieving a user
name and password, for example). If so, you will need to become familiar
with the CallbackHandler interfaces readily available. (Alternatively, you can
create your own Callback implementations.)

82 VisiBroker for C++ Developer’s Guide

The LoginModule will invoke the CallbackHandler specified by the
application itself and passed to the LoginModule's initialize method. The
LoginModule passes the CallbackHandler which is an array of appropriate
Callbacks.

If the LoginModule implementations have no end-user interactions, the
LoginModules would not need to access the callback package.

You must also determine what configuration options you want to make
available to the user, who specifies configuration information in whatever
form the current Configuration implementation expects (for example, in
files). For each option, decide the option name and possible values.

For example, if a LoginModule may be configured to consult a particular
authentication server host, decide on the option's key name ("auth_server",
for example), as well as the possible server hostnames valid for that option.

To implement the login module, you first have to decide on the proper
package and class name for your LoginModule.

The LoginModule interface specifies five abstract methods that require
implementations: initialize, login, commit, abort, logout.

For more information on implementing login modules, see the Login
Module Developer’s Guide in the Oracle JDK - JAAS Documentation.

In addition to these methods, a LoginModule implementation must provide
a public constructor with no arguments. This allows for its proper
instantiation by a LoginContext.

Note:

If no such constructor is provided in your LoginModule implementation, a
default no-argument constructor is automatically inherited from the Object
class.

The LoginContext is responsible for reading the configuration and
instantiating the appropriate LoginModules. Each LoginModule is initialized
with a subject, a CallbackHandler, shared LoginModule state, and
LoginModule-specific options. The subject represents the subject currently
being authenticated and is updated with relevant credentials if
authentication succeeds.

The LoginModule-specific options represent the options configured for this
LoginModule by an administrator or user in the login configuration. The
options are defined by the LoginModule itself and control the behavior
within it.

The calling application sees the authentication process as a single
operation. However, the authentication process within the LoginModule
proceeds in two distinct phases.

In the first phase, the LoginModule's login method gets invoked by the
LoginContext's login method. The login method for the LoginModule then
performs the actual authentication (prompt for and verify a password for
example) and saves its authentication status as private state information.
Once finished, the LoginModule's login method either returns true (if it
succeeded) or false (if it should be ignored), or throws a LoginException to
specify a failure. In the failure case, the LoginModule must not retry the
authentication or introduce delays. The responsibility of such tasks belongs
to the application. If the application attempts to retry the authentication,
the LoginModule's login method will be called again.

In the second phase, if the LoginContext's overall authentication succeeded
(the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
LoginModules succeeded), then the commit method for the LoginModule

VisiBroker for C++ Developer’s Guide 83

gets invoked. The commit method for a LoginModule checks its privately
saved state to see if its own authentication succeeded. If the overall
LoginContext authentication succeeded and the LoginModule's own
authentication succeeded, then the commit method associates the relevant
principals (authenticated identities) and credentials (authentication data
such as cryptographic keys) with the subject located within the
LoginModule.

If the LoginContext's overall authentication failed (the relevant REQUIRED,
REQUISITE, SUFFICIENT and OPTIONAL LoginModules did not succeed),
then the abort method for each LoginModule gets invoked. In this case, the
LoginModule removes/destroys any authentication state originally saved.

Logging out a subject involves only one phase. The LoginContext invokes
the LoginModule's logout method. The logout method for the LoginModule
then performs the logout procedures, such as removing principals or
credentials from the subject or logging session information.

A LoginModule implementation must have a constructor with no arguments.
This allows classes which load the LoginModule to instantiate it.

CallbackHandlers
CallbackHandler is the mechanism that produces any necessary user
callbacks for authentication credentials and other information. Callbacks are
an array of callback objects which contain the information requested by an
underlying security service that has the ability to interact with a calling
application to retrieve specific authentication data such as usernames and
passwords, or to display certain information, such as errors and warning
messages.

The CallbackHandler may be used to prompt for usernames and passwords,
for example. Note that the CallbackHandler may be null. LoginModules
which absolutely require a CallbackHandler to authenticate the subject may
throw a LoginException. LoginModules optionally use the shared state to
share information or data among themselves.

Underlying security services make requests for different types of
information by passing individual callbacks to the CallbackHandler. The
CallbackHandler implementation decides how to retrieve and display
information depending on the callbacks passed to it.

For example, if the underlying service needs a username and password to
authenticate a user, it uses a NameCallback and PasswordCallback. The
CallbackHandler can then choose to prompt for a username and password
serially, or to prompt for both in a single window.

There are seven types of callbacks provided. There is a default handler that
handles all callbacks in interactive text mode.

You can implement your own callback by extending
vbsec::CallBackHandler.

To use the callback, you need to set the property
vbroker.security.authentication. callbackHandler=<custom-
handler-class-name> in the security property file, just like any other
callback handler. This property specifies the callback handler that is used by
login modules for interacting with users for credentials. You can specify one
of the callback handlers provided, or your own custom callback handler. For
information about this property, see vbroker.security.authentication.
callbackHandler for Java, or vbroker.security. authentication.
callbackHandler for C++.

84 VisiBroker for C++ Developer’s Guide

See “VisiSecure for C++ APIs” for more details.

At runtime, the new customized module will need to be loaded by the
secured application.

Implementations of the callback interface are passed to a CallbackHandler,
allowing underlying security services that have the ability to interact with a
calling application to retrieve specific authentication data such as
usernames and passwords, or to display certain information, such as error
and warning messages.

Callback implementations do not retrieve or display the information
requested by underlying security services. Callback implementations simply
provide the means to pass such requests to applications, and for
applications, if appropriate, to return requested information to the
underlying security services.

Authorization Service Providers
Authorization is the process of making access control decisions on behalf of
certain resources based on security attributes or privileges. VisiSecure uses
the notion of Permission in authorization. The class RolePermission is
defined to represent a “role” as a permission. Authorization Services
Providers in turn provide the implementation on the homogeneous
collection of role permissions that associate privileges with particular
resources.

The implementer of the Authorization Service provides the collection of
permission objects that are granted access to certain resources. Whenever
an access decision is going to be made, the AuthorizationServicesProvider is
consulted. The Authorization Service is closely associated with the
Authorization domain concept. One Authorization Service is installed for
each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the
construction of its corresponding Authorization domain.

Use the following property to set the implementing class for the
AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

At runtime, this property is loaded by way of Java reflection.

Another important functionality of the Authorization Service is to return the
run-as alias for a particular role given. The security service is configured
with a set of identities, identified by aliases. When resources request to
“run-as” a given role the AuthorizationServices is again consulted to return
the alias that must be used to “run-as” in the context of the rules specified
for this authorization domain.

Authorization service providers are tightly connected with Authorization
Domains. Each domain has exactly one authorization service provider
implementation. During the initialization of the ORB, the authorization
domains defined by vbroker.security.authDomains is constructed,
while the Authorization Service Provider implementation is instantiated
during the construction of the domain itself.

To plugin an authorization service, you need to set these properties:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

VisiBroker for C++ Developer’s Guide 85

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.MyCodec.property1=xxx
vbroker.security.adapter.MyCodec.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

Example

You can write a custom authorization module using both user names and
groups. Use a HostLoginModule, since that is the only supported login
module for C++ VisiBroker security applications. HostLoginModule must
show the configurations required and the code required for CORBA
components to use the authorization framework. The client needs to have
these authorizations in order to access these components in the server.

The roles must be hardcoded into the authorization provider code. The
groups for a user can also be obtained from a different source
programmatically and the subject can be populated with groups as
privileges added to the public credentials of the subject in question, at
runtime, for use by VisiSecure authorization mechanism.

You can match the user/group with roles obtained from an external source
(for example, a legacy system) other than the Micro Focus rolemap
mechanism.

USE_STD_NS is a definition set up by VisiBroker to use the std namespace:

USE_STD_NS
typedef pair<std::string, std::string> String_String_Pair;
typedef pair< std::string, std::set<std::string> >
String_Set_Pair;
const std::string USE_CALLER_IDENTITY = (const char*)"use-
caller-identity";
const std::string RUNAS = (const char*)"runas.";
void CustomProviderImpl::initialize (const std::string&
name, vbsec::InitOptions& opts)
{

To store the name of the module:

_name = name;
cout << "Custom authorization service Provider : " << name
<< endl;
custProvider = this;

To print out the options given to the custom authorization service provider:

std::map<std::string, std::string> t_options;
std::map<std::string, std::string>::iterator itr;
std::basic_string <char>::size_type index1;
static const std::basic_string <char>::size_type npos = -
1;
std::basic_string<char> t_key, ts;

 t_options = *(opts.options);
for (itr = t_options.begin(); itr!=t_options.end(); itr++
) {
cout << "Options key :" << itr->first << ", value : " <<
itr->second << endl;
t_key = (itr->first).substr(0,RUNAS.size()-1);
if (t_key == RUNAS) {
cout << "runas property found :" << itr->first << endl;;

86 VisiBroker for C++ Developer’s Guide

ts = itr->first;
index1 = ts.find_last_of(".", ts.size()-1);
if (index1 != npos)
ts = ts.substr(index1+1, ts.size()-1);
else
ts = "";
cout << "runas role : " << ts << endl;
if (itr->second == USE_CALLER_IDENTITY)
_callerRunAsRoles.insert(ts);
else
_runAsMap.insert(String_String_Pair(ts, itr->second));
}
}

To store the logger reference:

_logger = opts.logger;

To store logLevel:

_logLevel = opts.logLevel;

You can also use an in-memory role table. To create the in-memory DB that
holds the users and groups, do the following:

createInMemoryDB();

return;
}
vbsec::PermissionCollection*
CustomProviderImpl::getPermissions(const vbsec::Resource*
res, const vbsec::Privileges* prv)
{
CustomProviderImpl::CustomPermissionCollectionImpl*
perm_coll = new
CustomProviderImpl::CustomPermissionCollectionImpl();
perm_coll->init((vbsec::Privileges*)prv);
return ((vbsec::PermissionCollection*) perm_coll);
}
std::string CustomProviderImpl::getRunAsAlias(const
std::string& s)
{
std::string s1;
std::map<std::string, std::string>::iterator it;
std::map< std::string, std::set<std::string> >::iterator
it2;
std::set<std::string>::iterator it3;

 it = _runAsMap.find(s);
if (it == _runAsMap.end()) {
it2 = _inMemoryDB.find(s);
if (it2 == _inMemoryDB.end())
throw CORBA::NO_PERMISSION((CORBA::ULong)0x56422501,
CORBA::CompletionStatus::COMPLETED_NO, (const char*)"The
RunAs Role specified does not exist");
it3 = _callerRunAsRoles.find(s);
if (it3 != _callerRunAsRoles.end())
s1 = USE_CALLER_IDENTITY;
else
s1 = (const char*)"";
}
else
s1 = it->second;

VisiBroker for C++ Developer’s Guide 87

return s1;
}
void CustomProviderImpl::createInMemoryDB()
{

For example, if the authorization requirement for the BankManager object
is that the clients should be members of the "Manager" role and for the
Account object, it is the "Customer" or "Teller" role:

1 To create the role entry "Manager" along with its user(s) and/or group(s)
as a set:

_role1_ug.insert("jjagadeesan"); // user "jjagadeesan"
_role1_ug.insert("FI.PSO"); // group "FI.PSO"
_inMemoryDB.insert(String_Set_Pair("Manager",
_role1_ug));

2 To create the role entry "Customer" along with its user(s) and/or
group(s) as a set:

_role2_ug.insert("admin"); // user "admin"
_inMemoryDB.insert(String_Set_Pair("Customer",
_role2_ug));

3 To create the role entry "Teller" along with its user(s) and/or group(s) as
a set:

_role3_ug.insert("admin"); //user "admin"
_role3_ug.insert("user"); // group "user"
_inMemoryDB.insert(String_Set_Pair("Teller",
_role3_ug));
}
std::set<std::string>*
CustomProviderImpl::getRoleEntries(std::string& role)
{
std::set<std::string> * roleEntries;
std::map< std::string, std::set<std::string> >::iterator
it;

 it = _inMemoryDB.find(role);
if (it == _inMemoryDB.end()) {
roleEntries = new std::set<std::string>();
roleEntries->clear();
}
else {
roleEntries = new std::set<std::string>(it->second);
}
return roleEntries;
}

4 Implementation of the functions of the
CustomPermissionCollectionImpl class:

void
CustomProviderImpl::CustomPermissionCollectionImpl::init
(vbsec::Privileges *prv)
{
_privileges = prv;
_provider = CustomProviderImpl::custProvider;
}
bool
CustomProviderImpl::CustomPermissionCollectionImpl::impl
ies (const ::vbsec::Permission& p) const
{

88 VisiBroker for C++ Developer’s Guide

bool matchedRole = false;
std::string userName;
std::string groupName;
string s = p.getName();
// if(_logLevel >= 5)
// _logger.notice(null, "Permission: " + s);
cout << "In CustomAuthorizationProvider::implies:
Permission role: " << s << endl;
vbsec::Privileges *privileges = _privileges;
vbsec::Subject& subject = privileges->getSubject();
std::set<vbsec::Principal *> principals =
subject.getPrincipals();
std::multimap<std::string, std::string> groupMap =
privileges->getAttributes();
std::multimap<std::string, std::string>::iterator
it_groups;
std::set<std::string> groups;
it_groups = groupMap.find("group");
while (it_groups != groupMap.end()) {
if (it_groups->first == "group") {
groups.insert(it_groups->second);
break;
}
++it_groups;
}
std::set<std::string> * roleEntities = _provider-
>getRoleEntries(s);

5 To check the given role for existence in the internal table:

if (!roleEntities)
{
cout << "In CustomAuthorizationProvider::implies: Role:
" << s << " not found in roles table" << endl;
return false;
}
if(roleEntities->empty())
{
cout << "In CustomAuthorizationProvider::implies: Role:
" << s << " not found in roles table" << endl;
delete roleEntities;
return false;
}

6 To check if one of the principals matches the role:

if (principals.empty())
{
delete roleEntities;
return false;
}
std::set<vbsec::Principal *>::iterator i;
std::set<std::string>::iterator i_set_str, i_set_str2;
for (i = principals.begin(); i != principals.end(); i++
) {
vbsec::UserPrincipal *up =
dynamic_cast<vbsec::UserPrincipal*>(*i);
userName = up->getUserName();
cout << "In CustomAuthorizationProvider::implies:
Checking for username match: " << userName << endl;
i_set_str = roleEntities->find(userName);
if (i_set_str != roleEntities->end()) {

VisiBroker for C++ Developer’s Guide 89

cout << "In CustomAuthorizationProvider::implies: Found
role entry for username:" << userName << endl;
delete roleEntities;
return true;
}
}

7 To check if at least one user group can be found for the role:

if (groups.empty())
{
delete roleEntities;
return false;
}
for (i_set_str = groups.begin(); i_set_str !=
groups.end(); i_set_str++) {
groupName = (*i_set_str);
cout << "In CustomAuthorizationProvider::implies:
Checking for groupname match: " << groupName << endl;
i_set_str2 = roleEntities->find(groupName);
if (i_set_str2 != roleEntities->end()) {
cout << "In CustomAuthorizationProvider::implies: Found
role entry for groupname:" << groupName << endl;
delete roleEntities;
return true;
}
}
delete roleEntities;
return false; // all match failed
}

#ifndef _CUSTOMPROVIDER_H_
#define _CUSTOMPROVIDER_H_
#include "vbauthz.h"
#include <map>
#include <set>
#include <hash_map>
#include <string>
#include <iostream>
// typedef pair<std::string, std::string>
String_String_Pair;
// typedef pair<std::string, std::set> String_Set_Pair;
// USE_STD_NS is a define setup by VisiBroker to use the
std namespace
USE_STD_NS
class CustomProviderImpl : public
vbsec::AuthorizationServiceProvider
{
class CustomPermissionCollectionImpl : public
vbsec::PermissionCollection
{
public:
CustomPermissionCollectionImpl() {}
void init(vbsec::Privileges* prv);
virtual bool implies (const vbsec::Permission& p) const;
virtual ~CustomPermissionCollectionImpl () {}
private:
vbsec::Privileges* _privileges;
CustomProviderImpl* _provider;
};
public:

90 VisiBroker for C++ Developer’s Guide

CustomProviderImpl() : _logLevel((int)0), _name(""),
_logger((vbsec::SimpleLogger*)NULL)
{}
virtual std::string getName() const
{
return _name;
}
virtual void initialize (const std::string& name,
vbsec::InitOptions& opts);
vbsec::PermissionCollection* getPermissions(const
vbsec::Resource* res, const vbsec::Privileges* prv);
std::string getRunAsAlias(const std::string& s);
void createInMemoryDB();
std::set<std::string>* getRoleEntries(std::string& role
);
static CustomProviderImpl * custProvider;
private:
CORBA::ULong _logLevel;
::vbsec::SimpleLogger* _logger;
std::map<std::string, std::string> _runAsMap;
std::set<std::string> _callerRunAsRoles;
std::string _name;
std::map<std::string, std::set<std::string> >
_inMemoryDB; // contains the known roles
std::set<std::string> _role1_ug, _role2_ug, _role3_ug; /
/ contains the users and/or groups for the roles in
_inMemoryDB
};
REGISTER_CLASS(CustomProviderImpl)
CustomProviderImpl * CustomProviderImpl::custProvider;
#endif

You can secure your application using VisiBroker properties and the JAAS
configuration file. The example client and server uses username/password
authentication of the client on the server and also for the server's self-
authentication.

Look at the different properties files (server.properties, client.properties)
and config files (server.config and client.config) in the <install_dir>\
examples\vbroker\security/corbaauthz folder.

The server configuration file is the JASS configuration file which defines the
Hostlogin modules.

myrealm {
com.borland.security.provider.authn.HostLoginModule
required debug=true;
};

To enable security, you must set up the following properties in the server or
client properties file:

Property Description
vbroker.security.disable=false The default value is false. If set to true, disables all security

services.
vbroker.security.login=true If this property is set to true, during initialization, this property

tries to log on to all the realms listed by the property
vbroker.security.login.realms.

vbroker.security.login.realms=
myrealm

This gives a list of comma-separated realms to login to. This is
used when login takes place, either through property
vbroker.security.login (set to true) or API login.

VisiBroker for C++ Developer’s Guide 91

Trust Providers
You can also plugin the assertion trust mechanism. Assertion can happen in
a multi-hop scenario, or can be explicitly called through the assertion API.
The server can have rules to determine whether the peer is trusted to make
the assertion or not. The default implementation uses property settings to
configure trusted peers on the server side. During run-time, peers must
pass authentication and authorization in order to be trusted for making
assertions. There can be only one Trust Provider for the entire security
service.

To plugin the assertion trust mechanism, you will need to set the following
properties:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=
xxx
vbroker.security.trust.trustProvider.MyProvider.property2=
xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

vbroker.security.peerAuthenticati
onMode=none

Sets the peer authentication mode.

When set to none, Authentication is not required. During
handshake, no certificate request will be sent to the peer.
Regardless of whether the peer has certificates, a connection will
be accepted. There will be no transport identity for the peer.

For other authentication mode values, see the property
“vbroker.security. peerAuthenticationMode” (for Java),
“vbroker.security. peerAuthenticationMode” (for C++).

vbroker.security.authentication.c
onfig=cpp_server.config

This specifies the path to the configuration file used for
authentication. The default value is null.

vbroker.security.domain.bank.defa
ultAccessRule=grant

Specifies whether to grant or deny access to the domain by
default in the absence of security roles for the provided domain.
It handles requests for methods not in the rolemap file.
Acceptable values are grant or deny.

vbroker.security.authDomains=bank Specifies a comma-separated list of available authorization
domains. For example:

vbroker.security.authDomains=domain1,domain2
vbroker.security.logLevel=LEVEL_D
EBUG

Use this property to control the degree of logging.

vbroker.security.login.realms=GSS
UP#myrealm

This gives a list of comma-separated realms to login to. This is
used when login takes place, either through property
vbroker.security.login (set to true) or API login

Property Description

92 VisiBroker for C++ Developer’s Guide

VisiBroker Secur i ty Guide 93

Creating Secure CORBA
Applications Using Java
This section describes the use of VisiSecure to make secure connections for
CORBA applications using Java.

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client
or secure server. For CORBA users the properties are all stored in files that
are located through config files. Wherever appropriate the usage models for
clients and servers are separately discussed. All properties can be set in the
VisiBroker Management Console by right-clicking the node of interest in the
Navigation Pane and selecting “Edit Properties.”

Note

These steps are similar for both Java and C++ applications.

Step One: Providing an identity
An identity can be a username/password/realm triad, or certificates can be
used. These can be collected through JAAS modules or through APIs.

Clients

For clients using usernames and passwords, there can be constraints about
what the client knows about the server's realms. Clients may have intimate
knowledge of the server's supported realms or none at all at the time of
identity inquiry. Note also that clients authenticate at the server end.

Servers

For servers using username and password identities, authentication is
performed locally since the realms are always known.

There can be constraints on certificate identities as well, depending on
whether they are stored in a KeyStore or whether they are specified
through APIs.

Keeping these constraints in mind, the VisiSecure Server supports the
following usage models, any of which could be used to provide an identity to
the server or client:

• “Username/password authentication, using JAAS modules, for known realms” on
page 94

• “Username/password authentication, using APIs” on page 94

• “Certificate-based authentication, using KeyStores via property settings” on page 94

• “Certificate-based authentication, using KeyStores via APIs” on page 94

• “Certificate-based authentication, using APIs” on page 94

• “pkcs12-based authentication, using KeyStores” on page 96

• “pkcs12-based authentication, using APIs” on page 96

94 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

Username/password authentication, using JAAS
modules, for known realms
If the realm to which the client wishes to authenticate is known, the client-
side JAAS configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

Username/password authentication, using APIs
The following code sample demonstrates the use of the login APIs. This case
uses a wallet. For a full description of the four login modes supported, go to
the VisiSecure for Java API and SPI sections.

public static void main(String[] args) {
 //initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);
 com.borland.security.Context ctx =
(com.borland.security.Context)
 orb.resolve_initial_references("VBSecurityContext");
 if(ctx != null) {
 com.borland.securty.IdentityWallet wallet =
 new
com.borland.security.IdentityWallet(<username>,
 <password>.toCharArray(), <realm>);
 ctx.login(wallet);
 }
}

Certificate-based authentication, using KeyStores via
property settings
By setting the property
vbroker.security.login.realms=Certificate#ALL, the client will be
prompted for keystore location and access information. For valid values, see
“Certificate mechanism”.

Certificate-based authentication, using KeyStores via
APIs
You can use the same APIs discussed in “Username/password authentication,
using APIs” on page 94 to login using certificates through KeyStores. The
realm name in the IdentityWallet should be CERTIFICATE#ALL, the
username corresponds to an alias name in the default KeyStore that refers
to a Key entry, and the password refers to the Private Key password (also
the KeyStore password) corresponding to the same Key entry.

Certificate-based authentication, using APIs
If you do not want to use KeyStores directly, you can specify certificates
and private keys using the CertificateWalletAPI. This class also
supports the pkcs12 file format.

X509Certificate[] certChain = ...list-of-X509-
certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
 new com.borland.security.CertificateWallet(alias,
 certChain, privKey, "password".toCharArray());

VisiBroker Secur i ty Guide 95

Steps to secure c l ients and servers

The first argument in the new Certificate wallet is an alias to the entry in the
KeyStore, if any. If you are not using keystores, set this argument to null.

96 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

pkcs12-based authentication, using KeyStores
You can use the same APIs discussed in “Username/password authentication,
using APIs” on page 94 to login using pkcs12 KeyStores. The realm name in
the IdentityWallet should be CERTIFICATE#ALL, the username corresponds
to an alias name in the default KeyStore that refers to a Key entry, and the
password refers to the password needed to unlock the pkcs12 file. The
property javax.net.ssl.KeyStore specifies the location of the pkcs12
file.

pkcs12-based authentication, using APIs
See “Certificate-based authentication, using APIs” on page 94.

Step Two: Setting properties and Quality of
Protection (QoP)
There are several properties that can be used to ensure connection Quality
of Protection. The VisiBroker ORB security properties for Java can be used
to fine-tune connection quality. For example, you can set the cipherList
property for SSL connections to set cryptography strength.

QoP policies can be set using the ServerQoPConfig and the
ClientQoPConfig APIs for servers and clients, respectively. These APIs
allow you set target trust (whether or not targets must authenticate), the
transport policy (whether or not to use SSL or another secure transport
mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set access policies
for POA objects. For QoP API information, go to the VisiSecure for Java API
and SPI book.

Step Three: Setting up Trust
Use the API setTrustManager for the proper security context to provide an
X509TrustManager interface implementation. If you have certificates that
need to be trusted, place them in a KeyStore and use
javax.net.ssl.trustStore property to set it. A default
X509TrustManager provided by the security service will be used if one is
not provided.

Other trust policies are set in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)” on page 96.

Step Four: Setting up the Pseudo-Random
Number Generator
Setting up the PRNG is required if you intend to use SSL communication.

1 Construct a SecureRandom object and seed it.

2 Set this object as your PRNG by using the
com.borland.security.Context interface, setSecureRandom
method.

For detailed information on the com.borland.security.Context
interface, see the VisiSecure for Java API and SPI.

VisiBroker Secur i ty Guide 97

Examining SSL related informat ion

Step Five: If necessary, set up identity
assertion
When a client invokes a method in a mid-tier server which, in the context of
this request, invokes an end-tier server, then the identity of the client is
internally asserted by the mid-tier server by default. Therefore, if
getCallerPrincipal is called on the end-tier server, it will return the
Client's principal. Here the client's identity is asserted by the mid-tier
server. The identity can be a username or certificate. The client's private
credentials such as private keys or passwords are not propagated on
assertion. This implies that such an identity cannot be authenticated at the
end-tier.

If the user would like to override the default identity assertion, there are
APIs available to assert a given Principal. These APIs can be called only on
mid-tier servers in the context of an invocation and with special
permissions. For more information, see the VisiSecure for Java API and
SPI.

Examining SSL related information
VisiSecure provides APIs to inspect and set SSL-related information. The
SecureContext API is used to specify a Trust Manager, PRNG, inspect the
SSL cipher suites, and enable select ciphers.

Clients

To examine peer certificates, use getPeerSession() to return an
SSLSession object associated with the target. You can then use standard
JSSE APIs to obtain the information therein.

Servers

To examine peer certificates on the server side, you set up the SSL
connection with com.borland.security.Context and use the APIs with
com.borland.security.Current to examine the SSLSession object
associated with the thread.

SSL Example
The Bank SSL example included in the visibroker\examples directory
contains a simple Bank interface to open a bank account and to query the
balance. It illustrates basic communication using the ORB and SSL with
VisiBroker for C++ and Java. In addition, this example demonstrates a
modular approach to security by moving the code required to setup an SSL
connection into initializers and properties.

From this example, you will learn how to:

• Request for secure transport in an application

• Install certificate identities in a server or a client

• Install a certificate in the trustpoint repository using the API or the
property vbroker.security.trustpointsRepository

• Check the cipher suite and the identity of a peer

• Interoperate between C++ and Java

To run the example:

98 VisiBroker Secur i ty Guide

SSL Example

1 Ensure that the VisiBroker Smart Agent (osagent executable) is running
on your network.

2 Build the example in the directory by typing:

make -f Makefile_java on UNIX, or

nmake /f Makefile_java on Windows

This will run the Bank.idl through the idl2java compiler. It will also build
SecureServer.class, SecureClient.class and other class files.

3 The following steps are the recommended way to add certificate-chain
identity, to construct a CertificateWallet, and to log in with a security
context.

The old method of inserting a certificate chain by using API
setPKprincipal using (byte [][]derCertChain, byte[]
privateKey, String passPhrase)) and resolving initial reference of
"SecurityCurrent" on the ORB, still exists for backward compatibility. In
this case, the requirement is the setPKPrincipal() API should be called
prior to calling resolve_initial_references() API.

4 To make the server run in the background, enter the following command:

prompt> vbj -DORBpropStorage=java_server.properties
SecureServer

(start vbj -DORBpropStorage=java_server.properties
SecureServer on Windows)

5 To make the C++ server run in the background, enter the following
command:

prompt> SecureServer -
DORBpropStorage=cpp_server.properties \ -
Dvbroker.orb.dynamicLibs="path to the dynamic library"/
Init.so &

(start SecureServer ...args... on Windows)

6 To connect to the Java SecureClient:

prompt>vbj -DORBpropStorage=java_client.properties
SecureClient

7 To connect to the C++ SecureClient:

prompt>SecureClient -
DORBpropStorage=cpp_client.properties

8 To set up the identity for the server, enter the commands below in the
SecureServer:

byte [][] certChain = {
user_cert_1.getBytes (),
user_cert_2.getBytes (),
user_cert_3.getBytes (),
user_cert_4.getBytes (),
ca_cert.getBytes ()
};

9 To construct a CertificateWallet, enter the following commands in the
SecureServer:

com.borland.security.provider.CertificateWallet wallet =
new com.borland.security.provider.CertificateWallet
(null, certChain,
encryptedPrivateKey.getBytes (),
"Delt@$$$".toCharArray());

VisiBroker Secur i ty Guide 99

Creating Secure CORBA
Applications Using C++
This section describes the use of VisiSecure to make secure connections for
CORBA applications using C++.

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client
or secure server. For CORBA users the properties are all stored in files that
are located through config files. Wherever appropriate the usage models for
clients and servers are separately discussed. All properties can be set in the
VisiBroker Management Console by right-clicking the node of interest in the
Navigation Pane and selecting “Edit Properties.”

Note

These steps are similar for both Java and C++ applications.

Step One: Providing an identity
An identity can be a username/password/realm triad, or certificates can be
used. These can be collected through LoginModules or through APIs.

For more information on server-side and client-side authentication, see
“Authenticating clients with usernames and passwords”.

Clients

For clients using usernames and passwords, there can be constraints about
what the client knows about the server's realms. Clients may have intimate
knowledge of the server's supported realms or none at all at the time of
identity inquiry. Note also that clients authenticate at the server end.

Servers

For servers using username and password identities, authentication is
performed locally since the realms are always known.

There can be constraints on certificate identities as well, depending on
whether they are stored in a KeyStore or whether they are specified
through APIs. The KeyStore in VisiSecure for C++ refers to a directory
structure similar to a trustpointRepository, which contains the
certificate chain.

Keeping these constraints in mind, VisiBroker supports the following usage
models, any of which could be used to provide an identity to the server or
client:

• “Username/password authentication, using JAAS modules, for known realms” on
page 100

• “Username/password authentication, using APIs” on page 100

• “Certificate-based authentication, using KeyStores via property settings” on
page 100

• “Certificate-based authentication, using KeyStores via APIs” on page 100

100 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

• “Certificate-based authentication, using APIs” on page 100

• “pkcs12-based authentication, using KeyStores” on page 101

• “pkcs12-based authentication, using APIs” on page 101

Username/password authentication, using JAAS
modules, for known realms
If the realm to which the client wishes to authenticate is known, the client-
side JAAS configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

Username/password authentication, using APIs
The following code sample demonstrates the use of the login APIs. This case
uses a wallet. For a full description of the four login modes supported, see
“VisiSecure for C++ APIs” and “Security SPI for C++”

int main(int argc, char* const* argv) {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityContext");
 Context* c = dynamic_cast<Context*> (obj.in());
 // Obtain a walletFactory
 CORBA::Object_var o = orb-
>resolve_initial_references("VBWalletFactory");
 vbsec::WalletFactory* wf =
dynamic_cast<vbsec::WalletFactory*>(o.in());
 vbsec::Wallet* wallet = wf->createIdentityWallet(
<username>, <password>, <realm>);
 c->login(*wallet);
}

Certificate-based authentication, using KeyStores via
property settings
By setting the property
vbroker.security.login.realms=Certificate#ALL, the client will be
prompted for keystore location and access information. For valid values, see
“Certificate mechanism”.

Certificate-based authentication, using KeyStores via
APIs
You can use the same APIs discussed in ““Username/password authentication,
using APIs” on page 100” to login using certificates through KeyStores. The
realm name in the IdentityWallet should be CERTIFICATE#ALL. The
username corresponds to an alias name in the default KeyStore that refers
to a Key entry, and the password refers to the Private Key password (also
the KeyStore password) corresponding to the same Key entry.

Certificate-based authentication, using APIs
If you do not want to use KeyStores directly, you can import certificates and
private keys using the CertificateFactoryAPI. This class also supports
the pkcs12 file format.

VisiBroker Secur i ty Guide 101

Steps to secure c l ients and servers

X509Certificate[] certChain = ...list-of-X509-
certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
new com.borland.security.CertificateWallet(alias,
certChain, privKey, "password".toCharArray());

The first argument in the new Certificate wallet is an alias to the entry in the
KeyStore, if any. If you are not using keystores, set this argument to null.

pkcs12-based authentication, using KeyStores
You can use the same APIs discussed in “Username/password authentication,
using APIs” on page 100 to login using pkcs12 KeyStores. The realm name in
the IdentityWallet should be CERTIFICATE#ALL, the username corresponds
to an alias name in the default KeyStore that refers to a Key entry, and the
password refers to the password needed to unlock the pkcs12 file. The
property javax.net.ssl.KeyStore specifies the location of the pkcs12
file.

pkcs12-based authentication, using APIs
See “Certificate-based authentication, using APIs” on page 100.

Step Two: Setting properties and Quality of
Protection (QoP)
There are several properties that can be used to ensure connection Quality
of Protection. The VisiBroker ORB security properties for C++ can be used
to fine-tune connection quality. For example, you can set the cipherList
property for SSL connections to set cryptography strength.

QoP policies can be set using the ServerQoPConfig and the
ClientQoPConfig APIs for servers and clients, respectively. These APIs
allow you set target trust (whether or not targets must authenticate), the
transport policy (whether or not to use SSL or another secure transport
mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set access policies
for POA objects.

Step Three: Setting up Trust
Setting up of trust can be done through property
vbroker.security.trustpointRepository=Directory:<path to
directory>, where the directory contains the trusted certificates.

Other trust policies are set in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)” on page 101.

Step Four: If necessary, set up identity
assertion
When a client invokes a method in a mid-tier server which, in the context of
this request, invokes an end-tier server, then the identity of the client is
internally asserted by the mid-tier server by default. Therefore, if
getCallerSubject is called on the end-tier server, it will return the
Client's principal. Here the client's identity is asserted by the mid-tier
server. The identity can be a username or certificate. The client's private

102 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

credentials such as private keys or passwords are not propagated on
assertion. This implies that such an identity cannot be authenticated at the
end-tier.

If the user would like to override the default identity assertion, there are
APIs available to assert a given Principal. These APIs can be called only on
mid-tier servers in the context of an invocation and with special
permissions.

VisiBroker Secur i ty Guide 103

Secur i ty conf igurat ion whi le sett ing up a server engine

Security configuration while setting up a server
engine

In order to be able to use secure transport while defining a custom server
engine, the following properties need to be set for VisiSecure for C++:

vbroker.se.<SE_NAME>.scms=<IIOP_SCM_NAME>,<SSL_SCM_NAME>
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.manager.type=Socke
t
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.listener.type=SSL
vbroker.se.<SE_NAME>.scm.<SSL_SCM_NAME>.dispatcher.type=Th
readPool

Where:

• <SE_NAME> is the name of the custom-defined server engine.

• <SSL_SCM_NAME> is the name to be given to the SSL server connection
manager (scm).

• <IIOP_SCM_NAME> is the name of an IIOP scm defined within the same
sever engine.

It is important to note that the 'manager.type' and the 'listener.type' must
be initialized to the values indicated above whereas the 'dispatcher.type'
can be any of the allowable types. The default value is ThreadPool. (For
more information, see ”Managing Threads and Connections” in the
VisiBroker for C++ Developer's Guide.)

Another important point to be noted here is that a valid IIOP scm
(<IIOP_SCM_NAME> in this case) must be defined before the SSL scm in
the SCM list of custom server engine. All the properties of the IIOP scm can
be set to any of the allowable values with the following two exceptions:

vbroker.se.<SE_NAME>.scm.<IIOP_SCM_NAME>.manager.type=Socket
vbroker.se.<SE_NAME>.scm.<IIOP_SCM_NAME>.listener.type=IIOP

Examining SSL related information
VisiBroker provides APIs to inspect and set SSL-related information. The
SecureContext API is used to inspect the SSL cipher suites and enable
select ciphers.

Clients

To examine peer certificates, use getPeerSession() to return an
SSLSession object associated with the target. You can then use standard
JSSE APIs to obtain the information therein.

Servers

To examine peer certificates on the server side, you set up the SSL
connection with com.borland.security.Context and use the APIs with
com.borland.security.Current to examine the SSLSession object
associated with the thread.

104 VisiBroker Secur i ty Guide

SSL example

SSL example
This section demonstrates how to make a minimal SSL configuration for the
client and server to communicate using SSL to enable them to perform
mutual PKI authentication on the simplest, non-security aware VisiBroker
example.

If you are using the same executables from basic/bank_agent to secure the
non-security aware application, then no changes in the source code are
required.

Using properties to install certificates, private
key and trustpoints
1 Copy only the executables of the Server (Server.exe on windows) and

Client (Client.exe on windows) to this directory.

2 Make sure that osagent is up and running as usual.

3 Launch the server using the command below:

prompt> Server -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=vbsec

4 Launch the client using the command below:

prompt> Client -DORBpropStorage=cpp_client.properties -
Dvbroker.orb.dynamicLibs=vbsec

5 Open the property files cpp_server.properties,
cpp_client.properties and notice how certificates and private keys
are installed using wallet property set in that file.

6 Browse through the content of subdirectory identities and trustpoints and
understand how the directory wallet and trustpoints are structured.

The value of vbroker.orb.dynamicLibs specifies the security library
name. You can either:

• Enter vbsec, as in the example above. This loads VisiSecure (on any
platform) without your needing to know the full pathname, but only
works if the VisiBroker lib directory is present on the shared library load
path.

• Enter the full shared library name and path, including the prefix and
shared library suffix. Note that the VisiSecure shared library name
depends on the operating system and platform. For example,

• on win32, it is vbsec.dll,

• on Solaris 64 bit, it is vbsec64.so,

• on HPUX 64 bit std build, it is vbsec64_p.sl.

It is recommended that you check your ${VBROKER_DIR}/lib directory
if you intend to use this option.

Using initializers to install certificates, private
key, trustpoints and CRL
This section is similar to the previous section, except that rather than using
properties, shared libraries are used at runtime to install the certificates,
keys, trustpoints and CRL. The advantage over the use of properties is that
the shared library may also perform more security related initializations that

VisiBroker Secur i ty Guide 105

are not possible to be done using properties, while at the same time, shared
libraries keep the original non-secure aware application code intact. The
shared libraries are transparent from the application point of view.

Build this example if you have not done so. In the previous section, we did
not build, we just copied the executables. Building this example
successfully, will create shared libraries: ServerInit.<ext> and
ClientInit.<ext>

where <ext> depends on your platform:

for Windows, it is dll,
for Linux and Solaris, it is so,
for IBM, it is a,
for HP-UX, it is sl.

1 Build the example by executing the command

nmake cpp (for Windows) or
make cpp (for UNIX)

2 Make sure osagent is up and running.

3 Launch the server using the command below:

prompt> Server -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=ServerInit.<ext>

4 Launch the client using the command below:

prompt> Client -DORBpropStorage=cpp_server.properties -
Dvbroker.orb.dynamicLibs=ClientInit.<ext>

5 Open the shared library source code ServerInit.C and ClientInit.C
to notice how certificates, keys, trustpoints and CRL are installed on the
ORB. The difference between ServerInit.C and ClientInit.C is only
the set of certificates, keys, trustpoints and CRL that is installed. You can
swap, for instance: ServerInit for client and ClientInit for server.

6 Reading through the code, you may notice that CRL will be installed only
when we provide additional -Dvbroker.app.useCRL and therefore
launching the server, for example, becomes:

prompt> Server -DORBpropStorage=cpp_server.properties -
Dvboker.app.useCRL=true -
Dvbroker.orb.dynamicLibs=ServerInit.<ext>

Note: CRL, for this example, is prepared in such a way that when installed,
the certificate that is directly issued by a trustpoint is revoked.

There is only one certificate directly issued by a trustpoint in this example.
Therefore, any usage of CRL in any server or client or both will result in the
SSL authentication failure and in turn, client will get NO_PERMISSION
exception.

The failure can be because the client is not trusted by the server (if CRL is
installed on the server) or vice versa (if the CRL is installed on the client) or
both.

Using APIs with Security aware applications:
SecureServer and SecureClient
This section demonstrates how the applications that are written with
VisiSecure in mind take full advantage of the control and power of
VisiSecure features using APIs.

1 Build this example in this directory by executing the command:

106 VisiBroker Secur i ty Guide

nmake cpp (for windows) or
make cpp (for unix).

When the build succeeds, the executables SecureServer.exe on
Windows and SecureClient.exe on Windows are created.

2 Make sure the osagent is up and running.

3 Launch the server using the command below:

prompt> SecureServer

4 Launch the client using the command below:

prompt> SecureClient

5 Launch either the server or client or both using -
Dvbroker.app.useCRL=true, and notice how the mutual SSL
authentication fails and client gets NO_PERMISSION exception.

For example,

prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from SecureServer.C, SecureClient.C

• how they perform the security initialization in their main() and after
ORB_Init().

• how they impose peerAuthenticationMode=require_and_trust
and alwaysSecure=true through QoP

Using APIs with pkcs12Server
This section demonstrates how to use VisiSecure API for handling of a
PKCS12 storage, a very widely acceptable storage format for certificates
and private keys.

1 Build this example in this directory by executing the command:

nmake c pp (for windows) or
make cpp (for unix).

When the build succeeds, the executable pkcs12Server.exe is created
on Windows.

2 Make sure the osagent is up and running.

3 Launch the server using the command below:

prompt> pkcs12Server frans.pfx frans

4 Launch the client using the command below:

prompt> SecureClient

5 Launch the client using -Dvbroker.app.useCRL=true, and notice how
the mutual SSL authentication fails and client gets NO_PERMISSION
exception.

prompt> SecureClient -Dvbroker.app.useCRL=true

6 Read and learn from pkcs12Server.C how it installs certificates and a
private key from a PKCS12 file.

VisiBroker Secur i ty Guide 107

Security Properties for Java

Property Description Default
vbroker.security.logLevel Use this property to control the degree of logging. 0

means no logging and 7 means maximum logging
(debug messages).

0

vbroker.security.secureTransport This property controls whether the transport
connection is encrypted or not. If set to true,
transport messages are encrypted. If set to false
they are in the clear.

true

vbroker.security.alwaysSecure This property together with the secureTransport
property controls the default QoP on the client-side.
If both set to true then transport QoP is set to
SECURE_ONLY, which means the client will only accept
secure transport. If either of them is set to false
then Client does not mandate security at the
transport layer.

false

vbroker.security.server.transport This property is used on the server side to define
server transport QoP. Acceptable values are
CLEAR_ONLY, SECURE_ONLY or ALL. This allows the
client that needs either CLEAR_ONLY or SECURE_ONLY
to be able to connect to a server. This property will
take effect only when property secureTransport is
true.

SECURE_
ONLY

vbroker.security.server.
requireUPIdentity

Set this to true if the server requires the client to
send a Username/Password for authentication
(regardless of certificate-based authentication). This
is a server-side property.

n/a

vbroker.security.disable If set to true, disables all security services. true

vbroker.security.transport.protocol This property is used to select a security transport
protocol. For a standard list of protocol version
names, go to https://docs.oracle.com/en/java/
javase/<javaversion>/docs/specs/security/
standard-names.html#sslcontext-algorithms. For
example:

https://docs.oracle.com/en/java/javase/11/docs/specs/
security/standard-names.html

By default, VisiBroker for Java establishes the
highest TLS version supported by the underlying Java
VM JSSE provider, and uses that as the preferred
maximum TLS version bound.

For information on these protocols, see the Oracle
Corporation documentation.

Highest
TLS
version
supported

vbroker.security.
requireAuthentication

Server-side only property used to specify whether
the client is required to authenticate.

false

vbroker.security.
enableAuthentication

Note: This property is deprecated. See
“Authentication” for recommended methods of
specifying authentication.

Server-side only property. This back-compatible
property is used for supporting PasswordBackEnd
style authentication. When set to true, the program
will try to construct the specified PasswordBackEnd
for authenticating.

false

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

108 VisiBroker Secur i ty Guide

Secur i ty Propert ies for Java

vbroker.security.authentication.
callbackHandler

Specifies the callback handler used for login modules
to use for interacting with user for credentials. You
can specify one of the following or your own custom
callback handler:

com.borland.security.provider.authn.CmdLin
eCallbackHandler
com.borland.security.provider.authn.HostCa
llbackHandler

CmdLineCallbackHandler has password echo on,
while HostCallbackHandler has password echo off.

n/a

vbroker.security.authentication.
config

This specifies the path to the configuration file used
for authentication.

null

vbroker.security.authentication.
retryCount

Number of times to retry if remote authentication
failed.

3

vbroker.security.authentication.
clearCredentialsOnFailure

By default, if the authorization realm finds the
authenticator is incorrect after the maximum number
of retries have been attained, the ORB retains the
authenticator. If you want the ORB to clear the
authenticator (the credential) after the maximum
number of retries, set this property to true.

false

vbroker.security.login If set to true, at initialization-time this property tries
to login to all the realms listed by property
vbroker.security.login.realms.

false

vbroker.security.login.realms This gives a list of comma-separated realms to login
to. This is used when login takes place, either
through property vbroker.security.login (set to
true) or API login using login().

n/a

vbroker.security.vault This property is used to specify the path to the vault
file. This property will take effect regardless of
whether vbroker.security.login is set to true or
false.

n/a

vbroker.security.identity.
reauthenticateOnFailure

When set to true the security service will attempt to
reacquire authentication information using the
CallbackHandler. This property require the callback
handler to be set either using the appropriate
property or at runtime by calling the appropriate
method.

false

vbroker.security.identity.
enableReactiveLogin

When set to true, the security service behaves as
follows: If the security service cannot find an identity
for any of the targets supported by a server it is
attempting to communicate with, it will then attempt
to acquire credentials for one of the targets in the
target object's IOR. If a corresponding authentication
realm is available for this target (that the user
chooses to provide credentials for), then
authentication is also attempted locally.

Reactive login requires a callback handler to be set
either using the appropriate property or at runtime
by calling the appropriate method.

true

vbroker.security.authDomains Specifies a comma-separated list of available
authorization domains. For example:

vbroker.security.authDomains=<dom1>,<doma2
>…

null

vbroker.security.domain.
<domain_name>.rolemap_path

Specifies the location of the RoleDB file that
describes the roles used for authorization. This is
scoped within the domain <domain_name> specified
in vbroker.security.authDomains.

n/a

Property Description Default

VisiBroker Secur i ty Guide 109

Secur i ty Propert ies for Java

vbroker.security.domain.
<domain_name>.rolemap_enableRefresh

When set to true, enables dynamic loading of the
RoleDB file specified in
vbroker.security.domain.<domain_name>.rolema
p_path property. The interval of dynamic loading is
specified by property
vbroker.security.domain.<domain_name>.rolema
p_refreshTimeInSeconds.

false

vbroker.security.domain.
<domain_name>.
rolemap_refreshTimeInSeconds

Specifies the rolemap refresh time in seconds. 300

vbroker.security.domain.
<domain name>.runas.
<run_as_role_name>

Specifies the name of the run-as role. The value can
be either use-caller-identity to have the caller
principal be in the run-as role, or specify an alias for
a run-as principal for the run-as role name.

n/a

vbroker.security.domain.
<domain_name>.defaultAccessRule

Specifies whether to grant or deny access to the
domain by default in the absence of security roles for
the provided domain. Acceptable values are grant or
deny.

grant

vbroker.security.
peerAuthenticationMode

Sets the peer authentication Mode. Possible values
are:

REQUIRE
REQUIRE_AND_TRUST
REQUEST
REQUEST_AND_TRUST
NONE

Note that the REQUEST and REQUEST_AND_TRUST
modes cannot receive peer certificate chains due to
JSSE restrictions.

NONE

vbroker.security.
trustpointsRepository

Specifies a path to the directory containing trusted
certificates and CRLs or to a trusted Keystore whose
values are implementations of
TrustedCertificateEntry. Default values are either
a directory, given in the format
Directory:<path_to_certs> or a Keystore, given in
the format Keystore:<path_to_keystore>.

n/a

vbroker.security.defaultJSSETrust If set to true, the JSSE default trust files like
cacerts and jssecacerts, if present in JRE, will be
used to load trusted certificates.

false

vbroker.security.assertions.trust.
<n>

This property is used to specify a list of trusted roles
(specified with the format
<role>@<authorization_domain>). <n> is a
uniquely identified for each trust assertion rule as a
list of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAd
min@default means this process trusts any assertion
made by the ServerAdmin role in the default
authorization domain.

n/a

vbroker.security.assertions.trust.
all

Setting to true will trust all the assertion made by
peers.

false

vbroker.security.cipherList Set this property to a comma-separated list of
ciphers to be enabled by default on startup. If not
set, a default list of cipher suites will be enabled.
These should be valid SSL Ciphers.

If this property is set but no certificates are
configured, all non-anonymous cipher suites
specified as part of this property’s value are ignored;
only the anonymous cipher suites specified as part of
this property will remain actively available for the
SSL handshake.

n/a

vbroker.security.controlAdminAccess Set this to true for enabling Server Manager
operations on a Secure Server.

false

Property Description Default

110 VisiBroker Secur i ty Guide

vbroker.security.serverManager.
authDomain

Points to a security domain listed in
vbroker.security.authDomains. The specified
domain is used for the Server Manager's role-based
access control checks. A rolemap must be specified
for the domain.

n/a

vbroker.security.serverManager.
role.all

Specifies the role name required for accessing all
Server Manager operations.

n/a

vbroker.security.serverManager.
role.<method_name>

Specifies the role name required for accessing the
specified method of the Server Manager.

n/a

vbroker.security.wallet.type A wallet is a set of directories containing encrypted
private keys and certificate chains for each identity.
The possible values are:

Directory:<path_to_identities>

Use the Directory value to point to the directory
containing the directories for all identities.

PKCS12:.<path_to_PKCS#12_KeyStore>

Use the PKCS12 value to configure the PKCS#12
keystore directory. See “PKCS#12-based authentication
using KeyStores” for details.

n/a

vbroker.security.wallet.identity If the vbroker.security.wallet.type is set to
Directory, use to point to a sub-directory within the
path defined in vbroker.security.wallet.type
that contains keys and/or certificate information for a
specific identity. Note that the value of this property
must consist only of lower-case letters.

If vbroker.security.wallet.type is set to PKCS12,
the VisiBroker for Java secure client then looks for a
file <identity>.p12 in the
<path_to_PKCS#12_KeyStore> folder.

n/a

vbroker.security.wallet.password Specifies the password used to decrypt the private
key or the password associated with the login.

n/a

vbroker.security.TSS.
authenticationTimeToLive

This property sets the time for re-authentication. 600 sec

vbroker.security.TSS.stateful This corresponds to the IOR component
CompoundSecMechList field 'stateful' (see OMG
specs).

This signifies whether or not the server supports
'stateful' SAS session and therefore the client can
make decisions according to the standard behavior
as defined by the OMG specifications.

true

vbroker.security.trustProvider This property is a part of the trust provider
plugability mechanism:

vbroker.security.trustProvider=xyz
where xyz can be any string.

The FQCN (fully qualified class name) of the
trustprovider class implementation:

vbroker.security.trustProvider.xyz.provider=<
FQCN of the trustprovider class impl>

You can set properties specific to the trustprovider
xyz:

vbroker.security.trustProvider.xyz.property1=
value1
vbroker.security.trustProvider.xyz.property2=
value2

set any
string

Property Description Default

VisiBroker Secur i ty Guide 111

vbroker.security.
supportIdentityAssertion

This property corresponds to the IdentityAssertion
flag in the IOR sub-component SASContextSec (see
the OMG specifications).

The default value is true. When set to true, it will
set the corresponding bit in the component. When
set to false, it will reset it.

This bit signifies whether or not the server supports
identity assertion and therefore, the client can react
according to the pre-defined behavior associated
with this bit. (See OMG specifications.)

true

vbroker.security.client.
supportNoDelegation

If set to true, the client will add support for
NoDelegate in TAG_SSL_SEC_TRANS tag.

false

vbroker.security.server.socket.
enabledProtocols

vbroker.security.client.socket.
enabledProtocols

These properties specify the SSL protocol version,
such as TLSv1.2 and TLSv1.3, during the SSL
handshaking process when using the VBJ security
module, on the server and client sides respectively.
The values should be a list of comma-separated
values indicating the enabled protocols.

(Note: the possible values are different for each
underlying JSSE implementation. Please refer to the
corresponding JSSE reference guide for the available
values).

The default depends on the JDK vendor. Note that
the highest available protocol version is determined
by the installed JSSE implementation.

Depends
on the
JDK
vendor.

vbroker.security.server.ssl.
handshakeTimeout

This property specifies the maximum time (in
milliseconds) for the SSL handshake to complete at
the Server side. It can help to prevent the Server
from hanging due to unresponsive Clients during SSL
handshake. The default timeout is 5000ms. To
disable the timeout, set it to 0.

5000

vbroker.se.iiop_tp.scm.ssl.
listener.trustInClient

A server side property. Set to true to have the
server require certificates from the client. These
certificates must also be trusted by the server by
setting the appropriate server-side trust properties.
For more information, see the
vbroker.security.trustpointsRepository
property and the
vbroker.security.defaultJSSETrust property.

false

vbroker.se.iiop_tp.scm.ssl.manager.
type

Specifies the type of Server Connection Manager.
The possible values are Socket and Socket_nio.

Socket

vbroker.se.iiop_tp.scm.ssl.
listener.selectorMax

Maximum number of NIO Selectors that can be
created in the NIO Selector Pool. Increasing this
value may improve the throughput in cases of very
high concurrent invocations. This property is only
applicable if NIO SSL Socket is configured at the
server-side.

20

vbroker.security.CRLRepository Specifies the directory where you want the list of
serial numbers of revoked certificates (Certificate
Revocation List (CRL)), issued by the Certificate
Authority (CA), to reside. All files in the directory will
be loaded and interpreted as CRL—no longer valid.
The CRL file must be in the DER format.

Once the CRLs are loaded, VisiSecure examines all
certificates sent by a peer during SSL handshake. If
any of the peer certificates appears in the CRLs, an
exception will be thrown and the connection will be
refused. For more information, see “Certificate
Revocation List (CRL) and revoked certificate serial
numbers”.

n/a

Property Description Default

112 VisiBroker Secur i ty Guide

SSL Server Connection Manager properties
The following table lists the SSL Server Connection Manager (SCM) properties.

In this table, possible values for <se_name> are:

• iiop_tp

• iiop_ts

vbroker.security.CSS.strict This property is used to configure the behavior of the
Client Security Service (CSS) when an exception is
received and the Security Attribute Service (SAS)
Context is not set by the Target Security Service
(TSS).

If this property is set to the default false, the CSS
will simply propagate the exception received. If this
property is set to true, the CSS throws a
BAD_PARAM exception instead, stating that the SAS
Context is missing.

false

vbroker.security.CSS.throw_ssl_
exceptions

Determines the form of exception messages thrown
by the CSS in response to SSL connection errors, for
example when a client tries to make a fresh request
over a SSL connection that has been very recently
closed by the connection idle and closure
mechanism.

If this property is set to the default false then a
CORBA_BAD_PARAM error is thrown, such as:

org.omg.CORBA.BAD_PARAM: CSIV2 Protocol
error: TSS did not respond with a SAS context
vmcid: 0x0 minor code: 0 completed: No

If this property is set to true then the exception
thrown is instead a NO_PERMISSION, as is the usual
case for SSL exceptions in VisiBroker. For example:

org.omg.CORBA.NO_PERMISSION: SSLException:
javax.net.ssl.SSLException: Connection has
been shutdown: javax.net.ssl.SSLException:
java.net.SocketException: Broken pipe vmcid:
0x0 minor code: 0 completed: No

false

vbroker.security.keyStore.keyPass This property is used to specify the keypass value of
the Java Keystore. If not set, the value set by the
JVM vendor’s javax.net.ssl.keyStorePassword
property will be used as the keypass.

n/a

Property Default Description
vbroker.se.<se_name>.scm.ssl.
manager.type

Socket Type of the Server Connection Manager. Possible
values are Socket and Socket_nio.

vbroker.se.<se_name>.scm.ssl.
manager.connectionMax

0 The maximum number of cached connections on
the server. The default 0 means that there is no
restriction.

vbroker.se.<se_name>.scm.ssl.
manager.connectionMaxIdle

0 Specifies the time, in seconds, which the server
uses to determine if an inactive connection should
be closed. If a cached connection has been idle
longer than this time, then the server closes the
connection.

vbroker.se.<se_name>.scm.ssl.
listener.type

SSL The type of protocol that the listener is using.

vbroker.se.<se_name>.scm.ssl.
listener.port

0 Specifies the port number to be used with the host
name property. 0 means that the system will pick
a random port number.

Property Description Default

VisiBroker Secur i ty Guide 113

vbroker.se.<se_name>.scm.ssl.
listener.proxyPort

0 Specifies the proxy port number to be used with
the proxy host name property. 0 means that the
system will pick a random port number.

vbroker.se.<se_name>.scm.ssl.
dispatcher.type

ThreadPool The type of thread dispatcher used in the Server
Connection Manager. Possible values are
ThreadPool and ThreadSession.

vbroker.se.<se_name>.scm.ssl.
dispatcher.threadMin

0 Specifies the minimum number of threads that the
Server Connection Manager must create.

vbroker.se.<se_name>.scm.ssl.
dispatcher.threadMax

0 Specifies the maximum number of threads that the
Server Connection Manager can create.

vbroker.se.<se_name>.scm.ssl.
dispatcher.threadMaxIdle

0 Specifies the time, in seconds, before an idle
thread is removed from the thread pool.

vbroker.se.<se_name>.scm.ssl.
connection.tcpNoDelay

false Specifies whether tcp_nodelay should be set
on the socket.

vbroker.se.<se_name>.scm.
<scm_name>.listener.selectorMax

20 Specifies the maximum number of NIO Selectors
that can be created in the NIO Selector Pool.
Increasing this value may improve the throughput
if there is a very high number of concurrent
invocations. This property is only applicable if NIO
SSL Socket is configured at the server side.

vbroker.security.mscapiAliasFix false This property was introduced to deal with the Java
bug https://bugs.openjdk.java.net/browse/JDK-
6483657. This bug has now been fixed.

The bug meant it was not possible to access some
certificates in the store when they have the same
alias as another certificate.

VisiBroker recommends setting this property to
true unless it is known that there are definitely no
certificates sharing an alias.

vbroker.security.
identityCertificates.
nameMustContain

null When looking for a client certificate, only consider
ones that contain the given string (case-
insensitively) in their Friendly Name or Subject
Name. Used to assist in picking the right client
certificate where you have multiple identity
certificates that are otherwise eligible.

If this property is not set, and you have multiple
certificates that could be sent to the server, the
first suitable certificate found in the client's
certificate store is used.

When using this property you should be aware that
this references the full Subject Name rather than
the Common Name.

Property Default Description

https://bugs.openjdk.java.net/browse/JDK-6483657
https://bugs.openjdk.java.net/browse/JDK-6483657

114 VisiBroker Secur i ty Guide

VisiBroker Secur i ty Guide 115

Security Properties for C++

Property Description Default
vbroker.security.logLevel Controls the degree of logging. Acceptable values are:

LEVEL_WARN, LEVEL_NOTICE, LEVEL_INFO, and
LEVEL_DEBUG strings.

LEVEL_WARN

vbroker.security.logFile By default, log output is to std::cerr. You can use
this property to redirect the log output to a named file.

null

vbroker.security.
secureTransport

Determines whether secure transport is supported or
not. If set to false, transport uses CLEAR_ONLY.

This property also determines if the client side of the
ORB is always connected to the server using SSL. If
the server does not support SSL, this property is set to
false, and the client will not connect.

true

vbroker.security.alwaysSecure This is a client-side only property. It determines
whether to use secure transport only or not.

Note: To use secure transport only, the
secureTransport property must also be set to true.

true

vbroker.security.server.
transport

This is a server-side only property. It defines whether
the server transport is: CLEAR_ONLY, SECURE_ONLY or
ALL. This property will not take effect when the
secureTransport property is set to false.

SECURE_ONLY

vbroker.security.disable If this property is set to true, it disables all security
services.

false

vbroker.security.
requireAuthentication

A server-side only property. Use it to specify whether
the client is required to authenticate.

true

vbroker.security.
authentication.
callbackHandler

Specifies the callback handler for login modules to use
for interacting with the user for credentials. You can
specify one of the following or your own custom
callback handler:

com.borland.security.provider.authn.CmdLine
CallbackHandler
com.borland.security.provider.authn.HostCal
lbackHandler

CmdLineCallbackHandler has password echo on,
while HostCallbackHandler has password echo off.
For more information, see “VisiSecure for C++ APIs”.

HostCallback
Handler

vbroker.security.
authentication.config

Specifies the path to the configuration file used for
authentication.

null

vbroker.security.
authentication.retryCount

Number of times to retry if remote authentication
failed.

3

vbroker.security.login If set to true at initialization-time this property tries to
login to all the realms listed by property
vbroker.security.login.realms.

true

vbroker.security.login.realms Gives a list of comma-separated realms to login to.
This is used when login takes place, either through
property vbroker.security.login (set to true) or
API login.

n/a

vbroker.security.vault Specifies the path to the vault file. This property takes
effect regardless of whether vbroker.security.login
is set to true or false.

n/a

116 VisiBroker Secur i ty Guide

Secur i ty Propert ies for C++

vbroker.security.identity.
reactiveLogin

When set to true, the security service behaves as
follows. If the security service cannot find an identity
for any of the targets supported by a server it is
attempting to communicate with, it then attempts to
acquire credentials for one of the targets in the target
object's IOR. If a corresponding authentication realm
is available for this target (that the user chooses to
provide credentials for), then authentication is also
attempted locally.

Reactive login requires a callback handler to be set
either using the appropriate property or at runtime by
calling the appropriate method. The default handler is
HostCallbackHandler.

true

vbroker.security.authDomains Specifies a comma-separated list of available
authorization domains. For example:

vbroker.security.authDomains=domain1,domain
2

n/a

vbroker.security.domain.
<domain-name>.rolemap_path

Specifies the location of the RoleDB file that describes
the roles used for authorization. This is scoped within
the domain <domain_name> specified in:
vbroker.security.authDomains.

n/a

vbroker.security.domain.
<domain_name>.
rolemap_enableRefresh

When set to true, enables dynamic loading of the
RoleDB file specified in
vbroker.security.domain.<domain_name>.rolemap_
path property. The interval of dynamic loading is
specified by property
vbroker.security.domain.<domain_name>.rolemap_
refreshTimeInSeconds.

false

vbroker.security.domain.
<domain_name>.
rolemap_refreshTimeInSeconds

Specifies the rolemap refresh time in seconds. 300

vbroker.security.domain.
<domain_name>.
defaultAccessRule

When clients attempt to access CORBA resources,
access control decides whether to allow or disallow.
Decisions are made based on what roles are required
to access the resources and on whether the client
exists in at least one of the roles.

In some situations in the system does not know the
roles required to access some resource. The value of
this property [grant or deny] determines the
decision to be made in this kind of situation.

grant

vbroker.security.cert.
basicConstraintCritical

As per the X509 V3 standard, non end-user certificates
in a certificate chain must have an extension that is
called “basic constraint”. According to the standard,
this extension when present must be marked as
“critical”, enforcing the recipient to “must understand”
and to process accordingly.

This enforcement is too strict for an earlier
implementation that is aware only of X509 V1.

false

vbroker.security.config.root This is the absolute path of the directory, to which all
relative file system references for various VisiSecure
config files refer.

n/a

vbroker.security.
identityAssertion

The server side of this ORB is enabled to propagate the
IdentityToken sent as part of CSIV2 service context to
the next tier (if any).

Value can be true or false.

n/a

Property Description Default

VisiBroker Secur i ty Guide 117

Secur i ty Propert ies for C++

vbroker.security.
peerAuthenticationMode

Sets the peer authentication mode. Possible values
are:

REQUIRE—Peer certificates are required to establish a
connection. If the peer does not present its
certificates, the connection will be refused. Peer
certificates will also be authenticated, if not valid, the
connection will be refused. If required, transport
identity can be established using these certificates. In
this mode, peer certificates are not required to be
trusted.

REQUIRE_AND_TRUST—Same as REQUIRE mode, except
that the peer certificates need to be trusted, otherwise
the connection will be refused.

REQUEST—Peer certificates will be requested. The peer
is not required to have certificates; no transport
identity will be established when peer does not have
certificates. However, if a peer does present
certificates, the certificates will be authenticated; if not
valid, the connection will be refused. If required,
transport identity can be established using these
certificates. In this mode, peer certificates are not
required to be trusted.

REQUEST_AND_TRUST—Same as REQUEST mode except
that the peer certificates need to be trusted, otherwise
the connection will be refused.

NONE—Authentication is not required. During
handshake, no certificate request will be sent to the
peer. Regardless of whether the peer has certificates,
a connection will be accepted. There will be no
transport identity for the peer.

REQUIRE_AND_
TRUST

vbroker.security.
trustpointsRepository

Specifies a path to the directory containing trusted
certificates. These are given in the form
Directory:<certs_dir>. For example:

vbroker.security.trustpointsRepository=Dire
ctory:c:\data\identities\Delta

n/a

vbroker.security.assertions.
trust.<n>

Use to specify a list of trusted roles (specify with the
format <role>@<authorization_domain>). <n> is
uniquely identified for each trust assertion rule as a list
of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmi
n@default means this process trusts any assertion
made by the ServerAdmin role in the default
authorization domain.

n/a

vbroker.security.assertions.
trust.all

Setting to true will trust all assertions made by peers. false

vbroker.security.server.
requireUPIdentity

A server side only property. If the server requires the
client to send a Username/Password for authentication
(regardless of certificate-based authentication), set to
true. If vbroker.security.login.realms is set, this
property is automatically set to true. However, you
can override it by explicitly setting it in the property
file.

n/a

vbroker.security.cipherList Set this to a list of comma-separated ciphers to be
enabled by default on startup. If not set, a default list
of cipher suites will be enabled. These should be valid
SSL Ciphers for use with TLSv1.2 and below.

n/a

Property Description Default

118 VisiBroker Secur i ty Guide

vbroker.security.wallet.type A wallet is a set of directories containing encrypted
private keys and certificate chains for each identity.
The possible values are:

Directory:<path_to_identities>

Use the Directory value to point to the directory
containing the directories for all identities.

PKCS12:<path_to_PKCS#12_KeyStore>/<identity>.p12

Use the PKCS12 value to configure the PKCS#12
keystore. See “PKCS#12-based authentication using
KeyStores” for details.

n/a

vbroker.security.wallet.
identity

If the vbroker.security.wallet.type is set to
Directory, use to point to a sub-directory within the
path defined in vbroker.security.wallet.type that
contains keys and/or certificate information for a
specific identity.

If vbroker.security.wallet.type is set to PKCS12, the
vbroker.security.wallet.identity property is
ignored for a PKCS#12 keystore, but the property
must be set.

n/a

vbroker.security.wallet.
password

Specifies the password used to decrypt the private key
or the password associated with the login.

n/a

vbroker.security.client.
supportNoDelegation

If set to true, the client will add support for
NoDelegate in TAG_SSL_SEC_TRANS tag.

false

vbroker.security.addOID Allows for setting of additional OID. null
vbroker.security.useCAPI If this is set to true, the CAPI engine is initialized and

enabled for all SSL/TLS conversations in the process.
Note that enabling the engine means it takes over
signing operations, which means the associated
private key must exist in a Windows store.

false

vbroker.security.useCAPICAs If this is set to true, then CA root and intermediary
certificates from the Local Machine and Current User
stores are loaded into the trustpoint, along with any
other certificates already present.

vbroker.security.useCAPI does not have to be
enabled to use this option.

false

vbroker.security.
useCapiCertificate

This property is supported for the client side only, and
requires vbroker.security.useCAPI to be
enabled. If this is set to true, then if the client needs
a certificate (and key), the provider will try to obtain
one from the Windows Current User "My" ("Personal")
store.

false

vbroker.security.
identityCertificates.
nameMustContain

This option is currently only supported when
vbroker.security.useCapiCertificate is enabled.
When looking for a client certificate, only consider
ones that contain the given string (case-insensitively)
in their Friendly Name or Subject Name. Used to assist
in picking the right client certificate where you have
multiple identity certificates that are otherwise eligible.

If this property is not set, and you have multiple
certificates that could be sent to the server, the first
suitable certificate found in the client's certificate store
is used.

When using this property you should be aware that it
references the full Subject Name rather than the
Common Name.

null

vbroker.security.client.
socket.allowedDigests

If set to short, this prevents the use of the SHA-2
family of digests (SHA-256, etc). See “VisiBroker C++
Only” for further details of how to use this option.

null

Property Description Default

VisiBroker Secur i ty Guide 119

vbroker.security.server.
socket.TLSSecurityLevel

vbroker.security.client.
socket.TLSSecurityLevel

OpenSSL now implements a means of tightening the
security level in operation. There are six security levels
defined; these are described in detail at https://
www.openssl.org/docs/man1.1.1/man3/
SSL_CTX_get_security_level.html.

Starting from level 1, certain cryptographic algorithms
and key lengths are disallowed as they are considered
too weak for use at that level. Moving up the security
levels, the requirements become ever more strict.

Level 0 is made available to support legacy behaviors.

Note that at level 1, SHA1 and MD5 signatures are
disallowed, which in turn has the effect of disallowing
TLSv1.0 and TLSv1.1. Any identity (leaf) certificates
signed using SHA1 or MD5 will fail unless security level
0 is used.

You can override the default by specifying a single
integer value from 0 to 5.

1

vbroker.security.server.
socket.minTLSProtocol

vbroker.security.client.
socket.minTLSProtocol

Defines the minimum allowable TLS protocol version.
These properties and the corresponding
maxTLSProtocol properties enable you to specify a
range of supported TLS protocols, by specifying both a
maximum and a minimum supported version.

The following values are permitted:

• TLS1
• TLS1_0 (available to support legacy behaviors)
• TLS_MIN (a floating minimum, currently equivalent

to TLS1)
• TLS1_1
• TLS1_2
• TLS1_3
• TLS_MAX (a floating maximum, currently equivalent

to TLS1_3)

These properties are new at VisiBroker 8.5.7; in
previous versions it was possible to specify a minimum
protocol level, or a single supported protocol (using
vbroker.security.server.
socket.enabledProtocols), but not a range.

TLS1_0

vbroker.security.server.
socket.maxTLSProtocol

vbroker.security.client.
socket.maxTLSProtocol

Defines the maximum allowable TLS protocol version.

Used together with the corresponding minTLSProtocol
properties, and has the same permitted values.

TLS1_3

vbroker.security.
TLS13CipherSuites

Specifies the cipher suites to be used for TLSv1.3
connections (in preference order). It uses a colon-
separated list following the OpenSSL configuration
approach.

The property defaults to:

TLS_AES_256_GCM_SHA384:
TLS_CHACHA20_POLY1305_SHA256:
TLS_AES_128_GCM_SHA256

This property should be considered quite separate
from vbroker.security.cipherList, which continues
to be required for configuring cipher suites for TLSv1.2
and below.

See
Description

Property Description Default

https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_get_security_level.html
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_get_security_level.html
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_get_security_level.html

120 VisiBroker Secur i ty Guide

vbroker.security.server.
socket.
EnforceServerCipherPriority

This option enables a server to apply its own cipher
suite preference order during the TLS handshake. By
default, in a TLS handshake sequence the client's
cipher suite preference order is honored. However this
can leave the server vulnerable to a malicious
downgrade attack. To enforce the use of the server's
cipher suite preference order, set this property to
true. This enables a single central cipher suite
configuration to control the priority sequence.

Note:
This property defaults to false in VisiBroker 8.5.7 in
order to match previous behavior.

It will default to true in a future update to increase
security.

false

vbroker.security.server.
socket.MinDHGroupSize

This is a server-side only option. It applies a minimum
limit to the size of DH parameters required to feed into
the Diffie-Hellman key exchange during a TLS
handshake. This size directly corresponds to the size of
the generated ephemeral keys that will be agreed
upon and used during the session.

VisiSecure supports DH parameter bit sizes of 512,
1024, 2048 and 4096. Any other value specified will be
rounded down to the nearest supported value.

2048

Property Description Default

VisiBroker Secur i ty Guide 121

vbroker.security.server.
socket.enabledProtocols

vbroker.security.client.
socket.enabledProtocols

Note:
These properties are deprecated (as of VisiBroker
8.5.7) and will be removed in a future release. Micro
Focus recommends using the maxTLSProtocol and
minTLSProtocol properties to specify a range of
protocols.

Specifies the SSL protocol version, that is TLSv1.0,
TLSv1.1, TLSv1.2 or TLSv1.3, during the SSL
handshaking process when using the VBC security
module, on the server and client sides respectively.
Possible values are listed below:

SSL_Version_3_0_With_2_0_Hello

This is a legacy option that enables all available
protocol versions.

SSL_Version_Undetermined

This is the default. It allows any of the TLS protocols
(TLSv1.0, TLSv1.1, TLSv1.2 or TLSv1.3) and disables
SSLv2 or SSLv3 protocols.

TLS_Version_1_0_With_2_0_Hello

In this mode, the library accepts a minimum of
TLSv1.0 (currently this results in either TLSv1.0,
TLSv1.1,TLSv1.2 or TLSv1.3).

TLS_Version_1_0_Only

Use this option for the highest security when you are
certain that the SSL peer also supports TLS 1.0. This
option behaves in the same manner as
SSL_Version_3_0_Only, but applies to the TLS 1.0
protocol.

TLS_Version_1_1_With_2_0_Hello

In this mode, the library accepts a minimum of
TLSv1.1 (currently this results in either TLSv1.1,
TLSv1.2 or TLSv1.3).

TLS_Version_1_1_Only

In this mode, the library negotiates only a TLSv1.1
connection. However, if the client might also support
TLSv1.2 or higher, use
TLS_Version_1_1_With_2_0_Hello to take advantage of
the higher level protocol version.

TLS_Version_1_2_With_2_0_Hello

In this mode, the library accepts a minimum of
TLSv1.2 (currently this results in either TLSv1.2 or
TLSv1.3)

TLS_Version_1_2_Only

In this mode, the library accepts only a TLSv1.2
connection.

TLS_Version_1_3_With_2_0_Hello

In this mode, the library accepts a minimum of
TLSv1.3. Setting this value future-proofs your
configuration should further TLS protocol versions
need to be supported.

TLS_Version_1_3_Only

In this mode, the library accepts only a TLSv1.3
connection.

SSL_Version_
Undetermined

Property Description Default

122 VisiBroker Secur i ty Guide

vbroker.security.
CRLRepository

This property is deprecated. To specify a CRL, use
the “void addTrustedCertificate (const
CORBAsec::X509Cert& trusted,const
CORBAsec::ASN1Object* crl = NULL)” API instead.

Specifies the directory where you want the list of serial
numbers of revoked certificates (Certificate Revocation
List (CRL)), issued by the Certificate Authority (CA), to
reside. All files in the directory will be loaded and
interpreted as CRL—no longer valid.

Once the CRLs are loaded, VisiSecure examines all
certificates sent by a peer during SSL handshake. If
any of the peer certificates appears in the CRLs, an
exception will be thrown and the connection will be
refused. For more information, see “Certificate
Revocation List (CRL) and revoked certificate serial numbers”.

n/a

vbroker.security.server.ssl.
handshakeTimeout

Specifies the maximum time (in milliseconds) for the
SSL handshake to complete at the Server side. It can
help to prevent the Server from hanging due to
unresponsive Clients during the SSL handshake. The
default timeout is 5000ms. To disable the timeout, set
it to 0.

5000

vbroker.security.server.
socket.ecdheCurve

This property is deprecated, and Micro Focus
recommends using TLSCipherGroups instead.

Valid values for this property are identical to those for
vbroker.security.server.socket.TLSCipherGroups.
See note about that property below.

-

vbroker.security.server.socke
t.TLSCipherGroups

vbroker.security.client.socke
t.TLSCipherGroups

These options specify the Diffie-Hellman key exchange
groups (DH Groups) to be used at the server and the
client, respectively. Each of these properties applies
when running in server or client mode respectively.
The separate configuration allows a single process to
have differing DH Groups configured for receiving
incoming connections and calling out to remote peers.

During the TLS handshake, the client and server agree
on the group to be used. Groups are specified in order
of preference, with the most preferred first.

If this option is defined, it overrides the behavior of
vbroker.security.server.socket.ecdheCurve. If this
option is not defined, it defaults as follows:

1 If vbroker.security.server.socket.ecdheCurve is
configured (for servers only), its value applies.

2 If not, then the following apply:

• For TLSv1.3 connections, the X25519 group is
used.

• For TLSv1.2 connections (and below if security
level 0 is in operation), the prime256v1 group is
used. This is a comma-separated list of curves,
each of which must match one of the well-known
elliptic curves as defined by IANA (the Internet
Assigned Numbers Authority) for use with TLS.

See
Description

Property Description Default

VisiBroker Secur i ty Guide 123

SSL Server Connection Manager properties
The following table lists the SSL Server Connection Manager (SCM) properties.

In this table, possible values for <se_name> are:

• iiop_tp

• iiop_ts

Property Default Description
vbroker.se.<se_name>.scm.
ssl.manager.type

Socket Type of the Server Connection Manager. The only possible
value, in VisiBroker for C++, is Socket.

vbroker.se.<se_name>.scm.
ssl.manager.connectionMax

0 The maximum number of cached connections on the
server. The default 0 means that there is no restriction.

vbroker.se.<se_name>.scm.
ssl.manager.connectionMaxId
le

0 Specifies the time, in seconds, which the server uses to
determine if an inactive connection should be closed. If a
cached connection has been idle longer than this time,
then the server closes the connection.

vbroker.se.<se_name>.scm.
ssl.listener.type

SSL The type of protocol that the listener is using.

vbroker.se.<se_name>.scm.
ssl.listener.port

0 Specifies the port number to be used with the host name
property. 0 means that the system will pick a random port
number.

vbroker.se.<se_name>.scm.
ssl.listener.proxyPort

0 Specifies the proxy port number to be used with the proxy
host name property. 0 means that the system will pick a
random port number.

vbroker.se.<se_name>.scm.
ssl.dispatcher.type

ThreadPoo
l

The type of thread dispatcher used in the Server
Connection Manager. Possible values are ThreadPool
and ThreadSession.

vbroker.se.<se_name>.scm.
ssl.dispatcher.threadMin

0 Specifies the minimum number of threads that the Server
Connection Manager must create.

vbroker.se.<se_name>.scm.
ssl.dispatcher.threadMax

0 Specifies the maximum number of threads that the Server
Connection Manager can create.

vbroker.se.<se_name>.scm.
ssl.dispatcher.
threadMaxIdle

0 Specifies the time, in seconds, before an idle thread is
removed from the thread pool.

vbroker.se.<se_name>.scm.
ssl.connection.tcpNoDelay

false Specifies whether tcp_nodelay should be set on the
socket.

vbroker.se.<se_name>.scm.
<scm_name>.listener.
selectorMax

20 Specifies the maximum number of NIO Selectors that can
be created in the NIO Selector Pool. Increasing this value
may improve the throughput if there is a very high number
of concurrent invocations. This property is only applicable if
NIO SSL Socket is configured at the server side.

124 VisiBroker Secur i ty Guide

VisiBroker Secur i ty Guide 125

VisiSecure for C++ APIs
This section describes APIs that are defined in VisiSecure for C++. It is
separated into subsections including:

• General API

• SSL API

• Certificate API

• QoP API

• Authorization API

All classes are under namespace vbsec unless otherwise specified.

Note

HTML documentation of the equivalent VisiSecure for Java API is included in
your VisiBroker installation. It can be found at <install_dir>\doc\sec-
api-doc.

General API
The general VisiSecure API describes the Current and Context APIs. It
provides API information for Principals, Credentials, and Subjects. In
addition, the class vbsec::Wallet API is discussed.

class vbsec::Current
The class current represents the view to the thread-specific security
context. This object can be obtained through the following code:

CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityCurrent");
Current* c = dynamic_cast <Current*> (obj.in());

Include File
The vbsec.h file should be included when you use this class.

Methods

void asserting (const vbsec::Subject* caller)

Assert a subject as caller identity.

void clearAssertion ()

Clear an assertion made by any previous API call of asserting. The
caller before the assertion is made will be restored as the caller for next
invocation. This API shall be used in conjunction with asserting.
Mismatching calls of these two methods may cause undesired caller
identities or unexpected exceptions.

Parameter Description
caller The caller name of the subject.

126 VisiBroker Secur i ty Guide

General API

const vbsec::Subject* getPeerSubject ()

Accesses the peer subject.

Returns

The pointer to a Subject object representing the peer.

const vbsec::Subject* getCallerSubject ()

Accesses the caller subject.

Returns

The pointer to a Subject object representing the caller.

const vbsec::SSLSession* getPeerSession (CORBA::Object*
peer)

Get the peer SSLSession. This call returns the SSLSession of the client
peer for this request. This method cannot be called outside the context of
a request.

Returns

The pointer to a SSLSession currently established.

Exceptions

BAD_OPERATION is thrown if this method is called outside the context of a
request or when called in a request context where the request was
received over a clear TCP connection.

class vbsec::Context
Context represents the security context under which a client will execute.
This class can be obtained through the following code:

CORBA::Object_var obj = orb-
resolve_initial_references("VBSecurityContext");
Context* c = dynamic_cast <Context*> (obj.in());

Include File
The vbsec.h file should be included when you use this class.

Methods

void login()

Login into the system. This logs-in to the realms defined in the property
vbroker.security.loginRealms. It traverses the list of realms
specified and authenticates against each realm.

Parameter Description
peer A peer object retrieved from the bind.

VisiBroker Secur i ty Guide 127

General API

void login (vbsec::CallbackHandler& handler)

Use this to login to the system using the specified CallbackHandler to
obtain the login information.

void login (const std::string& realm)

Login to the system for a specific realm.

void login (const std::string& realm,
vbsec::CallbackHandler& handler)

Login to the system for a given realm, using a given callback handler for
acquiring information.

void login (const vbsec::Wallet& wallet)

Login to the system with a wallet. Wallet can be created using
WalletFactory API.

void login (const std::vector<const vbsec::Wallet*>&
wallet)

Login to the system with a set of wallets specified as a vector.

const vbsec::Subject* getSubject (const std::string&
realm)

Gets the Subject corresponding to a given realm.

Returns

A pointer to the Subject object representing the subject of the realm.

Parameter Description
handler The default callback handler to be used for acquiring

information.

Parameter Description
realm The realm to login to.

Parameter Description
realm The realm to login to.
handler The default callback handler to be use for acquiring

information.

Parameter Description
wallet The wallet to be used for login.

Parameter Description
wallet A wallet to be used for login.

Parameter Description
wallet The Realm for a Principal

128 VisiBroker Secur i ty Guide

General API

void loadVault (std::istream& stream, const
CSI::UTF8String& vaultPass)

Loads a given vault. The identities in the vault are loaded into the
system. No login required when this method is used.

void logout()

Log the user out from all the realms.

void logout (const std::string& realm)

Log the user out from a given realm.

void setCallbackHandler (vbsec::CallbackHandler*
handler)

Set the default callback handler programmatically. This is similar to using
the property vbroker.security.authentication.callbackHandler.

void generateVault(std::ostream& stream, const
CSI::UTF8String& password)

Generates a vault. The vault is written out to the stream that is passed in
and encrypted using the password provided (also used to decrypt the
vault). The password may be null. The vault contains all of the system's
identities.

vbsec::Subject* authenticateUser (const vbsec::Wallet&
wallet)

Authenticate the given wallet credential. The login will be performed
using the wallet but the authenticated subject will not be used as one of
the system identities.

Parameter Description
stream Stream that the vault information will be read from, in

binary format.
vaultPass Password used to decrypt the vault information.

Parameter Description
realm The realm to logout from.

Parameter Description
handler The CallbackHandler to be set.

Parameter Description
stream The stream that the vault information will be written into, in

binary format.
password The password used to encrypt the vault information.

Parameter Description
wallet The wallet to be used for authentication

VisiBroker Secur i ty Guide 129

General API

vbsec::Subject* importIdentity (const vbsec::Wallet&
wallet)

Import a subject using the given wallet credential. No login is required
with this method. The subject will not be used as one of the system
identities.

void setPRNGSeed (const CORBA::OctetSequence& seed)

Sets a seed for the pseudo-random generator used by the SSL layer.

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

Get the list of cipher suites that are available for use with the SSL layer.
Note that this is different from the getEnabledCipherSuites call in that
not all the available cipher suites may be currently enabled.

Returns

List of cipher suites that are available but may not be enabled for use
with the SSL layer.

void enableCipherSuites (const
ssl::CipherSuiteInfoList& suites)

Sets the cipher suites that should be enabled for all SSL sessions.

ssl::CipherSuiteInfoList* getEnabledCipherSuites()

Gets the set of cipher suites that are currently enabled for all SSL
sessions.

Returns

Cipher suites that are currently enabled for all SSL sessions.

void setSSLContext (vbsec::VBSSLContext* ctx)

Sets the SSL context. This allows the establishing of an SSL session using
the information defined in VBSSLContext. A VBSSLContext can be
created using the SecureSocketProvider API.

VBSSLContext& getSSLContext()

Get the VBSSLContext that is set using the setSSLContext() or return
a default VBSSLContext object.

Parameter Description
wallet The wallet corresponding to the identity to be imported.

Parameter Description
seed The seed for the PRNG.

Parameter Description
suites An IDL-generated CipherSuiteInfoList type.

Parameter Description
ctx The VBSSLContext that is to be used for any SSL session

establishment.

130 VisiBroker Secur i ty Guide

General API

Returns

The VBSSLContext that will be used for any SSLSession establishment.

class vbsec::Principal
Principal represents the identity of a user. This is a virtual class.

Include file
The vbsec.h file should be included when you use this class.

Methods

std::string getName() const

Returns

The name of the Principal.

std::string toString() const

Get the string representation of the Principal.

Returns

The string representation of the Principal.

class vbsec::Credential
Credential represents the information used to authenticate an identity, such
as user name and password. This is a virtual class.

Include File
The vbsec.h file should be included when you use this class.

class vbsec::Subject
Subject represents a grouping of related information for a single entity,
such as a person. Such information includes the Subject's identities as well
as its security-related attributes (passwords and cryptographic keys, for
example).

Include File
The vbsec.h file should be included when you use this class.

Methods

Principal::set& getPrincipals()

Gets the principals in the subject.

Returns

The set of the principals in the subject. Modifying the content of the set
will have no effect on the subject.

VisiBroker Secur i ty Guide 131

General API

void clearPrincipals()

Clears the principals from the subject. All principals in the subject are
removed.

Credential::set& getPublicCredentials()

Get the public credentials in the subject—public keys for example.

Returns

The set of the public credential in the subject. Modifying the content of
the set will have no effect on the subject.

void clearPublicCredentials()

Clear the public credentials in the subject. All public credentials in the
subject will be destroyed and removed.

Credential::set& getPrivateCredentials()

Get the private credentials in the subject—private keys for example.

Returns

The set of the private credential in the subject. Modifying the content of
the set will have no effect on the subject.

void clearPrivateCredentials()

Clear the private credentials in the subject. All private credentials in the
subject will be destroyed and removed.

Principal::set getPrincipals (const type_info& info)
const

Gets a set of principals in the subject which have the same runtime type
information as provided.

Returns

A set of the principals in the subject which have the same runtime
information as the given one. Modifying the content of the set will have
no effect on the subject.

Credential::set getPublicCredentials (const type_info&
info) const

Get set of public credentials in the subject which have the same runtime
type information as provided.

Parameter Description
info The runtime type information that the returned principals

shall have.

Parameter Description
info The runtime type information that the returned public credential

shall have.

132 VisiBroker Secur i ty Guide

General API

Returns

A set of the public credentials in the subject which have the same
runtime information as the given one. Modifying the content of the set
will have no effect on the subject.

Credential::set getPrivateCredentials (const type_info&
info) const

Get set of private credentials in the subject which have the same runtime
type information as provided.

Returns

A set of the private credentials in the subject which have the same
runtime information as the given one. Modifying the content of the set
will have no effect on the subject.

class vbsec::Wallet
A Wallet is a holder of credentials usually used in login API calls. A Wallet
can be created using WalletFactory APIs and contain multiple types of
credentials.

Include File
The vbsec.h file should be included when you use this class.

Methods

std::string getTarget () const

Get the target to which the wallet authenticates.

Returns

The string representation of the target information.

void populateSubject (Subject& subject)

Populate the given subject with necessary credentials or other
information for authentication.

class vbsec::WalletFactory
WalletFactory is a factory class to create multiple types of wallets.

Include File
The vbsec.h file should be included when you use this class.

Parameter Description
info The runtime type information that the returned private credentials

shall have.

Parameter Description
subject The subject for the wallet to populate.

VisiBroker Secur i ty Guide 133

General API

Methods

Wallet* createCertificateWallet (const std::string&
name, const std::string& password, const std::string&
alias, const std::string& keypassword, short usage)

Create a certificate wallet using a C++ keystore. The C++ keystore is
similar to the Java keystore but is implemented using a directory
structure. When logging in with a wallet created by this API, the
certificate chain will be used in the SSL layer.

Returns

Certificate wallet that contains the given information.

Wallet* createCertificateWallet (const
CORBAsec::X509CertList& chain, const
CORBAsec::ASN1Object& privkey, const CSI::UTF8String&
password)

Create a certificate wallet using a certificate chain, private key and
password.

Returns

Certificate wallet that contains the given information.

Wallet* createIdentityWallet (const std::string&
username, const std::string& password, const
std::string& realm)

Create an identity wallet using a username, password and realm to which
the wallet authenticates.

Returns

Identity wallet that contains the given information.

Parameter Description
name The directory name of the keystore.
password The password for the keystore, not used for this release.
alias The alias to be used in the keystore.
keypassword The password for the private key of the given alias.
short usage The usage of the certificate information, CLIENT, SERVER or ALL.

Parameter Description
chain The certificate chain to create the wallet.
privkey The private key of the certificate chain.
password The password for the private key.

Parameter Description
username The username of the identity.
password The password for the identity.
realm The realm to which the wallet authenticates.

134 VisiBroker Secur i ty Guide

SSL API

Wallet* createIdentityWallet (const std::string&
username, const std::string& password, const
std::string& realm, const std::vector<std::string>&
groups)

Create an identity wallet using a username, password, realm to which the
wallet authenticates, and a set of group attributes.

Returns

Identity wallet that contains the given information.

SSL API
This section explains the various SSL APIs that interact with VisiSecure's
SSL implementation.

class vbsec::SSLSession
SSLSession represents the session of the current SSL connection. The
SSLSession can be obtained from vbsec::Context using
getPeerSession().

Include File
The vbssp.h file should be included when you use this class.

Methods

time_t getEstablishmentTime() const

Get the time when the SSL connection was established.

Returns

The time when the SSL connection was established.

const ssl::CipherSuiteInfo& getNegotiatedCipher() const

This method returns the negotiated cipher from the peer for a given SSL
connection.

Returns

The negotiated cipher from the peer for a given SSL connection.

const CORBAsec::X509CertList& getPeerCertificates()
const

Get the certificate chain of the peer.

Parameter Description
username The username of the identity.
password The password for the identity.
realm The realm to which the wallet authenticates.
groups A set of group attributes to which the identity belongs.

VisiBroker Secur i ty Guide 135

SSL API

Returns

Peer certificate chain.

const CORBAsec::X509Cert* getTrustpoint() const

Get the trust point by which the peer is trusted. Null will be returned if
peer does not have certificates or its certificates are not trusted.

Returns

The trust point by which the peer is trusted, or null if not.

char* getPeerAddress() const

Get the IP address of the peer.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx.

CORBA::UShort getPeerPort() const

Returns the peer port number used by this connection.

Returns

The port number of the peer on the connection.

void prettyPrint (std::ostream& os) const

Print the SSLSession information into the given output stream.

class vbsec::VBSSLContext
VBSSLContext contains information needed to establish an SSLSession.
This object is created using
SecureSocketProvider::createSSLContext().

Include File
The vbssp.h file should be included when you use this class.

Methods

const CORBAsec::X509CertList& getCertificates() const

Get the certificate chain representing the identity to be used for the SSL
layer.

Returns

The certificate chain representing the identity to be used for the SSL
layer.

Parameter Description
os The output stream to print the SSLSession information.

136 VisiBroker Secur i ty Guide

SSL API

void setCipherSuiteList (const
ssl::CipherSuiteInfoList& list)

This method is used to specify the ciphers available for the SSL
connections.

const ssl::CipherSuiteInfoList& getCipherSuiteList()
const

Return the ciphers that are currently used by the SSL layer.

Returns

The ciphers that are currently used by the SSL layer.

void addTrustedCertificate
(const CORBAsec::X509Cert& trusted,const
CORBAsec::ASN1Object* crl = NULL)

Programmatically add a trusted certificate into the SSL context.

CORBAsec::X509CertList* getTrustedCertificates() const

Get list of certificates that are trusted.

Returns

List of certificates that are trusted.

class ssl::CipherSuiteInfo
CipherSuiteInfo is a structure containing two fields:

• CORBA::ULong SuiteID

• CORBA::String_var Name

This IDL structure contains two fields which describe ciphers according to
the SSL specification. The list of SuiteID values and their names is in the
include file, ssl_c.h.

Include File
The ssl_c.hh file should be included when you use this class.

class CipherSuiteName
This class provides information about the ciphers used in the Security
Service.

Parameter Description
list A list of ciphers that should be available for the SSL

connections.

Parameter Description
trusted Certificate that is to be trusted.
crl The CRL issued by the trusted certificate. The default

value of NULL means no CRL. Applications can call this
method passing only the first argument, in which case
the default value of NULL applies.

VisiBroker Secur i ty Guide 137

SSL API

Include File
The csstring.h file should be included when you use this class.

Methods

static const char* toString (int tag)

Return a standard representation of a supported SSL cipher.

Returns

A stringified description of the cipher.

static const int fromString (char* description)

Give the tag associated to the given cipher description.

Returns

The tag associated with the cipher name provided as the argument.

class vbsec::SecureSocketProvider
A SecureSocketProvider is the provider for secure socket connections. It
provides the function of creating the SSL context, handling SSL certificates,
and managing other secure socket-related information.

Include File
The vbssp.h file should be included when you use this class.

Methods

vbsec::VBSSLContext* createSSLContext (const
CORBAsec::X509CertList& chain, const
CORBAsec::ASN1Object& privkey,
const CSI::UTF8String& password)

This method creates an SSL context using the given information. The SSL
context can then be passed into vbsec::Context and used to establish
an SSL connection.

Returns

VBSSLcontext containing the given information.

Parameter Description
tag tag associated with the cipher name.

Parameter Description
description The stringified description of the cipher.

Parameter Description
chain The certificate chain
privkey The private key object.
password The password for the private key.

138 VisiBroker Secur i ty Guide

SSL API

void setPRNGSeed (const ssl::Current::PRNGSeed& seed)

Sets a seed for the pseudo-random number generator used by the SSL
layer.

const ssl::CipherSuiteInfoList&
listAvailableCipherSuites() const

Gets the list of cipher suites that are available for use with the SSL layer.
Note that this is different from the getEnabledCipherSuites call in that
not all the available cipher suites may be currently enabled.

Returns

List of cipher suites that are available but may not be enabled for use
with the SSL layer.

const CertificateFactory& getCertificateFactory() const

Gets a certificate Factory.

Returns

A CertificateFactory object.

class ssl::Current
The ssl::Current lets your client application or server object set its
private key and offer its certificate information to its peer. This interface
also lets you configure the SSL connection and associate your certificates
and private key with an SSL connection.

Be aware that private keys and certificates contain header and trailer lines,
which mark the beginning and end of the key or certificate. All of the
methods offered by this interface for setting private keys and certificate
chains require that these header and trailer lines be present. The parsing
rules for these lines is:

• The recognized header line format for certificates is:

-----BEGIN CERTIFICATE-----

• The recognized header line format for private keys is:

-----BEGIN ENCRYPTED PRIVATE KEY-----

• All header lines must end with a new line character.

• All trailer lines must be preceded with, and end with, a newline character.
PEM-style private keys have two additional header lines that other
private keys do not have: Proc-Type and DEK-Info. Both of these lines
must be present and they must end with new line characters.

This object can be obtained through the following code:

CORBA::Object_var obj = orb-
>resolve_initial_references("SSLCurrent");
ssl::Current_var current = ssl::Current::_narrow(obj);

Include File
The ssl_c.hh file should be included when you use this class.

Parameter Description
seed The seed for the PRNG.

VisiBroker Secur i ty Guide 139

SSL API

Methods

CORBA::ULong getNegotiatedCipher(CORBA::Object_ptr
peer)

This method returns the negotiated cipher from the peer for a given SSL
connection.

Returns

A value (tag) representing the cipher used. (Use
CipherSuiteName::toString to get a String representation.)

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not
using SSL.

CORBAsec::X509CertList_ptr
getPeerCertificateChain(CORBA::Object_ptr peer)

This method obtains the peer's certificate chain. It is usually invoked by a
client application to obtain information from a server, but a server can
optionally request information from a client.

Returns

A value representing the cipher used. (Use CipherSuiteName::toString to
get a String representation.)

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not
using SSL.

char* getPeerAddress(CORBA::Object_ptr peer)

Returns a description of the socket parameters used by this connection.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not
using SSL.

Parameter Description
peer The peer from which you obtain the negotiated cipher.

Parameter Description
peer The peer from which you obtain the negotiated cipher.

Parameter Description
peer The peer from which you obtain the information.

140 VisiBroker Secur i ty Guide

SSL API

CORBA::Boolean isPeerTrusted(CORBA::Object_ptr peer)

Tests if the certificate chain of the peer is trusted—that is, if one
certificate of the chain is in the trustpoint.

Returns

true if the chain is trusted, false otherwise.

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not
using SSL.

trust::Trustpoints_ptr Trustpoints
getTrustpointsObject()

Returns a reference to the trustpoint repository. Use this API to access
trustpoints object and set trustpoints.

Returns

A reference to the trustpoint repository, which should be assigned to a
_var.

void setPRNGSeed (const ssl::Current::PRNGseed& seed)

Sets a seed for the pseudo-random number generator used by the SSL
layer.

void setPKprincipal (const CORBAsec::ASN1ObjectList
chain,&const CORBAsec::ASN1Object& privkey,&const
char* password);

This method is used in the client or the server to set the certificate chain
and private key that must be used for the SSL connections. This is
required for servers and optional for clients. Also look at the
peerAuthenticationMode property documented in , “Security Properties
for C++.”

Exceptions

CORBA::BAD_PARAM if the user name or password is null.

Parameter Description
peer The peer from which you obtain the information.

Parameter Description
seed The OctetSequenceseed for the PRNG.

Parameter Description
chain The certificate chain.
privkey The private key used for the SSL connection.
password The password for the private key.

VisiBroker Secur i ty Guide 141

Cert i f icate API

void setCipherSuiteList (const
ssl::CipherSuiteInfoList& list)

This method is used in the client or the server to specify the ciphers
available for the SSL connections.

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

Returns a list of cipher suites available in VisiSecure. You are responsible
for freeing memory.

Returns

A list of cipher suites.

ssl::CipherSuiteInfoList* getCipherSuiteList()

Returns the ciphers that are currently used by the SSL layer.

Returns

A list of cipher suites.

void setP12Identity (const CORBASEC::ASNIOBJECT&
pks12cert, const char* password)

Certificate API
This API contains classes and methods for working with certificates.

class vbsec::CertificateFactory
This is a utility class for handling of certificates and keys.

Include File
The vbssp.h file should be included when you use this class.

Methods

CORBAsec::X509CertList* importCertificateChain (const
CORBAsec::ASN1ObjectList& certs) const

Import the certification chain in the form of
CORBAsec::ASN1ObjectList into CORBAsec::X509CertList, which
could be used in VBSSLContext.

Parameter Description
list A comma-separated list of cipher suites.

Parameter Description
pks12cert PKCS#12 formatted data.
password The private key password.

Parameter Description
certs ASN1ObjectList representation of the certificate chain.

142 VisiBroker Secur i ty Guide

Cert i f icate API

Returns

CORBAsec::X509CertList representation of the certificate chain for
CORBA transportation.

CORBAsec::X509CertList* importCertificates (const
CORBAsec::ASN1ObjectList& certs) const

Import the certification list in the form of CORBAsec::ASN1ObjectList
into CORBAsec::X509CertList. Certificates need not be related to each
other. The original order is preserved after importing.

Returns

CORBAsec::X509CertList representation of the certificate list.

CORBAsec::ASN1Object* importPrivateKey (const
CORBAsec::ASN1Object& key) const

Convert the private key from BASE64 or PEM format to DER format.

Returns

DER format of the private key.

CORBAsec::X509CertList* importCertificateChain (const
CORBAsec::ASN1Object& pkcs12bytes, const
CSI::UTF8String& password) const

Imports a certificate chain from pkcs12 binary.

Returns

CORBAsec::X509CertList representation of the certificate chain.

CORBAsec::ASN1Object* importPrivateKey (const
CORBAsec::ASN1Object& pkcs12bytes, const
CSI::UTF8String& password) const

Import private key from pkcs12 binary.

Returns

CORBAsec::ASN1Object representation of the private key object.

Parameter Description
certs ASN1ObjectList representation of certificate list

Parameter Description
key ASN1ObjectList representation of private key object.

Parameter Description
pkcs12bytes ASN1ObjectList representation of pkcs12 binary.
password Password for the pkcs12 binary.

Parameter Description
pkcs12bytes ASN1ObjectList representation of pkcs12 binary.
password Password for the pkcs12 binary.

VisiBroker Secur i ty Guide 143

Cert i f icate API

const CertificateFactory& printCertificate (const
CORBAsec::X509Cert& certificate, std::ostream&
stream) const

Print out the certification information into an output stream.

Returns

The CertificateFactory.

bool passwordForPrivatekey (const CSI::UTF8String&
password, const CORBAsec::ASN1Object& privkey) const

Test if the given password can decrypt the given private key object.

Returns

true if decryption is successful, false if not.

class CORBAsec::X509Cert
This class represents an X509 certificate. When a client application binds to
a CORBA object, the client uses this interface to obtain the server’s
certificate information. The server can use this interface to obtain the
client’s certification information, if the client has a certificate.

Include File
The X509Cert_c.hh file should be included when you use this class.

Methods
char* getSubjectDN()

Returns the subject DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>,
C=<value>

char* getIssuerDN()

Returns the issuer DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>,
C=<value>

Parameter Description
certificate certificate to be printed.
stream stream to which to output.

Parameter Description
password The password to be tested.
privkey The private key object to be decrypted.

144 VisiBroker Secur i ty Guide

Cert i f icate API

CORBA::OctetSequence * getSignatureAlgorithm()

Returns the signature algorithm used in the certificate.

Returns

The signature algorithm used in the certificate.

CORBA::OctetSequence * getHash(CORBASEC::HashAlgorithm
algorithm)

Returns a hash of the certificate.

Returns

A hash of the certificate using the specified algorithm.

CORBAsec::ASN1Object_ptr getDER()

Returns the DER encoded form of this certificate.

Returns

The ASN.1 DER encoded form of this certificate (assign to a _var).

CORBAsec::SerialNumberValue_ptr getSerialNumber()

Retrieves the serial number of the certificate.

Returns

The serial number of the certificate.

CORBAsec::X509CertExtensionList_ptr getExtensions()

Returns all the extensions available in this certificate as a list of
X509CertExtension.

Returns

Returns all the extensions available in this certificate as a list of
X509CertExtension. Or, if this certificate has no extensions, the
method returns an array of length null. The extensions are not parsed.

CORBA::Boolean isValid (CORBA::ULong_out date)

Checks if a certificate date is between the valid start and end dates.

Returns

true if the certificate is valid, false otherwise.

CORBA::ULong startDate()

Gets the date from which a certificate’s validity starts.

Parameter Description
algorithm The hash algorithm. The possible values are:

CORBASec::MD5, CORBASec::MD2 and CORBASec::SHA1

Parameter Description
date An out argument that is set to the expiration date of the

certificate, using UNIX time format.

VisiBroker Secur i ty Guide 145

Cert i f icate API

Returns

Returns an int representing the number of seconds from midnight,
January 1st, 1970.

CORBA::ULong endDate()

Gets the expiration date of the certificate.

Returns

Returns an int representing the number of seconds from midnight,
January 1st, 1970.

CORBA::Boolean equals (CORBAsec::X509Cert_ptr other)

Compares two CORBAsec::X509Cert certificates.

Returns

Returns true (1UL) if the two certificates are identical; otherwise,
returns false (0UL).

CORBA::Boolean isTrustpoint()

Checks if this certificate is a trustpoint—that is, if it is a trusted certificate

Returns

If the certificate is a trustpoint, returns true.

class CORBAsec::X509CertExtension
This class is an IDL structure that represents an X509 certificate extension,
as follows:

struct X509CertExtension {
long seq;
sequence<long> oid;
boolean critical;
sequence<octet> value;
};

Include File
The X509Cert_c.hh file should be included when you use this class.

Parameter Description
other The other certificate to compare to this certificate.

Parameter Description
seq A unique number of the extension in the certificate.
oid The oid of the extension.
value The value of the extension encoded according to the

format specified by the oid.

146 VisiBroker Secur i ty Guide

QoP API

QoP API
The following section details the Quality of Protection API provided with
VisiSecure.

class vbsec::ServerConfigImpl
ServerConfigImpl is the implementation of the
csiv2::ServerQoPConfig, which is an IDL structure as follows:

ServerConfigImpl (
 CORBA::Boolean disable,
 CORBA::Short transport,
 CORBA::Boolean trustInClient,
 csiv2::AccessPolicyManager* access_manager,
 const CORBA::StringSequence& realms = _available,
 CORBA::Short requiredIdentityType =
csiv2::ServerQoPConfig::UP_OR_PK,
 CORBA::Boolean supportIdentityAssertion =
static_cast<CORBA::Boolean>(1)
);

To define the ServerQoPPolicy, you create this object which defines the
various characteristics of the policy.

Include File
The CSIV2Policies.h file should be included when you use this class.

class ServerQoPPolicyImpl
ServerQoPPolicyImpl is the implementation of the
csiv2::ServerQoPPolicy. The ServerQoPPolicyImpl object impacts
the QoP behavior of the server.

Parameter Description
disable Whether or not to disable security.
transport The transport mechanism to use. Valid values are:

• csiv2::CLEAR_ONLY: no secure transport is necessary

• csiv2::SECURE_ONLY: only secure connections are
permitted

• csiv2::ALL: any method of transport is allowed
trustInClient Whether or not the target requests the client to

authenticate. This value is set on CSIV2 layer.
access_manager An access manager for the QoP implementation, an

implementation of csiv2::AccessPolicyManager defined
by the user. If null, it uses a default value.

realms The available realms in which to implement the policy.
requiredIdentityType The required identity for the QoP policy implementation.

The default value is csiv2::ServerQoPConfig::UP_OR_PK.
Possible values are: csiv2:ServerQoPConfig::NO_ID,
csiv2::ServerQoPConfig::UP,
csiv2::ServerQoPConfig::PK,
csiv2::ServerQoPConfig::UP_OR_PK and
csiv2::ServerQoPConfig::UP_AND_PK

supportIdentityAsser
tion

Whether or not the application supports Identity Assertion.

VisiBroker Secur i ty Guide 147

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

ServerQoPPolicyImpl (const csiv2::ServerQoPConfig_var&
conf);

Constructor of the ServerQoPPolicyImpl object.

virtual csiv2::ServerQoPConfig_ptr config();

Get the ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

Returns

The ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

class vbsec::ClientConfigImpl
ClientConfigImpl is the implementation of the
csiv2::ClientQoPConfig. To define the ClientQoPPolicy, you create
this object which defines the various characteristics of the policy.

Include File
The CSIV2Policies.h file should be included when you use this class

Methods

ClientConfigImpl (const CORBA::Short transport, const
CORBA::Boolean trustInTarget)

Constructor of ClientConfigImpl object.

class vbsec::ClientQoPPolicyImpl
ClientQoPPolicyImpl is the implementation of the
csiv2::ClientQoPPolicy. The ClientQoPPolicyImpl object impacts
the QoP behavior of the server.

Include File
The CSIV2Policies.h file should be included when you use this class.

Parameter Description
conf ServerQoPConfig object which contains the designed QoP

configuration.

Parameter Description
transport The transport mechanism to use. Valid values are:

• csiv2::CLEAR_ONLY: no secure transport is necessary

• csiv2::SECURE_ONLY: only secure connections are permitted

• csiv2::ALL: any method of transport is allowed
trustInTarget Whether or not to require the client to authenticate.

148 VisiBroker Secur i ty Guide

Methods

ClientQoPPolicyImpl(const csiv2::ClientQoPConfig_var&
conf);

Constructor for ClientQoPPolicyImpl object.

virtual csiv2::ClientQoPConfig_ptr config();

Returns the ClientConfigImpl object of this ClientQopPolicyImpl.

Returns

The ClientConfigImpl object of this ClientQopPolicyImpl.

Authorization API
The following section describes the classes and methods used for
authorization in VisiSecure.

class csiv2::AccessPolicyManager
AccessPolicyManager is used to define your Access Policy for
authorization of a client's method calls.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

char* domain()

Returns the authorization domain name for the AccessPolicyManager.

Returns

The authorization domain name for the object that uses this
AccessPolicyManager.

csiv2::ObjectAccessPolicy* getAccessPolicy
(PortableServer_ServantBase* servant, const
PortableServer::ObjectId& id, const
CORBA::OctetSequence& adapter_id)

Returns the objectAccessPolicy for the servant with the objectId (id)
and poa id.

Parameter Description
conf ClientConfigImpl object to be used for

the policy.

Parameter Description
servant The CORBA servant object.
id the id of the servant object.
adapter_id The poa id of the servant object.

VisiBroker Secur i ty Guide 149

Returns

ObjectAccessPolicy of the servant object.

class csiv2::ObjectAccessPolicy
This class represents the access policy from AccessPolicyManager.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods

CORBA::StringSequence* getRequiredRoles (const char*
method)

Returned the list of required roles to access the method.

Returns

A list of required roles to access the method.

char* getRunAsRole (const char* method)

Return the run-as role for the method. This method is not used in this
release.

Returns

The run-as role configured to access the method.

Parameter Description
method The method name of interest.

Parameter Description
method The method name of interest.

150 VisiBroker Secur i ty Guide

VisiBroker Secur i ty Guide 151

Security SPI for C++
This section describes the Service Provider Interface (SPI) classes as
defined for VisiSecure for C++. These SPI classes provide advanced
security functionality and allow other security providers to plug their own
implementation of security services into VisiSecure for their use.

Plugin Mechanism and SPIs
VisiSecure for C++ provides interfaces for you to plug in your own security
implementations. In order for the ORB to find your implementation, all
plugins must use the REGISTER_CLASS macro provided by VisiSecure to
register your classes. The name of the class must be specified in full
together with its namespace upon registration. Namespace must be
specified in a normalized form supported by VisiSecure, using either a '.' or
'::' separated-string starting from the outer namespace. For example:

MyNameSpace {
 class MyLoginModule {

 }
}

Thus MyLoginModule shall be specified as either
MyNameSpace.MyLoginModule or MyNameSpace::MyLoginModule.

There are six pluggable components:

• LoginModules: You can implement your own login modules by extending
vbsec::LoginModule. To use the login module, you need to set it in the
authentication configuration file, just like any other login module.

• Callback handlers: You can implement your own callbacks by extending
vbsec::CallbackHandler. To use the callback, you need to set it in the
authentication configuration file, just like any other callback handler.

• Identity adapters, Mechanism adapters, and Authentication
Mechanisms: These interfaces are provided for users to implement their
own authentication mechanisms and identity interpretations.
IdentityAdaptor is to interpret identities, MechanismAdaptor is a
specialized identity adapter which also changes target information.
AuthenticationMechanism is a pluggable service to authenticate users.

To use these plug-ins, you need to set the
vbroker.security.identity.xxx properties to define the plug-ins and
their properties. For example, an identity adapter or mechanism adapter
could specify:

vbroker.security.identity.adapters=MyAdapter
vbroker.security.adapter.MyAdapter.property1=value1
vbroker.security.adapter.MyAdapter.property2=value1

while an authentication mechanism would provide:

vbroker.security.identity.mechanisms=MyMechanism
vbroker.security.adapter.MyMechanism.property1=value1
vbroker.security.adapter.MyMechanism.property2=value2

The properties specified will be passed to the user plug-in during
initialization as a string map. The map contains truncated key/value pairs
like property1, value1.

152 VisiBroker Secur i ty Guide

Plugin Mechanism and SPIs

• Attribute codec: This allows you to plug in an attribute codec to encode
and decode attributes in their own format. VisiSecure for C++ has one
build-in codec, the ATS codec.

To use your codec plug-in, you need to set properties to define the
codecs and their properties. For example:

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.attributeCodec.property1=xxx
vbroker.security.adapter.attributeCodec.property2=xxx

The properties specified will be passed to the user plug-in during
initialization as a string map.

• Authorization service provider: You can plugin an authorization
service for each authorization domain. VisiSecure has its default
implementation, which uses the rolemap. Like the other pluggable
services, you will need to define the authorization service with properties
which are then passed as string maps. For example:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

• Trust provider: This allows you to plug in an assertion trust mechanism.
Assertion can happen in multi-hop scenarios, or can be explicitly called
through assertion API. The server can have rules to determine whether
the peer is trusted to make the assertion or not. The default
implementation uses property setting to configure trusted peers on the
server side. During runtime, the peer must pass authentication and
authorization in order to be trusted to make assertions.

Like the other pluggable services, you will need to define the
authorization service with properties which are then passed as string
maps. For example:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property
1=xxx
vbroker.security.trust.trustProvider.MyProvider.property
2=xxx

There can be only one trust provider specified for the whole security
service.

VisiBroker Secur i ty Guide 153

Providers

Providers
Each provider instance is created by the VisiSecure using a Java reflection
API. After the instance has been constructed, the initialize method,
which must be provided by the implementer, is called passing in a map of
options specific for the implementation. The options entries are defined by
the implementers of the particular provider. Users specify the options in a
property file and the VisiSecure parses the property and passes the options
to the corresponding provider. The following table shows the properties for
plugging in different provider implementations.

In the preceding table:

• The first column lists the provider module names.

• The second column lists the property you set to define each module. Use
a comma to separate multiple modules. For example, the following
property has two additional IdentityAdapter implementations installed for
the ORB:

vbroker.security.identity.adapters=ID_ADA1,ID_ADA2

• The third column gives the interface each implementation must
implement. The interface defines a contract between the implementers
and the core VisiSecure.

• The final column gives the options prefix for the specific module. The ORB
parses the property file and passes the corresponding entries to each of
the modules in the initial method as the (Map options) parameter. For
example, for the ID_ADA1 IdentityAdapter defined in the previous
example, all the entries with the
vbroker.security.identity.adapters.ID_ADA1 prefix will be
passed to the initial method of ID_ADA1 IdentityAdapter.

Providers and exceptions
During initialization, if anything goes wrong the initialize method should
throw an instance of InitializationException. For certain categories of
providers, there can be multiple instances with different implementations
co-existing. Each of them is identified by the name within the VisiSecure
system, which is passed as the first parameter in the initialize method.
While for some categories of providers there can be only one instance
existing for the whole ORB (such as in the case of the TrustProvider) in this
case the initialize method has only one single parameter, the options
map.

Module Name Property to set
Interface to
implement Options Prefix

IdentityAdapter vbroker.security.iden
tity.adapters

vbsec::IdentityAdapter vbroker.security.identity.adapter
.<name>

Authentication
Mechanism

vbroker.security.iden
tity.mechanisms

vbsec::AuthenticationM
echanisms

vbroker.security.identity.mechan
ism.<name>

AttributeCodec vbroker.security.iden
tity.attributeCodecs

vbsec::AttributeCodec vbroker.security.identity.attribut
eCodec.<name>

TrustProvider vbroker.security.trus
tProvider

vbsec::TrustProvider vbroker.security.trust.trustProvid
er.<name>

154 VisiBroker Secur i ty Guide

vbsec::LoginModule

vbsec::LoginModule
LoginModule serves as the parent of all login modules. User plugin login
modules must extend this class. Login modules are configured in the
authentication configuration file and called during the login process. Login
modules are responsible for authenticating the given subject and
associating relevant Principals and Credentials with the subject. They are
also responsible for removing and disposing of such security information
during logout.

Include File
The vbauthn.h file should be included when you use this class.

Methods

void initialize (Subject* subj=0, CallbackHandler
handler=0, LoginModule::states sharedStates=0,
LoginModule::options* options=0)

This method initializes the login module.

Arguments

This method utilizes the following four arguments:

• subj: the subject to be authenticated.

• handler: the callback handler to use.

• sharedStates: additional authentication state provided by other login
modules. Currently not used.

• options: configuration options specified in the authentication
configuration file.

Returns

Void.

bool login()

Performs the login. This is called during the login process. The login
module shall authenticate the subject located in the module and
determine if the login is successful.

Returns

true if the login succeeds, false otherwise.

bool logout()

Performs the logout. This is called during the logout process. The login
module shall logout the subject located in the module and determine if
the logout is successful. The login module might remove any credentials
or identities that were established during login and dispose of them.

Returns

true if the logout succeeds, false otherwise.

VisiBroker Secur i ty Guide 155

vbsec::Cal lbackHandler

bool commit()

Commits the login. This is part of the login process, called when the login
succeeds according to the configuration options specified in the pertinent
login modules. The login module then associates relevant Principals and
Credentials with the Subject located in the module if its own
authentication attempt succeeded. Or if not, it shall remove and destroy
any state that was saved before.

Returns

true if the commit succeeds, false otherwise.

bool abort()

Aborts the login. This is part of the login process, called when the overall
login fails according to the configuration options specified in the login
modules. The login module shall remove and destroy any state that was
saved before.

Returns

true if the abort succeeds, false otherwise.

vbsec::CallbackHandler
CallbackHandler is the mechanism that produces any necessary user
callbacks for authentication credentials and other information. Seven types
of callbacks are provided. There is a default handler that handles all
callbacks in interactive text mode.

Include file
The vbauthn.h file should be included when you use this class.

Methods

void handle (Callback::array& callbacks)

Handle the callbacks.

Arguments

the array of callbacks to be processed.

Returns

Void.

156 VisiBroker Secur i ty Guide

vbsec:: Ident i tyAdapter

vbsec::IdentityAdapter
IdentityAdapter binds to a particular mechanism. The main purpose of an
IdentityAdapter is to interpret identities specific to a mechanism. It is used
to perform the decoding and encoding between mechanism-specific and
mechanism-independent representations of the entities.

IdentityAdapters included with the VisiSecure
The following IdentityAdapters are provided with the VisiSecure:

• AnonymousAdapter, with the name "anonymous"

• DNAdapter, with the name "DN"

• X509CertificateAdapter (as an implementation of the sub-interface
AuthenticationMechanism)

• GSSUPAuthenticationMechanism (as an implementation of the sub-
interface AuthenticationMechanism)

Methods

Virtual void initialize (const std::string& name,
::vbsec::InitOptions&) =0;

This method initializes the IdentityAdapter with the given name and set
of options.

Arguments

This method takes the following two arguments:

• The IdentityAdapter name.

• A set of InitOptions for the specified IdentityAdapter.

Exceptions

Throws InitializationException if initialization fails.

virtual std::string getName() const=0;

This returns the name of the IdentityAdapter.

Returns

The name of the IdentityAdapter.

Exceptions

none

virtual ::CSI::IdentityToken*
exportIdentity(::vbsec::Subject&,
::CSI::IdentityToken&) =0;

Exports the identity of the IdentityAdapter as an IdentityToken.

Arguments

The subject whose identity is to be exported.

VisiBroker Secur i ty Guide 157

vbsec:: Ident i tyAdapter

Returns

An IdentityToken data.

Exceptions

Throws NoCredentialsException if no credentials recognized by this
IdentityAdapter are found in the subject.

virtual void importIdentity (::vbsec::Subject&,
::CSI::IdentityToken&) =0;

Imports the IdentityToken and populates the caller subject with the
appropriate principals associated with this identity.

Arguments

The subject whose identity is to be imported.

Exceptions

Throws NoCredentialsException if no credentials recognized by this
IdentityAdapter are found in the subject.

virtual ::vbsec::Privileges* getPrincipal
(::vbsec::Subject&anp;) =0;

Returns a Principal representing this identity. This method is used for
interfacing with EJBs and servlets.

Arguments

The principal subject.

Returns

A Principal object.

Exceptions

none

virtual ::vbsec::Privileges* getPrivileges
(::vbsec::Subject&) =0;

Arguments

The target subject.

Returns

The privilege attributes for this target subject recognized by this
IdentityAdapter.

Exceptions

none

virtual ::vbsec::setPrivileges (::vbsec::Privileges*)
=0;

This methods sets the privilege attribute for the identity.

158 VisiBroker Secur i ty Guide

vbsec:: Ident i tyAdapter

Arguments

The privilege attribute to be set for the identity.

Exceptions

none

virtual void deleteIdentity (::vbsec::Subject&) =0;

This method deletes the principals and the credentials associated with the
specified target subject.

Arguments

The target subject for which the principals and the credentials recognized
by this IdentityAdapter are to be deleted.

Exceptions

none

vbsec::MechanismAdapter
Extending from IdentityAdapter, a MechanismAdapter has the
additional capability of changing the target information. This is very useful
in the case where the mechanism used in a remote site is not available
locally. Therefore, the local identity must be adapted before sending to the
remote site.

In the out-of-box installation of VisiSecure, there is no class direct
implementation of MechanismAdapter, while a few classes implement the
sub-interface AuthenticationMechanism, which in turn gives the support of
this interface.

Methods

virtual const ::CSI::StringOID_var getOid() const =0;

Returns a string representation of the mechanism OID. For example, the
string representation for a GSSUP mechanism would be
oid:2.23.130.1.1.1.

Returns

The mechanism OID string.

Exceptions

none

virtual ::vbsec::Target* getTarget (const std::string&
realm, const std::vector<AppConfigurationEntry*>&)
=0;

Given a realm name and a list of AppConfigurationEntry objects, returns
the corresponding target.

VisiBroker Secur i ty Guide 159

vbsec::Authent icat ionMechanisms

Arguments

This method takes the following two arguments:

• A realm name.

• A list of AppConfigurationEntry objects.

Returns

The corresponding target object.

Exceptions

none

virtual ::vbsec::Target* getTarget (const
::CSI::GSS_NT_ExportedName&) =0;

Returns a Target object representing the encoded target representation.

Arguments

A Target encoded in GSS Mechanism-Independent Exported Name format
(as defined in [IETF RFC2743]).

Returns

A Target object.

Exceptions

none

vbsec::AuthenticationMechanisms
This class represents a full-fledged mechanism which provides all the
functionality needed to support an authentication mechanism in conjunction
with the CSIv2 protocol.

Included with VisiSecure are the following implementations for GSSUP
based and X509 Certificate based authentication mechanisms respectively:

• GSSUPAuthenticationMechanism

• X509CertificateAdapter

In addition to the methods inherited from its super interfaces,
AuthenticationMechanism also has the following categories of methods
defined.

Credential-related methods
Use these methods to acquire and/or destroy credentials.

virtual ::vbsec::Subject* acquireCredentials
(::vbsec::Target&, ::vbsec::CallbackHandler*) =0;

This method acquires credentials for a given target. The credentials
acquired depend on the mechanism and the information it requires for
authentication.

160 VisiBroker Secur i ty Guide

vbsec::Authent icat ionMechanisms

Arguments

This method takes the following two arguments:

• A Target object.

• The callback handler to be used to communicate with the user for
acquiring the credentials for this Target.

Returns

The Subject containing the acquired credentials (will be null in the case
where the operation fails).

Exceptions

none

virtual ::vbsec::Subject* acquireCredentials (const
std::string& target, ::vbsec::CallbackHandler*) =0;

This method acquires credentials for a given string representation of the
Target. The credentials acquired depend on the mechanism and the
information it requires for authentication.

Arguments

This method takes the following two arguments:

• A string representation of the Target.

• The corresponding callback handlers used to communicate with user for
acquiring the credential.

Returns

A subject object containing the acquired credentials (will be null in the
case where the operation fails).

Exceptions

none

virtual void destroyPrivateCredentials
(::vbsec::Subject&) =0;

This method destroys the private credentials of the specified subject.

Arguments

The subject for which the private credentials are to be destroyed.

Exceptions

none

Context-related methods

virtual ::CORBA::OctetSeq* createInitContext
(::vbsec::Subject&) =0;

Returns a mechanism-specific client authentication token. The token
represents the authentication credentials for the specified target.

VisiBroker Secur i ty Guide 161

vbsec::Authent icat ionMechanisms

Arguments

The target subject.

Returns

The authentication token for the specified target subject.

Exceptions

Throws NoCredentialsException if no authentication credentials
recognized by this mechanism exist in this Subject.

virtual ::vbsec::Target* processInitContext
(::vbsec::Subject&, ::CORBA::OctetSeq&) =0;

This method consumes the mechanism-specific client authentication
token. The initial authentication token is decoded and the method
populates the given subject with the corresponding authentication
credentials.

Arguments

The subject to be populated with authentication credentials.

Exceptions

none

virtual ::CSI::GSSToken* createFinalContext
(::vbsec::Subject&) =0;

This method creates a final context token to return to a client.

Arguments

The Subject.

Returns

A final context token.

Exceptions

none

virtual void processFinalContext (::vbsec::Subject&,
::CORBA::OctetSeq&) =0;

Consumes a final context token returned by the server.

Arguments

The target subject.

Exceptions

none

virtual ::CSI::GSSToken* createErrorContext
(::vbsec::Subject&) =0;

Creates an error context token in the case of an authentication failure.

162 VisiBroker Secur i ty Guide

vbsec::Target

Arguments

The target subject.

Returns

An error context token.

Exceptions

none

virtual ::vbsec::Subject* processErrorContext
(::vbsec::Subject&, ::CSI::GSSToken&,
::vbsec::CallbackHandler*) =0;

Consumes an error token returned from server. The callback handler is
used to interact with a user trying to reacquire credentials. If credentials
are required, the client-side security service attempts to establish the
context again.

Arguments

This method takes the following two arguments:

• A target subject.

• A callback handler.

Exceptions

none

vbsec::Target
This class gives the runtime representation of a target authenticating
principal. The context includes names for the target required in different
scenarios, such as the display name, or the DER representation of the OID.

Methods

virtual std::string getName () const =0;

This method returns the display name of the target.

Returns

The target name string.

Exceptions

none

virtual ::CSI::OID getOid () const =0;

This method returns the target OID.

Returns

The target OID string.

VisiBroker Secur i ty Guide 163

vbsec::Author izat ionServicesProvider

Exceptions

none

virtual ::CORBA::OctetSeq getEncodedName () const =0;

This method returns the mechanism-specific encoding of the target
name.

Returns

The encoded target name.

Exceptions

none

vbsec::AuthorizationServicesProvider
The implementer of the Authorization Service provides the collection of
permission objects granted access to certain resources. Whenever an
access decision is going to be made, the AuthorizationServicesProvider is
consulted. The Authorization Service is closely associated with the
Authorization domain concept. One Authorization Service is installed for
each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the
construction of its corresponding Authorization domain. Use the following
property to set the implementing class for the
AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

During runtime, this property is loaded by way of Java reflection.

Another important functionality of the Authorization Service is to return the
run-as alias for a particular role given. The security service is configured
with a set of identities, identified by aliases. When resources request to
“run-as” a given role the AuthorizationServices is again consulted to return
the alias that must be used to “run-as” in the context of the rules specified
for this authorization domain.

Methods

virtual void initialize (const std::string& name,
::vbsec::InitOptions& options) =0;

This method initializes an Authorization Services provider.

Arguments

This method takes the following arguments:

• A provider name.

• The provider options.

164 VisiBroker Secur i ty Guide

vbsec::Resource

In addition to the provider's options, the following information is passed
to facilitate the interaction between this Authorization Service provider
and the VisiBroker ORB:

Exceptions

Throws InitializationException if initialization of the Authorization
provider fails.

virtual std::string getName() const =0;

Returns the name for this Authorization Service implementation.

Returns

The Authorization Service name.

Exceptions

none

virtual ::vbsec::PermissionCollection* getPermissions
(const ::vbsec::Resource* resource, const
::vbsec::Privileges* callerPrivileges) =0;

Returns a homogeneous collection of permission attributes for the given
privileges as well as the resource upon which the access is attempted.

Arguments

This method takes the following two arguments:

• The caller Privileges.

• The resource object upon which access is to be attempted.

Returns

A PermissionCollection object represents this subject's Permissions.

Exceptions

none

vbsec::Resource
The Resource interface gives a generic abstraction of resource. The
resource can be anything upon which the access will be made, such as a
remote method of a CORBA object, or a servlet which is essentially a
resource.

Methods

virtual std::string getName () const =0;

Returns the string representation of the resource being accessed.

Name Description
ORB The ORB instance used for the current system.
Logger A SimpleLogger instance used for login in the current system.
LogLevel An integer value denoting the security logging level.

VisiBroker Secur i ty Guide 165

vbsec::Priv i leges

Returns

Name of the resource.

Exceptions

none

vbsec::Privileges
The Privileges class gives an abstraction of the privileges for a subject. It is
the container of authorization privilege attributes, such as Distinguished
Name (DN) attributes. The AuthorizationService makes the decision on
whether the subject has permission to access the certain resource based on
the privileges object of the subject.

The privileges object is stored inside the subject as one of the
PublicCredentials. At the same time, privileges hold one reference to the
referring subject. Privileges also contain a DN attributes map, as well as a
map of other authorization attributes.

The Privileges class implements the javax.security.auth.Destroyable
interface.

Constructors

Privileges (const std::string& name, ::vbsec::Subject&
subject);

This constructor creates a privileges object with the given name and
associates it with the given subject.

Arguments

The method takes the following two arguments:

• Name of the Privileges object, which is actually the associated Subject's
name.

• The target subject.

Exceptions

none

Methods

::vbsec::Subject& getSubject() const ;

This method returns the subject that the privileges object represents.

Returns

The target subject.

Exceptions

none

std::string getSubjectName() const;

This method returns the name of the associated subject object.

166 VisiBroker Secur i ty Guide

vbsec::Priv i leges

Returns

The target subject.

Exceptions

none

const ::vbsec::ATTRIBUTE_MAP& getAttributes() const ;

This method returns the attribute map of the user.

Returns

The user's attribute map.

Exceptions

none

void setDBAttributes (const ::vbsec::ATTRIBUTE_MAP&
map);

This method updates the DN Attributes of the user.

Arguments

The new DN Attributes Map.

Note

After the DN Attributes Map has been set, the Privileges object will set
the underlying DN Attributes Map as unmodifiable.

Exceptions

none

const ::vbsec::ATTRIBUTE_MAP* getDNAttributes() const;

This method returns the DN Attributes of the Privileges object, which can
be null.

Returns

User's DN Attributes map, which is not modifiable.

Exceptions

none

bool isDestroyed() const;

This method checks whether the privileges object has been destroyed or
not.

Returns

true|false

Exceptions

none

VisiBroker Secur i ty Guide 167

vbsec::Attr ibuteCodec

std::string toString() const;

This method overrides the default toString implementation of
java.lang.Object, and returns “Privileges for <subject name>”
information.

Returns

List of privileges for each subject name.

Exceptions

none

vbsec::AttributeCodec
The AttributeCodec objects are responsible for encoding and decoding
privileges attributes of a given subject. This allows clients and servers to
communicate privilege information to each other. Though the privilege
information is used as the basis for the Authorization decision-making
process, AttributeCodec selection is based on the information presented in
the IOR published by the server. Inside the IOR, the server publishes
information on the encoding scheme supported, while clients select an
AttributeCodec that supports the given encoding.

All the AttributeCodecs implementations are registered with the
IdentityServices, which is called upon during the import/export of the
authorization elements process.

Methods

virtual void initialize (const std::string& name,
vbsec::InitOptions& options) =0;

This method initializes this instance of the AttributeCodec
implementation. There can be multiple implementations in one ORB, and
each is addressed internally using the name provided.

Arguments

This method takes the following arguments:

• A string of AttributeCodec implementation names.

• Provider options.

For the provider's options, the following additional information is also
passed during the initialization:

Exceptions

Throws InitializationException if initialization of this AttributeCodec object
fails.

Name Description
ORB The ORB instance used for the current system.
Logger A SimpleLogger instance used for the current system for the purpose

of logging.
LogLevel An integer value denoting the security logging level.

168 VisiBroker Secur i ty Guide

vbsec::Attr ibuteCodec

virtual std::string getName() const =0;

This method returns the name of the provider implementation.

Returns

The provider name string.

Exceptions

none

virtual CSIIOP::ServiceConfigurationList*
getPrivilegeAuthorities() const =0;

This method returns a list of supported privilege authorities.

Returns

A list of privilege authorities.

Exceptions

none

virtual CSI::AuthorizationElementType
getSupportedEncoding() const = 0;

This method returns the supported AuthorizationElement type.

Returns

An AuthorizationElement type.

Exceptions

none

virtual bool supportsClientDelegation() const =0;

Returns whether this implementation supports ClientDelegation.

Returns

true|false

Exceptions

none

virtual CSI::AuthorizationToken* encode (const
CSIIOP::ServiceConfigurationList&
privilege_authorities, vbsec::Privileges&
caller_privileges, vbsec::Privileges&
asserter_privileges) =0;

This method encodes privileges as AuthorizationElements. This
method encodes the privilege attributes of the given caller and the given
asserter, if there is one. It will extract the privilege information from the
subject and privilege map of the caller and the asserter.

Additionally, an implementation of the AttributeCodec (if supports
ClientDelegation) may choose to verify whether the asserter is

VisiBroker Secur i ty Guide 169

allowed to assert the caller based on the client delegation information
presented by this caller.

Arguments

This method takes the following arguments:

• A set of caller privileges attributes.

• A set of asserter privileges attributes.

Returns

Encoded caller and asserter privileges.

Exceptions

Throws NoDelegationPermissionException if the assertion is not allowed.

virtual void decode (const ::CSI::AuthorizationToken&
encoded_attributes, vbsec::Privileges&
caller_privileges, vbsec::Privileges&
asserter_privileges) =0;

This method decodes authorization elements and populates the
corresponding privilege objects. This is the inversion process of the
encode method. When a server receives a set of encoded
AuthorizationElements, it passes these elements to the
AttributeCodec for interpretation. Based on the encoding method, one
particular AttributeCodec consumes the attributes it understands. It
may update the caller's or asserter's Privileges, or may add
RolePermission directly to the subject's public credentials.

Arguments

This method takes the following arguments:

• A set of encoded Authorization Elements.

• A set of caller privileges.

• A set of asserter privileges.

Returns

This method returns nothing. Upon a successful processing, this
AttributeCode object updates the caller's or asserter's Privileges maps as
appropriate based on the information available in the authorization
elements.

Exceptions

Throws NoDelegationPermissionException if the assertion is not
authorized.

vbsec::Permission
Permission represents the authorization information to access resources.
Every permission has a name, which can be interpreted only by the actual
implementation.

170 VisiBroker Secur i ty Guide

Include file
The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the permission implies another given permission. This is used
during the authorization process to determine if the caller permissions
imply the permissions required by the resource. Access will be granted if
the caller permissions imply the required permission, or denied if not.

Arguments

the permission p to be evaluated.

Returns

true if the permission implies an existing permission, false otherwise.

bool operator==(const Permission& p) const

Checks if the permission equals another given permission.

Arguments

the permission p to be evaluated.

Returns

true if the permissions are equal, false otherwise.

std::string getName () const

Gets the name of the permission.

Returns

The name of the permission.

std::string getActions () const

Get the actions of the permission as a string. It is only interpreted by the
actual implementation.

Returns

The string representation of the action for the permission.

std::string toString () const

Get the string representation of the permission.

Returns

The string representation of the permission.

VisiBroker Secur i ty Guide 171

vbsec::PermissionCollection
PermissionCollection represents a collection of permissions.

Include file
The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the PermissionCollection implies the given permission.

Arguments

the permission p to be evaluated.

Returns

true if the PermissionCollection implies the given one, false
otherwise.

vbsec::RolePermission
The RolePermission class provides the basis for authorization and trust in
the VisiSecure system.

Constructors

RolePermission (const std::string& role)

This constructor creates a RolePermission object representing a logic
role.

Arguments

A logical role string this RolePermission object represents.

Returns

A RolePermission object.

Exceptions

none

Methods

virtual bool implies (const Permission& permission)
const;

This method checks whether the permission object passed in implies this
RolePermission object. The check is based on strict equality, as the

172 VisiBroker Secur i ty Guide

method only returns true (implies) when ALL the following conditions
exist:

1 the permission object given is an instance of RolePermission, and

2 the name of the permission object given equals the name of this
RolePermission.

Arguments

A Permission object to check.

Returns

True|False

Exceptions

none

virtual std::string getActions() const;

This method returns the action associated with this RolePermission.

Returns

Always returns null, since there are no actions associated with a
RolePermission object.

Exceptions

none

vbsec::TrustProvider
When a remote peer (server or process) makes identity assertions in order
to act on behalf of the callers, the end-tier server needs to trust the peer to
make such assertions. This is meant to prevent untrusted clients from
making assertions.

The key method is isAssertionTrusted, which is called to determine
whether the assertion is trusted given the caller subject and asserter's
privileges. This method is called (by the underlying implementation) after
the corresponding authorization elements transmitted from a client to the
server have been consumed.

You use the TrustProvider class to implement trust rules which determine
whether the end-tier server accepts identity assertions from a given
asserting subject. The TrustProvider class is very closely related to the
implementation of the AttributeCodec objects and the privileges. For
example, it is possible to provide the decision-making implementation as
follows:

1 Provide class implementations representing a proxy endorsement
attribute.

2 AttributeCodec implements the necessary logic then passes the attributes
and imports them to the caller subject on the server-side. It is also
necessary to return true for the method supportsClientDelegation
defined in the AttributeCodec interface.

3 Provide the method implementation based on the proxy endorsement
attribute of the caller and the privileges of the asserter.

VisiBroker Secur i ty Guide 173

This type of evaluation of trust, which is based on rules provided by the
caller, is referred to as Forward Trust. Backward Trust is when the
evaluation of trust is based on the rules of the target. Backward Trust is the
default provided with the VisiSecure installation. For more information, see
“Trust assertions and plug-ins”.

Methods

virtual void initialize (::vbsec::InitOptions&,
std::map<std::string, std::string>&) =0;

This method initializes the TrustProvider. There can be only one
instance of the TrustProvider implementation existing for each process.

Arguments

For the provider's options, the following additional information is also
passed during the initialization:

Exceptions

Throws InitializationException if initialization of the TrustProvider fails.

virtual bool isAssertionTrusted (const
::vbsec::Subject&, const ::vbsec::Privileges&) =0;

This method verifies whether an assertion of the caller by the asserter
with the provided privileges is trusted or not. The implementation makes
use of the internal trust rules for this process to determine the validity of
the assertion.

Arguments

This method takes the following two arguments:

• The caller.

• The set of asserter privileges.

Returns

true|false

Exceptions

none

Name Description
ORB The ORB instance used for the current system.
Logger A SimpleLogger instance used for the current system for the purpose

of logging.
LogLevel An integer value denoting the security logging level.

174 VisiBroker Secur i ty Guide

vbsec::InitOptions
InitOptions is a data structure passed to user plug-ins during initialization
calls that facilitates the initialization process.

Include file
The vbsecspishared.h file should be included when you use this class.

Data Members

std::map<std::string, std::string>* options

A string map containing name/value pairs presenting parsed property
setting.

::PortableInterceptor::ORBInitInfo* initInfo

Object representing the ORB initialization information.

::IOP::Codec* codec

An IOP Codec object.

::vbsec::SimpleLogger* logger

A logger object.

int logLevel

The log level currently configured for the security service.

vbsec::SimpleLogger
SimpleLogger is a mechanism to log information of various levels.
Currently it supports four different levels: LEVEL_WARNING, LEVEL_NOTICE,
LEVEL_INFO, and LEVEL_DEBUG, with increasingly detailed information.
There is only one logger in the whole security service.

Include file
The vbsecspishared.h file should be included when you use this class.

Methods

::std::ostream& WARNING()

Returns the logging output stream for warning messages.

Returns

The logging output stream for LEVEL_WARNING.

::std::ostream& NOTICE()

Returns the logging output stream for notice messages.

VisiBroker Secur i ty Guide 175

Returns

The logging output stream for LEVEL_NOTICE, or a fake stream if the log
level is set below LEVEL_NOTICE.

::std::ostream& INFO()

Returns the logging output stream for info messages.

Returns

The logging output stream for LEVEL_INFO, or a fake stream if the log
level is set below LEVEL_INFO.

::std::ostream& DEBUG()

Returns the logging output stream for debug messages.

Returns

The logging output stream for LEVEL_DEBUG, or a fake stream if the log
level is set below LEVEL_DEBUG.

176 VisiBroker Secur i ty Guide

VisiBroker for C++ Developer ’s Guide 177

VisiSecure Error Codes
This appendix provides information about error codes for VisiSecure.

The tables in the subsequent sections list most of the minor codes and their
corresponding descriptions that accompany the CORBA system exceptions
thrown from within VisiSecure for Java or VisiSecure for C++. The identifier
(ERROR_ID) helps you to identify or represent these errors inside the code
as illustrated in the following sections.

Modifying minor codes in C++
The header file "vbsecminors.h" needs to be included for ERROR_IDs to
be made available. Then, in the code, you can use
vbsec::MinorCodes::<ERROR_ID>.

For example, vbsec::MinorCodes::ERROR_PARSING_CERTIFICATE helps
to identify a given error (returned in the form of minor code as part of a
CORBA system exception).

Modifying minor codes in Java
You can use com.borland.security.util.MinorCodes.<ERROR_ID>.

For example,
com.borland.security.util.MinorCodes.ERROR_PARSING_CERTIFICA
TE can be used to identify a given error (returned in the form of minor code
as part of a CORBA system exception).

The static method String getMinorCodeDescription (int minor) of
class com.borland.security.util.MinorCodesUtil can be used to
fetch the brief textual description of the error code.

178 VisiBroker for C++ Developer ’s Guide

General Errors

PKI Errors

SSL Errors
The following are the translation of SSL Error alerts as defined in the TLS
protocol (see http://tools.ietf.org/html/rfc5246#section-7.2.2).

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422100 INTERNAL_ERROR Unrecoverable internal runtime error NO_PERMISSION

BAD_PARAM

INTERNAL
0x56422101 UNTRUSTED_ASSE

RTION
Peer has insufficient privilege to assert the caller.

See the description of the property
vbroker.security.trust.

NO_PERMISSION

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422201 ERROR_PARSING_
CERTIFICATE

Unknown error when parsing the certificate data

Example cause: corrupted DER/Base64 data often
happens when copying over ftp that may involve
translation for UNIX<->DOS CR-LF

NO_PERMISSION

BAD_PARAM

0x56422202 ERROR_PARSING_
PRIVATE_KEY

Unknown/unclassified error when parsing the
private key data.

Example cause: corrupted DER/Base64 data often
happens when copying over ftp that may involve
translation for UNIX<->DOS CR-LF

BAD_PARAM

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA exception

0x56422221 UNKNOWN_CERTIFIC
ATE

Translated from SSL alerts:
certificate_unknown

NO_PERMISSION

BAD_PARAM
0x56422222 UNSUPPORTED_CERT

IFICATE
Translated from SSL alerts:
unsupported_certificate

NO_PERMISSION

0x56422223 BAD_CERTIFICATE Translated from SSL alerts: bad_certificate NO_PERMISSION

BAD_PARAM
0x56422224 CERTIFICATE_REVOK

ED
Translated from SSL alerts:
certificate_revoked

NO_PERMISSION

0x56422225 CERTIFICATE_EXPIRE
D

Translated from SSL alerts:
certificate_expired

NO_PERMISSION

BAD_PARAM
0x56422226 BAD_RECORD_MAC Translated from SSL alerts:

bad_record_mac
NO_PERMISSION

0x56422227 HANDSHAKE_FAILUR
E

Translated from SSL alerts:
handshake_failure

NO_PERMISSION

BAD_INV_ORDER

http://tools.ietf.org/html/rfc5246#section-7.2.2

VisiBroker for C++ Developer ’s Guide 179

PKCS12 Errors

General Security Policies (GSP) Errors

Common Secure Interoperable (CSI) Errors

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422251 P12_GENERAL_ER
ROR

Unknown error when processing PKCS12 data BAD_PARAM

NO_RESOURCES
0x56422252 P12_INVALID_DAT

A_FORMAT
Corrupted PKCS12 data BAD_PARAM

0x56422253 P12_INVALID_PK_
FORMAT

The private key retrieved from PKCS12 data is of
unsupported format

BAD_PARAM

0x56422255 P12_MISSING_DA
TA

The PKCS12 data does not contain the required
item

BAD_PARAM

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422271 SERVER_REQUIRES_SE
CURE_CONNECTIONS

Secure transport is not available in this
client while the server requires it to connect
using a secure connection

NO_PERMISSION

0x56422272 SECURITY_CURRENT_U
NAVAILABLE

SSL session is not available, possible
causes: not in a request context, not an SSL
connection or invalid object reference (on
client side)

BAD_OPERATION

0x56422273 NO_POSSIBLE_CONNEC
TION

All available connections to the server do
not meet the security requirements set up
on this client

NO_PERMISSION

0x56422274 SERVER_REQUIRES_TR
ANSPORT_IDENTITY

The server requires transport identity while
this client does not have any

NO_PERMISSION

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422300 NO_IDENTITY The server requires at least an identity while this
client does not send any

NO_PERMISSION

0x56422301 BAD_SAS_DISC This client sends SAS (Security Attribute Service,
see OMG-CSI) that the server fails to interpret

NO_PERMISSION

BAD_PARAM
0x56422302 UP_IDENTITY_REQ

D
The server requires a service context based U/P
identity while this client does not send any

NO_PERMISSION

0x56422303 NO_CONTEXT This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 4 and minor = 1 for 'no
context' semantic as per OMG-CSI

NO_PERMISSION

TRANSIENT

0x56422304 CONFLICTING_EVI
DENCE

This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 3 and minor = 1 for
'conflicting evidence' semantic as per OMG-CSI

NO_PERMISSION

TRANSIENT

0x56422305 ASSERTION_UNAU
THORIZED

This is the end-tier that is not supposed to make
another call to the next tier on behalf of the caller.
Please see vbroker.security.
supportIdentityAssertion (Java).

NO_PERMISSION

180 VisiBroker for C++ Developer ’s Guide

Authentication Errors

Authorization Errors

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422400 LOGIN_FAILED This is the minor code of the NO_PERMISSION
exception thrown back to the client carrying
ContextError with major = 1 and minor = 1 for
'invalid evidence' semantic as per OMG-CSI

NO_PERMISSION

BAD_PARAM

Error
minor
code

Error identifier
(ERROR_ID) Error description

Associated
CORBA
exception

0x56422500 FAILED_AUTHORIZA
TION

The caller has insufficient privileges required to
perform the action

NO_PERMISSION

0x56422501 INVALID_ROLE The required run-as role is not configured on this
system

NO_PERMISSION

0x56422502 EMPTY_ALIAS_FOR_
ROLE

The required alias for the specified run-as role is
not configured on this system

NO_PERMISSION

0x56422503 ACCESSED_BY_UNK
NOWN_USER

Access is denied because the caller is unknown.
Caller is either null or anonymous

NO_PERMISSION

0x56422504 ACCESSED_BY_UNA
UTHENTICATED_USE
R

Access is denied because the caller is not
authenticated

NO_PERMISSION

VisiBroker for C++ Developer ’s Guide 181

Login Modules
This appendix provides a description of the LoginModules provided by
VisiSecure for Java.

Basic LoginModule
This LoginModule uses a proprietary schema to store and retrieve user
information. It uses standard JDBC to store its data in any relational
database. This module also supports the proprietary schema used by the
Tomcat JDBC realm.

realm-name {
 com.borland.security.provider.authn.BasicLoginModule
authentication-requirements-flag
 DRIVER=driver-name
 URL=database-URL
 TYPE=basic|tomcat
 LOGINUSERID=user-name
 LOGINPASSWORD=password
 [USERTABLE=user-table-name]
 [GROUPTABLE=group-table-name]
 [GROUPNAMEFIELD=group-name-field-of-GROUPTABLE]
 [PASSWORDFIELD=field-name]
 [USERNAMEFIELDINUSERTABLE=field-name]
 [USERNAMEFIELDINGROUPTABLE=field-name]
 [DIGEST=digest-name]
};

The elements in square brackets (“[..]”) are used only if authenticating to
the Tomcat Realm, where they would be required. Otherwise, the remaining
properties are sufficient.

Property Description
DRIVER Fully-qualified class name of the database

driver to be used with the password backend.
For example,
com.borland.datastore.jdbc.DataStoreDr
iver

URL Fully-qualified URL of the database used for
the realm.

TYPE The schema to use for this realm. This
LoginModule supports the schema used by the
Tomcat JDBC realm and can be made to use
that schema. Set this to “TOMCAT” to use the
Tomcat schema. Set this to “basic” to use the
default schema.

Note: If this property is set to “TOMCAT,” all
other properties in square braces (“[..]”) must
also be set.

LOGINUSERID Username needed to access the password
backend database.

LOGINPASSWORD Password needed to access the password
backend database.

[USERTABLE] Table name under which the username/
password to be authenticated is stored.

[USERNAMEFIELDINUSER-TABLE] The field name in USERTABLE where the
userID can be read.

182 VisiBroker for C++ Developer ’s Guide

Premium {
 com.borland.security.provider.authn.BasicLoginModule
required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/
userauthinfo1.jds"
 Realm="Basic"
 LOGINUSERID="CreateTx"
 LOGINPASSWORD="";
};

Since passwords should never be stored in clear text, VisiSecure always
performs digest on the password and stores the result in a database. The
digesttype option defines the digest algorithm for this. By default, an SHA
algorithm is used for basic-typed schema, while MD5 is used for tomcat-
typed schema. You can change it by including and setting a digesttype
option. In the case the corresponding digest type engine cannot be found by
the JVM, SHA is used instead. If an SHA engine cannot be found either, the
authentication will always fail.

[USERNAMEFIELDIN-
GROUPTABLE]

The field name in GROUPTABLE where the
userID can be read, different from that in the
USERTABLE.

[PASSWORDFIELD] The field name in USERTABLE containing the
password for the username to be
authenticated.

[GROUPTABLE] Table name under where the group
information for the user is stored. When TYPE
is set to “TOMCAT,” the attribute represented
by entries in this table are treated as roles
rather than groups.

[GROUPNAMEFIELD] Name of the field in GROUPTABLE containing
the group name to be associated with the
user. When TYPE is set to “TOMCAT,” the
attributes represented by entries in this table
are treated as roles rather than groups.

[DIGEST] The algorithm to use for digesting the
password. This defaults to SHA under basic
circumstances, but defaults to MD5 when
TYPE is set to “TOMCAT”.

Property Description

VisiBroker for C++ Developer ’s Guide 183

JDBC LoginModule
This LoginModule uses a standard JDBC database interface for
authentication.

realm-name {
 com.borland.security.provider.authn.JDBCLoginModule
authentication-requirements-flag
 DRIVER=driver-name
 URL=database-URL
 [DBTYPE=type]
 USERTABLE=user-table-name
 USERNAMEFIELD=user-name-field-of-USERTABLE
 ROLETABLE=role-table-name
 ROLENAMEFIELD=field-name
 USERNAMEFIELDINROLETABLE=field-name
};

LIMS {
 com.borland.security.provider.authn.JDBCLoginModule
required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/
userauthinfo.jds"
 USERTABLE=myUserTable
 USERNAMEFIELD=userNames
 ROLETABLE=myRoles
 ROLENAMEFIELD=roleNames
 USERNAMEFIELDINROLETABLE=userRole
 USERNAME="\n"
 PASSWORD="\n";
};

Property Description
DRIVER Fully-qualified class name of the database

driver to be used with the realm. For
example, com.borland.datastore.jdbc.
DataStoreDriver

URL Fully-qualified URL of the database used
for the password backend.

[DBTYPE=ORACLE|SYBASE|
SQLSERVER|INTERBASE]

Supported database types. If this option is
specified, the table information is
preconfigured and need not be specified.
The username/password still need to be
specified to allow access to the system
tables.

USERTABLE Table name under where the database
stores users.

USERNAMEFIELD The field name in USERTABLE containing the
usernames.

ROLETABLE Table name where the database stores the
roles of users.

ROLENAMEFIELD Field name in ROLETABLE where role
information is stored.

USERNAMEFIELDINROLE-TABLE The username field name in the
ROLETABLE.

USERNAME The username needed to access the
password backend database.

PASSWORD The password needed to access the
password backend database.

184 VisiBroker for C++ Developer ’s Guide

LDAP LoginModule
Similar to the JDBC LoginModule, but using LDAP as its authentication
backend.

realm-name {
 com.borland.security.provider.authn.LDAPLoginModule
authentication-requirements-flag
 INITIALCONTEXTFACTORY=connection-factory-name
 PROVIDERURL=database-URL
 SEARCHBASE=search-start-point
 USERATTRIBUTES=attribute1, attribute2, ...
 USERNAMEATTRIBUTE=attribute
 QUERY=dynamic-query
};

Property Description
INITIALCONTEXTFACTORY The InitialContextFactory class that is used by JNDI to bind to LDAP.
PROVIDERURL The URL to the LDAP server of the form ldap://<servername>:<port> .
SEARCHBASE The search base for the Directory to lookup.
USERATTRIBUTES This option controls the attributes that are retrieved for a given user. This is

a comma separated list of attributes that will be retrieved and stored for an
authenticated user. These attributes can then be used in the authorization
rules to determine whether a user belongs to a given role.

USERNAMEATTRIBUTE This attribute represents what the user types in as the username. If set to
uid, it would allow users to type their uid when asked for a username. If set
to mail, it would allow users to type their email when asked for a user name.
When set to DN, users will type their full DN to authenticate themselves.

QUERY The Query option provides a mechanism to dynamically query the LDAP for
other information and represent the results as attributes. For example, a
user can be a member of a set of groups. It is useful to extract this
information as the GROUP attribute so that it can be used in rules in the
authorization domain. To achieve this, you can specify a query. Queries are
of the format:

query.<suffix>="<attrname>=<ldap filter>";

The suffix can be anything that uniquely identifies this entry and there can
be any number of queries specified. To insert the user's DN as part of the
query, you should use {0}. The LDAPLoginModule will then replace the
{0} with the actual DN of the user. For example, to query groups and store
the results in the GROUP attribute, you say:

query.1="GROUP=(&(ou=groups)(uniquemember={0}))";

This will select all the groups (whose ou attribute has the value groups) that
the user belongs to whose uniquemember attribute contains the user's DN,
then stores the CN of the objects returned as the result as the values for the
GROUP attribute for that user. If the attribute name specified is ROLE, then
this attribute's treatment is exactly like that of the JDBCLoginModule. This
mechanism can be used to store user roles in LDAP.

VisiBroker for C++ Developer ’s Guide 185

Host LoginModule
The HostLoginModule is used to authenticate to a UNIX or NT-based
network.

realm-name {
 com.borland.security.provider.authn.HostLoginModule
authentication-requirements-flag;
};

No additional properties are necessary for the Host LoginModule.

Snoopy
{com.borland.security.provider.authn.HostLoginModule

required;
};

UNIX shadow password for Host LoginModule

UNIX platforms only

The HostLoginModule shipped with VisiSecure for UNIX platforms utilizes
simple APIs that are uniform on most UNIX platforms. This is defined in the
POSIX standard header file pwd.h. Advanced shadow password APIs are
available for deployments that demand higher security measures. However,
one problem associated with this is that the process calling the APIs must
run as root. Since the APIs are not in POSIX standard, the login module
code is less portable.

To write your own custom login module, refer to the ‘customlogin’ example
in the VisiSecure example folder. You may then incorporate shadow
password APIs in your custom login module. These APIs are available in the
system header file shadow.h. Please consult your system manual to find
out more about them.

From the user's perspective, as already indicated above, any VisiBroker
application (client/server) configured with an authentication realm,
employing such a login module, must be invoked with root (or SUID root)
system-level privileges.

Creating a user database for the basic login module
As a first step, create and configure the database to store users and roles.
Micro Focus provides the userdbadmin tool, run from the command line, to
auto-create the required tables, create groups, and associate users with
groups.

This example uses JDataStore, though any backend — like Oracle, DB2,
Sybase, MS SQL Server, etc — can be used. A sample command is shown
below. For JDataStore, the command to be run from the command prompt
when the current working directory is:

$BES/var/servers/[server_name]
userdbadmin
-create
-db jdbc:borland:dslocal:adm/security/mydb.jds
-driver com.borland.datastore.jdbc.DataStoreDriver
-user admin
-password admin
-interactive
>addgroups accountant

186 VisiBroker for C++ Developer ’s Guide

>addgroups clerk
>adduser krish krishpwd accountant
>adduser john johnpwd accountant
>adduser bill billpwd clerk
>adduser scott scottpwd clerk
>quit

The above commands, typed at the ">" prompt, create two groups
'accountant' and 'clerk' in the database. Two users with usernames krish
and john are in an accountant role; while bill and scott are in the role of
clerks.

(Type 'help' at the ">" prompt for a list of available commands).

Using the userdbadmin tool
The userdbadmin tool is a command-line tool that can be used to create
and manage user databases for the BasicLoginModule. The userdbadmin
uses a proprietary schema and can be pointed at any database. Using this
tool, you can administer users who can be authenticated using Basic login
modules. Though the tool and BasicLoginModule work using various JDBC
databases, it is still recommended that you use JDataStore which is shipped
with VisiBroker.

To facilitate the use of popular databases, the userdbadmin tool comes
pre-configured to recognize database urls and to configure itself to use the
appropriate drivers.

If you wish to change that behavior, you may override it by specifying the
driver information.

If you do not provide driver information and userdbadmin does not
recognize the database, it will prompt for this information. Once it has
successfully acquired this information, it will write this information into a file
called .userdbadmin.config in the directory corresponding to the
user.home system property or to the file specified by the -config
command line option.

Future users of userdbadmin will read the config file from either the
user.home directory or from the file specified by the -config option and
will recognize the new database configuration, so you do not need to type
the driver information every time.

Creating a new database
To create a new database, use the commands below.

Usage: userdbadmin [<driver options>] [<userdbadmin
options>] [command]

The example below creates a new database namely mydb.jds.

prompt> userdbadmin -db jdbc:borland:dslocal:mydb.jds -
driver com.borland.datastore.jdbc.DataStoreDriver -user
administrator -password b0rlanD -create

The username/password that you supply in the command line above is used
by JDataStore to protect the database as well as to access to the database
subsequently.

Note: The username/password is for JDataStore itself. This has nothing to
do with the usernames and passwords that you may want to store in the
database later.

VisiBroker for C++ Developer ’s Guide 187

UserdbAdminTool: Creating database
jdbc:borland:dslocal:mydb.jds
JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software
Corporation. All rights reserved.
JDataStore: License for JDataStore development only - not
for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited connections
Password digest algorithm is SHA1
UserdbAdminTool: Created Database Schema

prompt>

After the execution of the command, in your current directory, a new set of
JDataStore database physical files will be created as follows:

mydb.jds
mydb_LOGA_0000000000
mydb_LOGA_ANCHOR
mydb_STATUS_0000000000

Creating groups and associating users with groups
Launch userdbadmin in an interactive mode with the created database. The
interactive mode helps you to issue multiple commands. To do this, enter
the command as given below at the command prompt.

prompt> userdbadmin -db jdbc:borland:dslocal:mydb.jds -
driver com.borland.datastore.jdbc.DataStoreDriver -user
administrator -password b0rlanD -interactive

JDataStore: Developer's License (no connection limit)
JDataStore: Copyright (c) 1996-2004 Borland Software
Corporation.
All rights reserved.
JDataStore: License for JDataStore development only - not
for redistribution
JDataStore: Registered to:
JDataStore: JDataStore
JDataStore: Developer's license with unlimited connections
Password digest algorithm is SHA1
Enter "quit" to quit.
>

Note that you are now in userdbadmin interactive mode, and you can type
commands at its '>' prompt.

Adding new users
To add a new user name with password and to make the new user a
member of one or more groups, type the following in the command line:

Example 1

> adduser krish krishpwd accountant

Example 2

> adduser bill billpwd clerk

188 VisiBroker for C++ Developer ’s Guide

In Example 1, you added a user whose name is Krish and password
krishpwd and added him as a member of the group called accountant.

In Example 2, you added a user whose name is bill and password
billpwd and added him as a member of the group called clerk.

Listing existing users in the database
To list existing users in the database, type ‘listusers’ in the command line
to list all the users and their groups:

> listusers
bill: [clerk]
john: [accountant]
krish: [accountant]

Listing all groups in the database
To list all groups and their membership, enter listgroup at the command
prompt.

> listgroups
clerk: [bill]
accountant: [krish john]

Create a new group
To create new groups and their membership, enter addgroup at the
command prompt.

> addgroups dba admin

You can check the newly added group by running the command listgroup.
The newly added groups dba and admin would be listed.

> listgroups
dba: []
admin: []
clerk: [bill]

Assign groups to existing users
To assign user krish to group dba and group admin, enter the following
command at the prompt:

> joingroups krish dba admin

You can check the newly added user by running the command listusers.
The newly added group memberships would be listed.

> listusers
bill: [clerk]
john: [accountant]
krish: [accountant dba admin]

Remove a group from the database
To remove group accountant from the database permanently, enter the
following command removegroups at the prompt.

> removegroups accountant

You can check the newly removed group by running the command
listusers. The newly removed group accountant will not be listed.

> listusers
bill: [clerk]

VisiBroker for C++ Developer ’s Guide 189

john: []
krish: [dba admin]

Add a new user without any group
You can add a new user without adding him to any specific group. enter the
command adduser at the command prompt

> adduser jack jackpwd

You can check the newly added user by running the command listusers.
The newly added user jack would be listed.

> listusers
bill: [clerk]
jack: []
john: []
krish: [dba admin]

Remove a group from a user
To remove the group from the user, enter the command leavegroup at the
command prompt.

> leavegroups krish admin

You can check the newly removed user by running the command listusers.
The user krish would be listed without the removed membership.

> listusers
bill: [clerk]
jack: []
john: []
krish: [dba]

Remove a user from the group
To remove the user from the group, enter the command removeuser at
the command prompt.

> removeuser bill

You can check the newly removed user by running the command
listusers. The newly removed user would be listed.

> listusers
jack: []
john: []
krish: [dba]

Exiting the userdbadmin program
To exit the userdbadmin program, enter the command quit at the
command prompt.

> quit

190 VisiBroker for C++ Developer ’s Guide

VisiBroker Secur i ty Guide 191

Symbols
... ellipsis 2
.defaultAccessRule property 107
.rolemap_enableRefresh property 107, 115
.rolemap_path property 107, 115
.rolemap_refreshTimeInSeconds
property 107, 115

.runas.< 107
symbols

square brackets 2
| vertical bar 2

A
access control list 41
ACL 41
AnonymousAdapter 156
API, C++ security 125
APIs

security for C++ 151
SPI for C++ 151

assertion 96, 97, 101
trusting 61

assertion syntax 43
extensible 45
using logical operators 44
value 44
wildcard 44

asymmetric encryption 64
AttributeCodec 153

interface 167
authenticated target 17
authentication

authentication mechanisms 14
Borland LoginModules 33
certificate-based using APIs 94, 100
certificate-based using KeyStores 94, 100
creating a vault 34
credentials 12
JAAS 11
JAAS config 32
LoginContext class 29
LoginModule 13
LoginModule and realm 32
LoginModule interface 29
LoginModules 14, 29, 30
pkcs12-based using APIs 96, 101
pkcs12-based using KeyStores 95, 101
pluggability 13
private credentials 12
public credentials 12
realm entry in config.jaas 32
realms 18
server and client 185
setting config file location 18
stacked LoginModules 30
username/password using APIs 94, 100
username/password using
LoginModules 94, 100

vault 23

authentication mechanism 14, 17
authentication mechanisms 29
authentication realm 7, 18
AuthenticationMechanism 13, 153, 159
authorization 41

access control list 41
C++ API 148
hierarchy 44
pluggability 41
roles 41

authorization domains 7, 45
AuthorizationServiceProvider interface 41
AuthorizationServicesProvider 163

B
backward trust 62
Basic LoginModule

code sample 182
properties 181
realm entry syntax 181

BasicLoginModule 34
brackets 2

C
C++ applications

providing security identities 99
securing 99
setting QoP 101

C++, security APIs 125
CA 64, 65

distinguished name 65
CAPI 38, 113, 118
certificate authorities 65
Certificate Authority 64

distinguished name 65
certificate request 66
certificates 64

chains 65
creating 66
distinguished name 65
generated files 66
generating 66
obtaining 66

cipher suite 67
CipherSuiteName 136
cipher-text 63
clear-text 63
CN 44
commands

conventions 2
config.jaas 32
constructors

Privileges class 165
RolePermission class 171
vbsec::Privileges 165
vbsec::RolePermission 171

CORBA authorization
setting up 48

CORBAsec

Index

 192 VisiBroker Security Guide

X509Cert 143
X509CertExtension 145

credentials 12
csiv2

AccessPolicyManager 148
ObjectAccessPolicy 149

D
delegation 59
digital signatures 66
distinguished name 65
DN 65
DNAdapter 156
documentation

.pdf format 3
accessing Help Topics 1
type conventions used in 2
updates on the web 3

domain name> 107
domain_name> 107, 115
domains

authorization 45
DS 66

E
encrypted hash 66
encryption

asymmetric encryption 64
public-key 63
symmetric encryption 64

exceptions, Service Provider Interface for
C++ (SPI) 153

F
files, certificate 66
formatted target 17
forward trust 62

G
GROUP 44
GSSUP mechanism 20
GSSUPAuthenticationMechanism 156, 159

H
hashes, encrypted 66
Help Topics

accessing 1
Host LoginModule 34

code sample 185
realm entry syntax 185

HTTPS 72

I
identities

setting up assertion 96, 97, 101
ways to provide 93, 99

identity assertion
backward trust 62
delegation 59
forward trust 62
impersonation 58

trusting assertions 61
identity assertions 57, 58

plug-ins 61
TrustProvider interface 61

IdentityAdapter 153, 156
AnonymousAdapter 156
DNAdapter 156
GSSUPAuthenticationMechanism 156
X509CertificateAdapter 156

IIOP over HTTPS 72
Microsoft IE 73

impersonation 58
ISO X.509 64, 65

J
JAAS 11

pluggable authentication 13
JAAS authentication 11

concepts 11
credentials 12
principals 11
subjects 11

JAAS authentication credentials
private 12
public 12

Java applications
providing security identities 93
securing 93
setting QoP 96

Java Authentication and Authorization
Service (JAAS) 11

JDBC LoginModule 34
code sample 183
properties 183
realm entry syntax 183

L
LDAP LoginModule 34

properties 184
Realm Entry syntax 184

logical operators for rules 44
LoginContext class 29
LoginModule

and realm 32
config.jaas 32

LoginModule interface 29
LoginModules 14, 29, 181

authentication 30
authentication mechanisms 29
Basic LoginModule 181
BasicLoginModule 34
Borland provided 33
commit phase 31
Host LoginModule 34, 185
JDBC LoginModule 34, 183
LDAP LoginModule 34, 184
realm 31
stacked 30

M
MechanismAdapter interface 158

VisiBroker Security Guide 193

method_name> 107
methods

AttributeCodec interface 167
AuthenticationMechanisms
interface 159, 160

AuthorizationServicesProvider
interface 163

IdentityAdapter interface 156
MechanismAdapter interface 158
Privileges class 165
Resource interface 164
RolePermission class 171
Target interface 162
TrustProvider interface 173
vbsec::AttributeCodec 167
vbsec::AuthenticationMechanisms 159,

160
vbsec::AuthorizationServicesProvider 1

63
vbsec::IdentityAdapter 156
vbsec::MechanismAdapter 158
vbsec::Privileges 165
vbsec::Resource 164
vbsec::RolePermission 171
vbsec::Target 162
vbsec::TrustProvider 173

Microsoft Cryptography API 38

N
n> 107, 115

O
O 44
online Help Topics

accessing 1
OU 44

P
principals 11
private key 63

generating 66
priveleges, temporary 62
Privileges class 165
properties

C++ security 115
Java security 107
vbroker.orb.dynamicLibs 104

property 107, 115
Providers, security (C++) 153
public key 63
public-key encryption 63

Q
QoP 79

C++ API 145
setting 96, 101

Quality of Protection 79
Quality of Protection (QoP)

C++ API 145
setting 96, 101

R
random number generator, seeding 96
realm entry

elements 33
elements in config.jaas 32
generic syntax 33
syntax 32

realms 18
resource domain 7
Resource interface 164
Role database

code sample 43
Role entry 43

rule 43
role, recycling rules 45
RolePermission class 171
RolePermissions class 41
roles 41
rule, using attribute/value pairs 44
run_as_role_name> 107
Run-as alias 47

S
SecureRandom object 96
Security

APIs (C++) 151
secure connections (C++) 99

security
authentication 11
authentication realm 7
authorization 41
authorization domain 7
authorization hierarchy 44
basic model 7
basics 7
C++ APIs 125
design 5
distributed environments 57
JAAS 11
JAAS authentication 11
pluggability 5, 13
PRNG 96
providing identities 93, 99
providing identities (C++) 99
providing identities (Java) 93
Quality of Protection (QoP) 79
realms 18
resource domain 7
server identification 185
setting QoP 96, 101
setting up trust 96, 101
steps to secure clients and servers 93,

99
vault 23
VisiSecure 5
VisiSecure features 6

security (C++)
AttributeCodec 153, 167
AttributeCodec methods 167
AuthenticationMechanism 153
AuthenticationMechanisms 159

 194 VisiBroker Security Guide

AuthenticationMechanisms
methods 159, 160

AuthorizationServicesProvider 163
AuthorizationServicesProvider
methods 163

com.borland.seucurity.spi.IdentityAdap
ter 156

IdentityAdapter 153, 156
IdentityAdapter methods 156
MechanismAdapter 158
MechanismAdapter methods 158
Privileges class 165
Privileges constructors 165
Privileges methods 165
Resource 164
Resource methods 164
RolePermission 171
RolePermission constructors 171
RolePermission methods 171
Service Provider Interface (SPI) 151
Service Provider Interface (SPI)
exceptions 153

SPI exceptions 153
SPI provider settings 153
Target 162
Target methods 162
TrustProvider 153, 172
TrustProvider methods 173
vbsec::AttributeCodec 167
vbsec::AuthenticationMechanisms 159
vbsec::MechanismAdapter 158
vbsec::RolePermission 171
vbsec::Target 162
vbsec::TrustProvider 172

security (Java)
AuthenticationMechanism 13
distributed environment 13
SPI 13

security properties (C++) 115
security properties (Java) 107
server identification 185
server, identity assertions 57
ServerQoPPolicyImpl 146
Service Provider Interface for C++
(SPI) 151
AttributeCodec 153, 167
AuthenticationMechanism 153
AuthenticationMechanisms 159
AuthorizationServicesProvider 163
IdentityAdapter 153, 156
MechanismAdapter 158
Privileges class 165
Resource 164
RolePermission 171
Target 162
TrustProvider 153, 172

Service Provider Interface for Java (SPI)
TrustProvider interface 61

signatures, digital 66
SPI

AttributeCodec 153
SPI (C++) 151

AttributeCodec 167
AuthenticationMechanism 153
AuthenticationMechanisms 159
AuthorizationServicesProvider 163
exceptions 153
IdentityAdapter 153, 156
MechanismAdapter 158
modules 153
Privileges class 165
provider settings 153
Resource 164
RolePermission 171
Target interface 162
TrustProvider 153, 172

SPI (Java) 13
square brackets 2
SSL

examining information 97, 102
ssl

CipherSuiteInfo 136
Current 138

subjects 11
symbols

ellipsis ... 2
vertical bar | 2

symmetric encryption 64

T
Target interface 162
temporary priveleges 62
trust

backward 62
forward 62
identity assertion 96, 97, 101
setting 96, 101

TrustProvider 153
TrustProvider interface 172

U
user domain 7

V
vault 23

creating 34
VaultGen tool 34

VaultGen tool 34
vbroker.se.iiop_tp.scm.ssl.listener.trustIn
Client property 107

vbroker.security
alwaysSecure property 107, 115
assertions.trust.< 107, 115
assertions.trust.all property 107, 115
authDomains property 107, 115
authentication.callbackHandler
property 107, 115

authentication.clearCredentialsOnFailur
e property 107

authentication.config property 107, 115
authentication.retryCount property 107,

115
cipherList property 107, 115

VisiBroker Security Guide 195

controlAdminAccess property 107
CRLRepository 115
defaultJSSETrust property 107
disable property 107, 115
domain.< 107, 115
enableAuthentication property 107
identity.enableReactiveLogin
property 107

identity.reactiveLogin property 115
identity.reauthenticateOnFailure
property 107

logFile property 115
login property 107, 115
login.realms property 107, 115
logLevel property 107, 115
peerAuthenticationMode property 107,

115
requireAuthentication property 107, 115
secureTransport property 107, 115
server.requireUPIdentity property 107,

115
server.transport property 107, 115
serverManager.authDomain
property 107

serverManager.role.< 107
serverManager.role.all property 107
support.gatekeeper.replyForSAS
property 107

transport.protocol property 107
trustpointsRepository property 107, 115
vault property 107, 115
wallet.identity property 107, 115
wallet.password property 107, 115
wallet.type property 107, 115

vbroker.security.authentication.config
property 18

vbsec::AttributeCodec 167
methods 167

vbsec::AuthenticationMechanisms 159
methods 159, 160

vbsec::AuthorizationServicesProvider 163
methods 163

vbsec::CertificateFactory 141
vbsec::ClientConfigImpl 147
vbsec::ClientQoPPolicyImpl 147
vbsec::Context 126
vbsec::Credential 130
vbsec::Current 125
vbsec::IdentityAdapter 156

methods 156
vbsec::MechanismAdapter 158

methods 158
vbsec::Principal 130
vbsec::Privileges 165

constructors 165
methods 165

vbsec::Resource 164
methods 164

vbsec::RolePermission 171
constructors 171
methods 171

vbsec::SecureSocketProvider 137

vbsec::ServerConfigImpl 146
vbsec::SSLSession 134
vbsec::Subject 130
vbsec::Target 162

methods 162
vbsec::TrustProvider 172

methods 173
vbsec::VBSSLContext 135
vbsec::Wallet 132
vbsec::WalletFactory 132
VisiBroker for C++, security
properties 115

VisiBroker for Java, security
properties 107

VisiSecure 5
C++ APIs 125

VisiSecure API (C++)
AccessPolicyManager 148
authorization API 148
Certificate APIs 141
CertificateFactory 141
CipherSuiteInfo 136
CipherSuiteName 136
class Credential 130
ClientConfigImpl 147
ClientQoPPolicyImpl 147
Context 126
Current 125, 138
general APIs 125
ObjectAccessPolicy 149
Principal 130
QoP APIs 145
SecureSocketProvider 137
ServerConfigImpl 146
ServerQoPPolicyImpl 146
SSL APIs 134
SSLSession 134
Subject 130
VBSSLContext 135
Wallet 132
WalletFactory 132
X509Cert 143
X509CertExtension 145

VisiSecure APIs (C++) 125
VisiSecure SPI (C++) 151

AttributeCodec 153, 167
AttributeCodec methods 167
AuthenticationMechanism 153
AuthenticationMechanisms 159
AuthenticationMechanisms
methods 159

AuthorizationServiceProvider 163
exceptions 153
IdentityAdapter 153, 156
IdentityAdapter methods 156
MechanismAdapter 158
MechanismAdapter methods 158
Privileges 165
Privileges constructors 165
Privileges methods 165
Providers 153
Resource 164

 196 VisiBroker Security Guide

Resource methods 164
RolePermission 171
RolePermission constructors 171
RolePermission methods 171
SPI modules 153
Target 162
Target methods 162
TrustProvider 153, 172
TrustProvider methods 173

VisiSecure SPI(C++), Service Provider
Interface (SPI) provider settings 153

W
wildcard assertion, code sample 45
wildcard assertions 44

X
X.509 certificates 65
X509CertificateAdapter 156, 159

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Getting Started with VisiSecure
	VisiSecure Overview
	VisiSecure design flexibility
	Pluggability
	VisiSecure for Java
	VisiSecure for Java features

	VisiSecure for C++
	VisiSecure for C++ Features

	Basic security model
	Authentication realm (user domain)
	Resource domain
	Authorization domain

	Distributed transmission

	Authentication
	Managing authentication with JAAS
	Basics of JAAS concepts
	Subjects
	Principals
	Credentials
	Public and private credentials

	Authentication and pluggability

	Authentication mechanisms and LoginModules
	Identity, trust and authentication
	Relationship between trust and authentication
	Identities
	System identity
	Client identity

	Configuring authentication
	Authentication property settings
	Formatted target
	Setting the config file for client authentication
	Setting up authentication realms

	Different types of Authentication
	Servers
	Clients

	Authentication mechanisms
	GSSUP mechanism
	Authenticating clients with usernames and passwords
	Username/password authentication using APIs

	Certificate mechanism
	Certificate-based authentication using KeyStores and property settings
	Certificate-based authentication using APIs
	Certificate based authentication using APIs with pkcs12Server
	Certificate based authentication using Certificate wallet
	PKCS#12-based authentication using KeyStores
	PKCS#12-based authentication using APIs

	Creating LoginModules
	LoginContext class and LoginModule interface
	Authentication and stacked LoginModules

	Associating a LoginModule with a realm
	Syntax of a realm entry
	LoginModules

	Using a Vault
	Creating a Vault
	Example—using VaultGen
	Example—Using API

	Certificate Revocation List (CRL) and revoked certificate serial numbers
	Support for MS-CAPI
	Both VisiBroker C++ and VisiBroker Java
	VisiBroker C++ Only
	VisiBroker Java Only

	Authorization
	Access Control
	Access Control List
	Roles-based access control

	Pluggable Authorization
	Configuring authorization using the rolemap file
	What is a rolemap
	Syntax of Role DB
	Modifying the authorization rolemap file
	Assertion syntax
	Recycling an existing role

	Authorization domains
	Specifying names to authorization domain
	Configuring authorization domains to run-as alias

	Setting up authorization for CORBA objects
	Setting up the name
	Setting up default access
	Configuring authorization requirements

	Java Example: Authorization Using a Vault
	To launch run-as alias:
	Run-as mapping

	Using a vault for a domain
	Context Propagation
	Identity assertions
	Impersonation
	Delegation

	Asserting identity of the caller
	Trusting Assertions
	Trust assertions and plug-ins
	Backward trust
	Forward trust

	Temporary privileges

	Secure Transportation
	Encryption
	Public-key encryption
	Asymmetric encryption
	Symmetric encryption
	Certificates and Certificate Authority
	Distinguished names
	Certificate chains

	Generating a private key and certificate request
	Digital signatures

	Enabling SSL
	Setting the level of encryption
	Cipher suites
	ECC Curves

	Enabling Security
	Enabling SSL
	To disable the SSL

	Setting the Log Level

	Using IIOP/HTTPS
	Browser considerations
	Microsoft Internet Explorer

	Quality of Protection
	Setting properties and QoP
	Configuring Quality of Protection(QoP)
	Configuring QoP for the server
	Configuring QoP for the client

	Configuring Quality of Protection (QoP) parameters

	Creating custom plugins
	LoginModules
	CallbackHandlers
	Authorization Service Providers
	Trust Providers

	Creating Secure CORBA Applications Using Java
	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication, using JAAS modules, for known realms
	Username/password authentication, using APIs
	Certificate-based authentication, using KeyStores via property settings
	Certificate-based authentication, using KeyStores via APIs
	Certificate-based authentication, using APIs
	pkcs12-based authentication, using KeyStores
	pkcs12-based authentication, using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: Setting up the Pseudo-Random Number Generator
	Step Five: If necessary, set up identity assertion

	Examining SSL related information
	SSL Example

	Creating Secure CORBA Applications Using C++
	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication, using JAAS modules, for known realms
	Username/password authentication, using APIs
	Certificate-based authentication, using KeyStores via property settings
	Certificate-based authentication, using KeyStores via APIs
	Certificate-based authentication, using APIs
	pkcs12-based authentication, using KeyStores
	pkcs12-based authentication, using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: If necessary, set up identity assertion

	Security configuration while setting up a server engine
	Examining SSL related information
	SSL example
	Using properties to install certificates, private key and trustpoints
	Using initializers to install certificates, private key, trustpoints and CRL
	Using APIs with Security aware applications: SecureServer and SecureClient
	Using APIs with pkcs12Server

	Security Properties for Java
	SSL Server Connection Manager properties

	Security Properties for C++
	SSL Server Connection Manager properties

	VisiSecure for C++ APIs
	General API
	class vbsec::Current
	Include File
	Methods

	class vbsec::Context
	Include File
	Methods

	class vbsec::Principal
	Include file
	Methods

	class vbsec::Credential
	Include File

	class vbsec::Subject
	Include File
	Methods

	class vbsec::Wallet
	Include File
	Methods

	class vbsec::WalletFactory
	Include File
	Methods

	SSL API
	class vbsec::SSLSession
	Include File
	Methods

	class vbsec::VBSSLContext
	Include File
	Methods

	class ssl::CipherSuiteInfo
	Include File

	class CipherSuiteName
	Include File
	Methods

	class vbsec::SecureSocketProvider
	Include File
	Methods

	class ssl::Current
	Include File
	Methods

	Certificate API
	class vbsec::CertificateFactory
	Include File
	Methods

	class CORBAsec::X509Cert
	Include File
	Methods

	class CORBAsec::X509CertExtension
	Include File

	QoP API
	class vbsec::ServerConfigImpl
	Include File

	class ServerQoPPolicyImpl
	Include File
	Methods

	class vbsec::ClientConfigImpl
	Include File
	Methods

	class vbsec::ClientQoPPolicyImpl
	Include File
	Methods

	Authorization API
	class csiv2::AccessPolicyManager
	Include File
	Methods

	class csiv2::ObjectAccessPolicy
	Include File
	Methods

	Security SPI for C++
	Plugin Mechanism and SPIs
	Providers
	Providers and exceptions

	vbsec::LoginModule
	Include File
	Methods

	vbsec::CallbackHandler
	Include file
	Methods

	vbsec::IdentityAdapter
	IdentityAdapters included with the VisiSecure
	Methods
	vbsec::MechanismAdapter
	Methods

	vbsec::AuthenticationMechanisms
	Credential-related methods
	Context-related methods

	vbsec::Target
	Methods

	vbsec::AuthorizationServicesProvider
	Methods

	vbsec::Resource
	Methods

	vbsec::Privileges
	Constructors
	Methods

	vbsec::AttributeCodec
	Methods

	vbsec::Permission
	Include file
	Methods

	vbsec::PermissionCollection
	Include file
	Methods

	vbsec::RolePermission
	Constructors
	Methods

	vbsec::TrustProvider
	Methods

	vbsec::InitOptions
	Include file
	Data Members

	vbsec::SimpleLogger
	Include file
	Methods

	VisiSecure Error Codes
	Modifying minor codes in C++
	Modifying minor codes in Java
	General Errors
	PKI Errors
	SSL Errors
	PKCS12 Errors
	General Security Policies (GSP) Errors
	Common Secure Interoperable (CSI) Errors
	Authentication Errors
	Authorization Errors

	Login Modules
	Basic LoginModule
	JDBC LoginModule
	LDAP LoginModule
	Host LoginModule
	UNIX shadow password for Host LoginModule

	Creating a user database for the basic login module
	Using the userdbadmin tool
	Creating a new database
	Creating groups and associating users with groups
	Adding new users
	Listing existing users in the database
	Listing all groups in the database
	Create a new group
	Assign groups to existing users
	Remove a group from the database
	Add a new user without any group
	Remove a group from a user
	Remove a user from the group
	Exiting the userdbadmin program

	Index

